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Abstract

The extremely expensive process of integrating data to achieve a conso-

lidated database is one of the main problems in building a data wareh-

ouse. Since operational data sources may exhibit a high update rate, the

data warehouse information is out of date by the order of magnitude. To

avoid out-dated information the alternative is to query the data sources

directly, which results in higher query runtimes or in the complete failure

producing a result if data sources are currently not available. This paper

discusses an approach to close this gap: multiple snapshots of participa-

ting data sources are cached in a middleware layer and user queries are

routed to this set of snapshots which are providing an almost consistent

global database view. We describe the architecture of our information

middleware approach, develop different join semantics to combine diffe-

rent data sources, and propose algorithms for picking time consistent

cuts in the history of local snapshots.

1. Introduction

Data warehouse databases are integrated and time-variant

([Inmo96]), but usually not up-to-date. In contrast data sources of

data warehouse environments may be volatile, not integrated and

time-invariant. Since the management of any industrial company

is interested in the most current and consistent data, a possible

solution might be the following: If consistent data are requested,

the data warehouse is queried, although the data are not up-to-

date. If the most up-to-date information is required, external

information is extracted on-the-fly, integrated and combined to

produce the result set for a single incoming query. This method

yields a result consisting of the most current information. How-

ever, the processing of the query takes much time or might be

even impossible if a data source is currently unreachable. To

avoid the distinction, an additional integration layer is needed.

From a structural point of view, data from external sources could

be partially prefetched or the result of data warehouse queries

could be cached to enable and/or speed up future queries. From a

operational point of view, the middleware service has to provide

a technology to transparently produce a semi-consistent view

over the cached information. An approach to exploit the existence

of temporalized materialized snapshots, is the topic of the paper.

Thus, the overall idea presented in this paper is to provide a

framework to combine data valid at different points in time so that

the global consisteny is violated as little as possible.

The critical notion of consistency in the context of this work is

defined from the following three perspectives:

•existential strategy: A precondition of a consistent global data-

base view in web information systems is that no information

which should be part of the global result is getting lost during

the combination of two data sets relying on regular inner join

semantics. Since we focus on this existential consistency stra-

tegy, we propose a technique of consistency bands in combina-

tion with different join semantics to come up with a semi-con-

sistent global view over the participating data souces.

•projection strategy: Combining data sources in a union style

may lead to duplicate entries. To eliminate duplicates, which

might not be there in a fully consistent world, a second consis-

tency strategy is used to apply aggregation operators to quanti-

tatively express the degree of un-consistency.

•scalar strategy: A third perspective in defining consistency

quantitatively appears when combining entries from different

data sources using scalar operations. We express the inconsis-

tency by a range of possible correct values framed by a mini-

mum and maximum.

Summarizing the main conflict between timeliness and consis-

tency leads to the idea of providing a general consistency frame-

work with adjustable parameters to reflect the balance between

up-to-date information and efficient query processing.

The presented conflict can also be found in two well known

system architectures: (1) The database middleware approach (e.g.

Garlic [IBM01b]) provides a direct access to all registered data

sources, which are connected by wrappers to the middleware soft-

ware. (2) The data warehouse approach ([Inmo96], [Kimb96])

periodically performs bulk loads into a single centralized data-

base (figure 1). From a user point of view, the middleware

approach enables query capabilities for a broad range of data

sources. The query answers reflect the current state of each local

data source. However, combining local data sources may yield an

inconsistent global view ([ShLa90]). The other extreme may be

reached following the data warehouse approach, where only his-

toric states of the data sources are accessible by the users; new

data remains hidden until the next data warehouse refresh. Perma-

nent updates would cause tremendous effort in maintaining by

simultaneously blocking users accessing the data warehouse in an

analyzing way. Closing this gap between offering instant access

to new or modified data and providing an almost consistent view



with regard to the global database is the focus of this paper. Our

approach is to temporarily store multiple snapshots of the single

data sources and provide mechanisms to pick those snapshots for

a user query which provide the database view with the highest

level of consistency.

