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Abstract. Segmentation of organs at risk for radiation therapy plan-
ning is a time-consuming task. Knowledge-based segmentation is in the
focus of research to apply semi-automatic segmentation without user-
interaction. It turns out that only integrating general knowledge into a
knowledge base is not appropriate to deal with complex anatomical con-
ditions among humans. Supervised learning is therefore investigated to
provide individually given knowledge and adapt general knowledge to the
individual case. Since deriving multi-dimensional feature spaces in med-
ical images can cause huge amount of redundant data, a measurement
decision tree is presented and its data reduction performance evaluated.

1 Introduction

Segmentation of organs at risk (OAR) for radiation therapy planning is a time-
consuming and complex task. It is often done manually or semi-automatic.
Volumes of interest (VOI) and their spacial location play a major role in radi-
ation therapy planning. It enables to quantitatively simulate radiation therapy
under certain therapy conditions. New developments in radiation therapy plan-
ning brought new requirements to the segmentation task on medical images.
Automatic segmentation would allow to repeat treatment planning more often
since this time-consuming task is still a limiting factor. Many semi-automatic
segmentation algorithms are already developed. One drawback is that complex
configuration can remain necessary to achieve expected segmentation results.
As a consequence, semi-automatic segmentation also turns into a knowledge
intensive task. Knowledge-based systems are in the focus of research to pro-
vide relevant knowledge. It is intended to trigger semi-automatic segmentation
without user interactions [1]. But, it turns out that only incorporating general
knowledge is not sufficient to deal with complex anatomical conditions among
humans. Pattern recognition methods are therefore investigated to acquire indi-
vidually given knowledge. As a result, semi-automatic segmentation algorithms
are triggered by individually adapted knowledge.

This contribution introduces a measurement decision tree (MDT) for super-
vised learning purposes. It is intended to reduce the number of measurements
for the training of classifiers on large scale medical image data.
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2 Material and Methods

Knowledge-based segmentation [2, 3, 4] in radiation therapy planning is mainly
investigated for computed tomography (CT) since it is the principal foundation
for physical radiation dose simulation. CT images show X-ray attenuation co-
efficients in Hounsfield Units [HU] within a tiny volume – a voxel. To classify
single transversal slices into body regions, different classifiers are already inves-
tigated [1, 5]. Further investigations, now focusing on multi-dimensional image
processing and voxel classification, easily exceed the amount of training data by
a factor of 2 to 10. This is due to statistical features (measurements) derived
from small subregion for each voxel. For instance, minimum, maximum, median,
variance and Haralick features [6]. In the same context, labels are derived from
already existing manual segmentation (fig. 1). The amount of training data can
easily turn into main memory requirements exceeding the 3GB threshold on
32 bit computer systems. It is observed that among all measurements many are
redundant represented (e.g. a lot of background measurements are fixed to -1024
HU and therefore highly over-expressed). Cross-validation on redundant data
becomes very inefficient and turns into superfluous computational efforts.

3 Results

Decision trees are well known from the context of machine learning [2]. Unlike
other classifiers, models produced by decision trees are easy to interpret. The
reasoning process is transparent and straightforward from the root node to its
leaf nodes. In similar prospect a MDT is proposed to arrange measurements m
and its labels l in a tree representation to reduce redundancies.

Fig. 1. Training data. Left: manually segmented contours of a head&neck case. Right:
derived labels per voxel (background, human anatomy, spinal cord and parotids).
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3.1 Measurement Decision Tree

Each measurement m consists of several features xi. Each feature is represented
on a separate level in the MDT (fig. 2). Two types of nodes are known: feature
nodes and label nodes. A feature node (FN) consists of value xi (e.g. a numerical
value, character or text) and a list of subsequent feature nodes with values xi+1.
A label node (LN) is always a leaf node and contains a label l and a counter
variable c. In Python syntax the implementation is the following:

class FeatureNode:

def __init__(self, value, children=[]):

self.value = value

self.children = children

def __eq__(self, value):

return self.value == value

class LabelNode:

def __init__(self, label, counter=1):

self.label = label

self.counter = counter

def __eq__(self, label):

return self.label == label

Training To build a MDT, a root node (RN) has to be created first. The first
feature x1 of the first measurement m1 is attached to the RN as FN. The second
feature x2 is attached to the previous FN. This process is continued until every
feature of the first measurement is integrated as the first branch in the MDT.
Finally, a LN is attached to the last FN and its counter variable is initialized
with value 1. Insertion of the second measurement m2 begins at the RN again.
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Fig. 2. Example: left some particular training data (format: label, feature1:value1,
feature2:value2 etc.) and right the resulting MDT.
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If the first feature is already present, no new node is created. If not, then a new
FN is appended to the current node. This work flow is true for every feature xi.
The counter variable of a LN is either incremented by one if a corresponding LN
already exists or a new one created. A simple example is shown in fig. 2. The
implementation of the insert function is given as the following:

def insert(measurement, label):

node = root

for m in measurement:

if m in node.children:

i = node.children.index(m)

node = node.children[i]

else:

node.children.append(Node(m,[]))

i = node.children.index(m)

node = node.children[i]

if label in node.children:

i = node.children.index(label)

node.children[i].value += 1

else:

node.children.append(LeafNode(label,1))

As an advantage, no information get lost when measurements are represented
as MDT. If more than one label is assigned to a measurement, different decision
strategies become possible. For instance, conserving the measurement for every
label, only for the label with maximum occurrence, for all labels that exceed a
certain threshold or that one that gains absolute majority.

This MDT was applied to reduce the measurement space for five head&neck
cases. Six features were derived within three-dimensional CT data for every
voxel. The total number of measurements per case is depicted in tab. 1. The
training data is reduced by integrating each measurement into a MDT and trans-
forming it back into a linear sequence. Each label is now non-redundant repre-
sented by exactly one measurement. The total number of remaining measure-
ments and its reduction is also shown in tab. 1. Finally, all reduced training sets
are merged into one single training set that comprises all cases. The total num-
ber of remaining measurements is 6 285 · 103. As a result, measurements from
different classes are now more balanced distributed and redundancies strongly
reduced.

4 Discussion

The proposed MDT allows to reduce redundant measurements on large scale
medical image data to ≈ 7% of its original size. Measurements are represented
exactly once in the feature space. Adverse side effects on single classifiers (e.g. k-
nearest neighbours classifier) have to be individually evaluated. The main benefit
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Table 1. Evaluation: measurement reduction performance by insertion into the MDT.

Case # Measurements # Measurements remaining Reduction [%]

1 40 · 106 1 668 · 103 96

2 21 · 106 862 · 103 96

3 28 · 106 1 151 · 103 96

4 25 · 106 1 018 · 103 96

5 41 · 106 6 381 · 103 84

Mean: 31 · 106 2 216 · 103 93

results in the reduction of computational effort for supervised learning and cross-
validation since the chance of testing redundant data reduces tremendously. As
a result, individual knowledge aquisition on voxel scale becomes possible for
knowledge-based segmentation purposes [2, 4].
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