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ABSTRACT
Data mining is a process of discovering and exploiting hid-
den patterns from data. Clustering as an important task of
data mining divides the observations into groups (clusters),
which is according to the principle that the observations in
the same cluster are similar, and the ones from different clus-
ters are dissimilar to each other. Subspace clustering enables
clustering in subspaces within a data set, which means the
clusters could be found not only in the whole space but also
in subspaces. The well-known subspace clustering methods
have a common problem, the parameters are hard to be de-
cided. To face this issue, a new subspace clustering method
based on Bottom-Up method is introduced in this article. It
takes a gravitation function to select data and dimensions
by using self-comparison technique. The parameter decision
is easy, and does not depend on amount of the data, which
makes the subspace clustering more practical.
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1. INTRODUCTION
Because of the modern techniques, data collection is nowa-
days efficient and cost-effective. The data’s amount is huge
and most data is stored in a raw form, which is not ana-
lyzed yet. Usually we need to find out unknown or hidden
information from raw data. Data mining is such a process of
discovering and exploiting hidden patterns from data. It in-
volves clustering, classification, regression, association, etc.

Clustering divides the observations into groups (clusters), so
that the observations in the same cluster are similar, mean-
while, the ones from different clusters are dissimilar. Clus-
tering is important for data analysis, such as market basket
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analysis, bio science, fraud detection and so on.

Subspace clustering enables clustering in subspaces within
a data set, which means that the clusters could be found in
subspaces rather than only in the whole space.

1.1 Related works
In a review of subspace clustering [12], the subspace cluster-
ing algorithms are categorized into two groups: top-down
search and bottom-up search methods. Top-down methods
like PROCLUS[1], ORCLUS[2], FINDIT[15], σ-Clusters[16],
COSA[5] use multiple iterations for improving the cluster-
ing results. By contrast, bottom-up methods find firstly
clusters in lower subspaces, and then expand the searching
by adding more dimensions. Some examples are CLIQUE
[3], ENCLUS [4], MAFIA [6], CBF [10], CLTree [11], DOC
[13].

No matter in which group, almost all subspace clustering
algorithms have a common problem with finding appropriate
values for their parameters. For instance, most of top-down
methods have to estimate parameters like number of clusters
and subspaces, the clustering results are improved by the
iterations that are based on these parameters, which are
absolutely not easy to estimate. In bottom-up methods, the
key parameters such as density, grid interval, size of clusters,
etc. are also hard to be determined. It is necessary to find a
method that determines parameters easily, in order to make
the clustering job more practical.

DENCLUE [9] is a density-based clustering algorithm by us-
ing Gaussian kernel function as its abstract density function
and hill climbing method to find cluster centers. DENCLUE
2.0 [8] is an improvement on DENCLUE. The algorithms
differ from other density-based approaches in that they cal-
culate density to each data point instead of an area in the
attribute space. DENCLUE has not to estimate the num-
ber or the position of clusters, because clustering is based on
the density information of each point. However it is still nec-
essary to estimate the parameters in these two algorithms,
such as σ, ξ in DENCLUE and ε, p in DENCLUE 2.0. Be-
sides, they are not designed for subspace clustering.

Applying the Newton’s universal law of gravitation in clus-
tering is not a novel idea. A gravitational clustering algo-
rithm [7] simulates the movement of objects by applying
the gravitational force, and detects clusters from merged
objects. A shrinking-based approach [14] inspired by gravi-



tation is a grid-based clustering method, which shrinks the
objects in a grid cell towards the data centroid and finds
the clusters. However, for each algorithm we have to find
appropriate values for its parameters.

1.2 Contributions of the paper
In this paper, we introduce a new density-based bottom-up
subspace clustering method called SUGRA (SUbspace clus-
tering method by using GRAvitation’s function). The basic
idea is similar to DENCLUE, instead of using the Gaussian
kernel function, we use gravitation’s function with scaled
distance to represent the density function, but the objects
don not have to move towards the centroid. From this sim-
ple idea we have found an interesting property that in one
dimensional subspace almost all cluster objects and non-
cluster objects (noise) are separated by a constant. With
this property, we can detect clusters very distinctly, mean-
while, SUGRA realizes the reduction of parameters by sub-
space clustering.

The remainder of this paper is organized as follows. The
idea of SUGRA is introduced in section 2, where section 2.1
and 2.2 are definitions about cluster and gravitation function
respectively, section 2.3 presents the algorithm of SUGRA.
The last section contains conclusions and areas of future
work.

2. SUBSPACE CLUSTERING WITH GRAV-
ITATION

2.1 Definition of data set and subspace cluster
A data set consists of objects and their attributes. Usually,
all objects have common attributes in a data set, such as
color, price, length etc., and every object has a value for an
attribute. The values that are related to an attribute are
in the same domain and conform to the same constraints.
A data set could be described as a table, where the objects
are just rows, meanwhile the attributes are columns. The
attributes could also be considered as dimensions, so that
each attribute represents one dimension, and then the ob-
jects are points in these dimensions.