Contribution and Organization of the Paper

In the remainder of this paper, we focus only on the actuality

problem, the data consistency problem is not addressed. There-

fore, we first sketch the overall architecture. Then we introduce

the concepts of a historic cut, of consistency bands and join

semantics as a means to develop algorithms for semi-consistent

database views. Finally different strategies to generate historic

cuts are outlined. Section 5 proposes an extended version of a his-

toric cut picking algorithm and outlines the architecture of the

prototype. The paper closes with a summary and conclusion.

Related Work

Since our approach is related to many different research areas,

we classify our material as follows:

•web information systems
Web information systems (WIS) integrate Web-based systems

and non-Web-based systems such as database and transaction

processing systems ([IsBV98]) to provide a transparant view

over a set of independent and (at least technically) heteroge-

nous data sources. WIS emphasize the integration at the data

level in contrast to ‘Enterprise Application Integration’

([Lint99]).

•mediator and database middleware systems /
multidatabase systems
Database middleware systems like DataJoiner/Garlic

([IBM01a], [IBM01b]) or mediator systems in general

([Wied92], e.g. TSIMMIS [IBM01c]) provide a query engine

with sophisticated wrapper and query optimization techniques

([RoSc97]). Since those systems including multidatabase sys-

tems ([BrGS92], [ShLa90]) are only considering the current

state of a data source, the integration point of different states of

data sources from a global point of view is not a subject of

interest.

•materialized views in data warehouse systems
One of the main optimization techniques in data warehouse

systems is the use of materialized views. Since materialized

views do not necessarily have to be consistent with the base

data, browsing a database, where a single query is rerouted to

multiple materialized views reflecting different states of the

underlying database, yields a situation which is strongly related

to our problem. Although a vast amount of work is done in the

area of materialized views (selecting: [GHRU97]; maintaining:

[GuMu99]; rewriting: [ZCL+00]), we are not aware of any

work pinpointing our problem of generating semi-consistent

database views. Moreover, it is important to mention that the

proposed local caching strategy has nothing to do with incre-

mental updates because the data are stored as a snapshot of the

data source.

•replication and concurrency control in database systems
Introducing replicas ([ÖzVa91]) is a general way to speed up

local access to data. Since replicas are synchronized immedi-

ately in the context of an update operation, our approach is

much more related to the concept of database snapshots

([AdLi80]). The selection of the “best” set of snapshots from a

consistency point of view, however, has not been discussed

prior to our work.

2. Architecture

Before being able to introduce our approach of constructing a

semi-consistent database view, we introduce the concept of a

“bubble graph” (BG). A bubble graph may be visualized as a

matrix, holding snapshots for different data sources taken at dif-

ferent points in time. Figure 2 shows a BG with a single snapshot

for data source D1, two snapshots for D2 and three snapshots

taken at different times for Dn. Snapshot Sn
3 does reflect the cur-

rent state of Dn, because it was taken at tNOW, the current time.

Using the technique of bubble graphs, we may display the idea

of database middleware and the data warehouse approach. In the

middleware approach a state of different snapshots only exists at

tNOW due to the absence of multiple snapshots for a single data

source (figure 3 (a)). In contrast each set of snapshots in a data

warehouse which is loaded at the same time is consistent due to

the cleansing and transformation procedure. Therefore, the snap-

shots of the same loading period form a horizontal line (figure 3

(b)).

Mixing and adding flexibility to these approaches yields our

architectural proposal, where each data source may be repre-

sented by an arbitrary number of snapshots (at least one) taken at

any time without synchronizing with other data sources

(figure 4). A query from the users will be routed not directly to the

data source but to those snapshots providing the most consistent

view, i.e. exhibit the minimal distance to a horizontal line in a BG.

The main advantage of this approach is the high flexibility

when dealing with data. Adding a new snapshot to the system

may be performed at any time and without blocking users reading

data. Physical optimization like index generation or precomput-
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ing summary values may be done offline after taking the snap-

shots and before making the data accessible to the user. However,

the extreme flexibility must be compensated by algorithms deal-

ing with resulting inconsistencies between snapshots represen-

ting different states of the modeled world.

3. Historic Cuts, Consistency Bands,
and Join Semantics

From the example presented in the last section, we are in the

position to argue that a view over multiple data sources is consis-

tent if all snapshots are placed on a horizontal line within a bubble

graph*. Such a horizontal line is called a ‘historic cut’ and is

denoted by tc. Consistency from a database point of view

addresses the maintenance of local constraints like checking pri-

mary key or check constraints and preserving referential integrity

between two data sources. Since the first class of constraints must

be checked by the data sources locally, it is required from our

approach to focus on relationships between data sources and

maintaining the join semantics. However, holding on tightly to

the ’classical’ and strict notion of consistency, we are not able to

achieve any benefit in comparison to regular information system

architectures. By relaxing the notion of consistency a bit, we may

take advantage of the flexible architecture with independent snap-

shots.

Join Semantics

To reflect the possible inconsistencies arising by combining

snapshots taken at different points in time, we have to propose

certain repair mechanisms. To explain it on an example in figure 5

for a given historic cut tc, only S3
2 and S4

2 are directly taken at tc,

so that we may combine them using regular inner join semantics,

i.e. S3
2 S4

2 . All other snapshots have to be added to this con-

sistency island formed by S3
2 and S4

2 using outer join semantics

so that no information from the consistency island is lost. Con-

sider the example from figure 5 with the tuples attached to the

snapshots participating in a global database view: Obviously,

S3
2 S4

2 results in {(a1,b1,c1),(a2,b2,c2)}. Adding Sn
2 with inner

join semantics yields a loss of (a2,b2,c2) because this snapshot

does not yet exhibit the corresponding join partner (c2,d2) which

appears in Sn
3 . Hence, applying outer-join semantics for snap-

shots outside of the consistency island preserves as much infor-

mation as possible. In our example it would result in a left-outer-

join, i.e. S4
2 Sn

2 = {(b1,c1,d1), (b2,c2,NULL)}.

Inner and Outer Consistency Bands

Referring again to the example from figure 5, we may detect

two ‘flaws’ in the current procedure of combining independent

snapshots from different data sources. First of all, a snapshot may

be too old to contribute to a more-or-less consistent database

view, e.g. S2
1 . Therefore, we introduce an outer consistency band

denoting the maximal distance from a snapshot to the current his-

toric cut. Figure 6 presents a similar scenario compared to

figure 5 with the corresponding outer consistency band. If no

snapshot of a queried data source is within this band, we demand

a snapshot refresh ([AdLi80], [GuMu99]). If the snapshot allows

to be incrementally ‘rolled forward’ ([LHM+86], [SBCL00]) to

any specific point in time, we distinguish two strategies. The

exact mode rolls the snapshots to tc; the fuzzy mode rolls it to the

upper border of the outer consistency band so that it might still be

added using outer join semantics. However, if the underlying data

source does not provide any means for incrementally maintaining

the snapshots, we have no other choice but to issue the generation

of a complete new snapshot valid at tNOW (full refresh).

The second issue which needs an extension addresses the

notion of a consistency island comprising all snapshots taken at

tc. As it is easy to imagine, the probability that a huge set of inde-

pendent snapshots are taken at the same time is very low. To com-

pensate for this drawback, we introduce the notion of an inner

consistency band. All snapshots within an inner consistency band

are then considered consistent to each other, thus forming the

consistency island combined by inner joins. Obviously, the

smaller the inner and outer consistency bands are, the more accu-

rately a consistent view of the global database state is achieved.

* At this point, we may annotate that we are not dealing with schema intregration

or instance transformation. These tasks are regarded a prerequisite already in

directly querying the data sources.

Fig. 3: Bubble graphs for middleware and data warehouse approach Fig. 4: Snapshot-based architecture
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Building a Semi-Consistent Database State for a Given
Historic Cut

With the notion of consistency bands, we may now focus on

picking the optimal set of snapshots to come up with a global

database view which is as consistent as possible. Figure 7 out-

lines the algorithm SimpleSnapshotPicking summarizing the

informally mentioned strategies given above. In the example of

figure 6, snapshots S3
2 and S4

2 are within the inner consistency

band and regularly joined together. Snapshots from data sources

D1 and Dn are within the outer consistency band and added to the

consistency island with an outer join; snapshot S2
1 finally needs

an update and is rolled forward depending on the maintance mode

– exact, fuzzy, full refresh – to tc, to the upper border of the outer

consistency band, or to tNOW. This simple strategy, picking the

optimal set of snapshots to produce a semi-consistent database

view, will be complicated if the system itself has to determine the

optimal historic cut. Different approaches are discussed in the fol-

lowing section.

Moreover, we may add a variation to the before mentioned

approach: Instead of specifying tc directly within the context of a

query, we consider a strategy relying on a primary snapshot. The

main idea of the primary snapshot approach is based on the pri-

mary copy approach used in distributed database system

([ÖzVa91]). The method is based on the fact that exactly one data

source Dp is treated in a special way, e.g. holds extremely impor-

tant data. The time when the most current snapshot of such a data

source was taken always determines the historic cut tc for an

incoming query. This primary snapshot approach may be useful

beyond preferring a certain data source. It may also be used as a

tie-breaker if another strategy does not result in a single solution.

Figure 8 holds a sample scenario with D2 as the primary data

source and S2
2 as the most current and therefore primary snap-

shot.

4. Generation of Semi-Consistent Views

The algorithms presented in the last section presume a historic

cut tc given either by the user directly or indirectly by the primary

snapshot. In this section several algorithms are discussed where

the system itself determines the ‘optimal’ tc. We start with dis-

cussing the optimal mathematical solution. However, since the

optimal solution from a mathematical point of view does not

always reflect an optimal solution from a user’s demand point of

view, we propose two algorithmical solutions: a greedy and a

cluster based approach.

Quantifying Consistency more Generally

To generally quantify the ‘distance’ of a snapshot from a glo-

bal consistent state denoted by a historic cut, we may take advan-

tage of a rich portfolio of different strategies like the number of

missing updates, the number of missing updated tuples, value-

based distances, or time-related measures. Without any general

restrictions, we use the Euclidian norm ||.|| over the distances of

all snapshots Si
j of a single data source Di and of a historic cut tc:

The Optimal Mathematical Solution

The ‘optimal’ solution from a mathematical point of view is

achieved if the Euclidian distance of a set of snapshots is mini-

mal. With a single snapshot Si
1 for each data source, we require

that the following formula called ‘global distance’ dg holds for an

optimal historic cut tc:

Obviously, the solution to this problem is achieved using the

first derivation and results in the average over the timestamps of

the participating snapshots:

Algorithm SimpleSnapshotPicking

Input: D // set of data sources Di
// each having a set of snapshots Si

j

tc // given historic cut
∆to // outer consistency band
strategy // refresh strategy

Output: S // vector of snapshots

begin
S = [∞,∞,...,∞]
foreach Di in D

// find the closest snapshot to tc
Si
s  = ∞
foreach Si

j in Di
if ( |time( Si

j ) - tc| < |time( Si
s ) - tc| )

Si
s = Si

j

end if
end foreach
// check if found snapshot is not within
// the outer consistency band
if ( |time( Si

s ) - tc| > ∆to/2 )
// compute snapshot depending on the strategy
if ( strategy == exact)

Si
s  = exact ( Di, tc )

elseif ( strategy == fuzzy )
Si
s  = fuzzy ( Di, to + ∆to/2 )

else
Si
s  = full ( Di, tNOW )

endif
// generate snapshot
generateSnapshot ( Si

s )
end if
S[i] = Si

s

end foreach
return S

end

Fig. 7: Algorithm SimpleSnapshotPicking
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This simple mathematical approach may be extended into two

directions. At first we may consider the case with ki snapshots for

each data source. Again the average over timestamps of all con-

tributing snapshots yields the solution:

A second extension assigns weights αi
j to different data

sources or different snapshots. More up-to-date snapshots may

have a higher weight; unreliable or imprecise data sources may

have a lower weight, etc. Extending the solutions above produces

the following formulas to compute the optimal historic cut tc:

•a single snapshot Si
1 per data source Di:

•multiple snapshots Si
j  per data source Di:

Figure 9 (a) illustrates the idea of the formula with a single

snapshot for each data source. The historic cut is the line with the

minimal distance to all participating snapshots. Figure 9 (b)

shows a solution for the general case. The global optimal historic

cut is tc1, which determines S1
3 , S2

2 and Sn
2 as the snapshots for

the query. However, another condition is not considered by this

mathematical solution: The historic cut should be as close as pos-

sible to tNOW, i.e. tc2 in figure 9 (b). However, the computation of

tc2 cannot be reflected in a single formula, especially when con-

ditions like consistency bands have to be considered. Therefore,

we propose two algorithmically working solutions to solve this

problem, which is called the ‘historic cut picking problem’.

An Iterative Greedy Solution

We propose the following strategy by applying a greedy algo-

rithm to the problem of finding the optimal historic cut: Starting

from tNOW, the globally newest snapshot Si
k is selected, the his-

toric cut tc is temporarily set to time( Si
k ), and the corresponding

set of nearest snapshots Si
j is computed (following the Simple-

SnapshotPicking strategy discussed in section 3). Figure 10 (a)

shows a scenario with S2
3 as the most up-to-date snapshot and tc

set to time( S2
3 ).

After completing this first iteration, the next step of the algo-

rithm computes a new solution by picking the next newest Si
k

with regard to the current solution tc. If the global distance of all

corresponding snapshots is smaller than the global distance of the

current (i.e. first) solution, then the new solution is set to the cur-

rent solution and the iterative process is continuing. Otherwise

the algorithm stops and returns the last (and presumably best)

solution. For example, tc is set to time( S1
2 ), because it represents

the next newest snapshot (wrt. tc of figure 10(a)) and the overall

distance to the contributing snapshots is less than the global dis-

tance with tc = time( S2
3 ). The algorithm IterativeGreedy of this

iterative approach is presented formally in figure 11.

A Two-Step Clustering Solution

Based on the iterative process, we enrich the current solution

to the cut picking problem by applying a two-step clustering algo-

rithm: In the first step for each cluster a local historic (cluster ori-

ented) cut tCu is computed by applying an already proposed ‘glo-

bal’ solution like the mathematical or the iterative approach to

each cluster. Finally, we derive a global historic cut tc by comput-

ing the weighted average over the set of all local historic cuts. The

challenge of the approach is then to find a proper set of clusters

and assign weights to each cluster so that a cluster with important

(or most relevant) information over a certain set of data sources

exhibits a major impact on determining the global historic cut tc.

Finding clusters may be done in a naive way by putting all snap-

shots of a single data source into a single cluster; it might be left

to the user; it might be based on the idea of partitioning the set of

Si
j so that all snapshots having foreign key relationships or being

frequently queried together are put into a single cluster. Gener-
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ally, we think that the partitioning strategy highly depends on the

application scenario so that we cannot give an optimal solution

here and just rely on an existing partitioning scheme. Figure 12

shows the corresponding examples. Figure 12 (a) illustrates the

partitioning schema with the local historic cuts tc1,...,tcm which

are used to compute the global tc denoted in figure 12 (b). The

algorithm of the approach is given in figure 13 using the function

f( D ) to compute local historic cuts. †

5. Dynamic Algorithm of the
Cut Picking Problem

In section 3 an algorithm for finding the closest snapshots is

discussed if the historic cut tc and the inner and outer consistency

bands are given. The algorithms for generating semi-consistent

views presented in the previous sections are based on partially

well-known methods computing a historic cut tc without any con-

sideration of consistency bands. Extending these methods by

explicitly taking the notion of consistency bands into account

builds the subject of the first part of this section resulting in a

dynamic historic cut picking algorithm. The second part of this

section outlines the logical architecture of our prototypical imple-

mentation.

Dynamic Cut Picking Algorithm

The most severe situation arises in the context of consistency

bands as soon as for one or more data sources all snapshots are

outside of the outer consistency band. In this case no snapshot is

allowed to participate in the join for the current query and the

result given to the user would be undefined. Hence, a refresh

operation is introduced to avoid this situation, forcing the system

to create a new snapshot of the affected data sources. The refresh

mode depends on the update strategy (exact, fuzzy or full –

section 3) specified by the user and the type of the data source‡.

† Obviously a clustered configuration may be simulated using the optimal math-

ematical solution by assigning equal weights to the snapshots within each clus-

ter.

Algorithm IterativeGreedy

Input: D  // set of data sources Di each having
 // a set of snapshots Si

j

Output: tc // historic cut
S  // vector of snapshots

begin
tnew = ∞
dnew = ∞
Snew = [∞,∞,...,∞]
do

tc = -∞
told = tnew
dold = dnew
Sold = Snew
// find next snapshot
foreach Di in D

foreach Si
j in Di

if ( time( Si
j ) < told and time( Si

j ) > tc )
tc = time( Si

j )
end if

end foreach
end foreach
// compute foreach Di the closest snapshot to tnew
foreach Di in D

Si
s = ∞

foreach Si
j in Di

if ( |time( Si
j ) - tc| ≤ |time( Si

s ) - tc| )
Si
s = Si

j

end if
end foreach
tnew = tc
Snew[i] = Si

s

dnew = dg( tnew, Snew )
end foreach

while ( dnew < dold )
return ( told, Sold )

end

Fig. 11: Algorithm IterativeGreedy
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Fig. 12: Example of a bubble graph for the two-step clustering approach
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‡ As already outlined not every data source is able to roll forward to a certain

point in time. However, the operation ‘full refresh’ is always possible resulting

in a most up-to-date snapshot.

Algorithm TwoStepClustering

Input: C // set of clusters Ci each consisting
// of a set of data sources Di

αc // set of weights whereby each weight αci
// corresponds to a cluster Ci

Output:tc // historic cut
S // vector of snapshots

begin
// computation of the local historic cuts tCu
// by calling a method f ∈ {SimpleSnaphotPicking, ...

)
foreach Cum in C

D = ∅
foreach Di in Cum

D = D ∪  Di
end foreach
tCu = f( D )

end foreach
// computation of the global historic cut tc
tc = αC1*tC1 + ... + αCm*tCm
// computation of the set of snapshots
S = [∞,∞,...,∞]
foreach Cm in C

foreach Di in Cm
Si
s = ∞

foreach Si
j in Di

if ( |time( Si
j ) - tc| ≤ |time( Si

s ) - tc| )
Si
s = Si

j

end if
end foreach
S[i] = Si

s

end foreach
end foreach
return (tc, S)

Fig. 13: Algorithm TwoStepClustering



The main idea of the dynamic cut picking algorithm

(figure 14) is based on the iterative greedy approach (section 4,

figure 11). The algorithm additionally checks for every data

source Di if the snapshot Si
j being closest to the current historic

cut is within the outer consistency band**. If not the algorithm

assumes the existence of a new snapshot. If this potentially gene-

rated snapshot is outside the outer consistency band in case of a

required full refresh, the corresponding historic cut represents an

invalid solution. As in the IterativeGreedy-algorithm the algo-

rithm terminates if the global distance is not further improved by

computing a new historic cut and the current solution is accepted

as the best one. Since this solution might involve potentially new

snapshots, these have to be generated before returning the historic

cut tc to the user. Running this algorithm in the ‘strong’ mode, it

might be possible that no valid solution is returned to the user

(especially in combination with a full refresh). Therefore, a

‘weak’ solution is signalled to the user, if a generated or existing

snapshot is outside the outer consistency band and the snapshot

being closest to the historic cut is added to the solution.

Moreover, the dynamic cut picking algorithm may be extended

to a cluster algorithm. As the TwoStepClustering-algorithm

(figure 13) builds a general framework, the DynmicCutPicking-

algorithm can be used inside the cluster algorithm to compute a

cluster oriented local historic cut.

Logical Architecture

The proposed algorithms are currently under implementation.

Figure 15 sketches the logical architecture of the system. Snap-

shots of each data source Di are accessed by wrappers and stored

inside a relational database system. Meta information regarding

the snapshots, e.g. the corresponding data source, the number of

snapshots per data source, the timestamp when having taken the

snapshots, etc., are stored inside the repository. This meta infor-

mation is then used by the query snapshot rewriter to transpa-

rently transform a query QR issued by a user based on table names

of the data sources into a sequence of update statements and que-

ries QS targeting different snapshots.

To specify the inner and outer consistency bands as well as the

refresh strategy at the user level, we extend the USING clause of

a SELECT statement. The acronyms icb and ocb denote the

parameter (data type: time interval) for the inner and outer con-

sistency bands. The keyword refresh is used to determine the

refresh strategy (refresh-mode) which is one out of exact, fuzzy

or full. Finally the strategy to solve the cut finding problem has to

be specified in the parameter cfp-strategy:

**It is assumed that the historic cut forms the center of the outer consistency band.

Without giving any further details, we may notate that non-uniform allocations

are possible.

Fig. 14: Algorithm DynamicCutPicking

// check if all Si
j are inside

// the outer consistency band
validSolution = true;
foreach Si

j in Snew
if ( |time( Si

s ) - tnew| > ∆to/2 )
// compute the snapshot S depending
// on the refresh strategy
if ( strategy == exact)

S = exact ( Di, tnew )
else if ( strategy == fuzzy )

S = fuzzy ( Di, tnew + ∆to/2 )
else

S = full ( Di, tnew )
end if
// store S in the snapshot vector
// if it is within the outer consistency band
if ( S ≤ tnew + ∆to/2 and S ≥ tnew - ∆to/2 )

Snew[i] = S
Unew[i] = true

else
validSolution = false

end if
end if

end foreach
// compute magnitude of error and set other variables
tnext = tnew
if ( validSolution = true )

dnew = dg ( tnew, Snew )
else

tnew = told
dnew = dold
Snew = Sold
continue;

end if
while (dnew < dold)
// generate snapshots
foreach Ui in Uold

if ( Ui == true )
generateSnapshot ( Sold[i] )

end if
end foreach

return (told, Sold)
end

Algorithm DynamicCutPicking

Input: D // set of data sources Di
∆to // outer consistency band
strategy// update strategy

Output: t // historic cut
S // vector of snapshots

begin
tnext = ∞ // starting point for searching
dnew = ∞ // magnitude of error
Snew = [∞,∞,...,∞] // vector of snapshots
Unew = [false, false, ..., false]// vector for

// indicating the update
do

told = tnew
dold = dnew
Sold = Snew
Uold = Unew
Unew = [false, false, ..., false]
// find next snapshot
foreach Di in D

foreach Si
j in Di

if ( time( Si
j ) < tnext and time( Si

j ) > tnew )
tnew = time( Si

j )
end if

end foreach
end foreach
// compute foreach Di the closest snapshot to tnew
foreach Di in D

Si
s = ∞

foreach Si
j in Di

if ( |time( Si
j ) - tnew| ≤ |time( Sis ) - tnew| )

Si
s = Si

j

end if
end foreach
Snew[i] = Si

s

end foreach

(continuation on the right side)

USING icb = TIMEINTERVAL AND
ocb = TIMEINTERVAL AND
refresh = REFRESH-MODE AND
strategy = CFP-STRATEGY



Using this information, a given SQL query is rewritten. For

example, consider the three data sources D1 holding table

R1(A,B), data source D2 with R2(B,C), and D3 with R3(C,D) and

the following natural join query over tables of the three data

sources:

In figure 16 the

situation of existing

snapshots is visual-

ized . Since D2 is

required to act as the

primary snapshot, tc
is set to the genera-

tion time of the new-

est snapshot S2
2 of

D2. Obviously, S1
2 is

selected as the

proper snapshot for data source D1, because it exhibits the mini-

mal local distance to tc. Finally the snapshot S3
1 is the only snap-

shot for D3. Since it is outside the outer consistency band, a fuzzy

refresh is executed and S3
2 is generated. For this example, the

original user query is resolved into two statements, a CREATE

TABLE statement for the generation of the snapshot and a

SELECT statement for the query itself, which are issued against

the database system:

6. Summary and Future Work

Retrieving information from data sources is one of the most

important challenges in information processing. While most of

the ‘classical’ approaches have still the ‘perfect world’ model in

mind, we argue that a user might be satisfied with an answer

reflecting not the most current and most accurate database view.

Therefore, we introduce an information system architecture

based on the storage of multiple snapshots together with a consis-

tency framework comprised of inner and outer consistency bands

for user queries. Based on this framework we outline different

strategies to come up with a semi-consistent view over the set of

participating data sources. Moreover, the logical architecture of

our prototypical implementation of a query rewrite engine,

managing, i.e. creating and dropping snapshots and transforming

a query to the selected set of snapshots is sketched at the end of

the paper.

Regarding future work we intend to extend the distance metric.

As we only consider the actuality problem in this paper, our effort

is currently in integrating the aspect of data changes into the met-

ric.

To conclude, we think that our approach is suitable as an add-

on to existing middleware systems and may considered as a con-

tribution to query autonomus data sources.
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