In order to describe the attributes and objects clearly, they
are defined as follows:

Definition 1. (Data set) Generally, a data set D could be
considered as a pair, which is the combination of A and O:

D = (A,O) (1)

where A is a set of all attributes (dimensions), and O is a
set of all objects:

A = {a1, a2, · · · , ai, · · · }, O = {o1, o2, · · · , op, · · · } (2)

where op is an object with values on A:

op = {oa1
p , oa2

p , · · · , oai
p , · · · } (3)

We denote the values of all objects on attribute ai with:

oai = {oai
1 , o

ai
2 , · · · , o

ai
p , · · · } (4)

Definition 2. (Subspace cluster) A subspace cluster S is
also a data set and defined as follows:

S = eD = ( eA, eO) (5)

where eA ⊆ A and eO ⊆ O, and S must satisfy a particular
condition C, which is defined differently in every subspace
clustering algorithm.

A subspace cluster S could then be written like this:

S = ( eA, eO) = ({a1, a12, a60, · · · }, {o1, o5, o30, · · · })

The cardinality regarding the objects and the dimensions in
S are defined respectively:

|S|O = | eO|, |S|A = | eA| (6)

Remark 1. Suppose S1, S2 are two subspace clusters, where
S1 = (A1,O1) and S2 = (A2,O2), then

• If A1 6= A2 ∨O1 6= O2 =⇒ S1 6= S2, the subspace clus-
ters with different dimensions or objects are considered
as different ones.

• ∀A′ ⊆ A1, S′ = (A′,O1) is also a subspace cluster.

• If A1 ⊆ A2 ∧ O1 = O2 or A1 = A2 ∧ O1 ⊆ O2 =⇒
S1 < S2. Only the largest subspace cluster will be taken
in the clustering result.

Definition 3. The intersection of two subspace clusters is
defined as follows:

S1 ∩ S2 = (A1 ∪ A2,O1 ∩ O2) (7)

Definition 4. Sai is the set of all subspace clusters found
in dimension ai, SD is the set of all subspace clusters found
in D, finding SD is the task of subspace clustering.

2.2 Gravitation
Gravitation is a natural phenomenon, which describes the
force of attraction between objects with mass. The gravita-
tion is important, because it influences our normal lives.

The Newton’s law of universal gravitation is defined as fol-
lows:

G = G · m1m2

r2
(8)

where G is the gravity between two point masses, G is the
gravitational constant, m1 and m2 are the masses of two
points respectively, r is the distance between the two point
masses.

SUGRA tries to use the gravitation’s function for the mea-
surement between the objects. In order to make the calcu-
lation easier, a simple gravity function is used here:

Definition 5. (Simple gravity function)

Gai
pq =

mpmq

r2pq

(9)

Suppose that a single object op has a mass mp = 1, rpq is the

distance between op and oq is defined as rpq =
lpq

L/(N − 1)
,
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Figure 1: Properties of gravitation in one dimension

where L = max(oai)−min(oai) is the length of this dimen-
sion and N = |O| is the number of the objects. rpq indicates
a proportion of the real length lpq to the average interval
L/(N − 1), so that

Gai
pq =

1“
lpq

L/(N−1)

”2 =
L2

l2pq(N − 1)2
(10)

Remark 2. If rpq = 0, op and oq stand at a same place
in ai. In order to let Gai

pq calculable and to get a logical re-
sult, we should set rpq greater than 0 but smaller than any
other distances. An idea is setting rpq to a half of the mini-
mum distance in ai. For example, om, on has the minimum
distance rmn > 0 in ai, then setting rpq = rmn/2 make sure
that Gai

pq > Gai
mn, which is expected.

Remark 3. The rpq is such defined as a proportion dis-
tance but not a real distance because that it enables the data
with different ranges of values to be calculated into a same
range. For example, the attributes age and salary are obvi-
ously in two ranges, but by using such a proportion distance
the two attributes could be calculated and compared together.

There are further definitions, which are important for the
SUGRA algorithm.

Definition 6. (Gravitation of an object) The gravitation
of an object op in dimension ai is defined as the sum of
gravitation from op with other objects.

Gai
p =

X
∀q, q 6=p

Gai
pq (11)

Remark 4. The gravitation of an object defined in (11)
has following properties in one dimension:

• An object in the middle has a greater value of gravita-
tion than one at the edge, which could be clearly seen,
if the objects are distributed uniformly (see Figure 1
(a)).

• An object that lies near to others (cluster objects) has a
greater gravitation than that of objects far from others
(non-cluster objects) (see Figure 1 (b)).

Definition 7. (Average gravitation) The average gravita-
tion Gai of dimension ai is the gravitation of the middle
object of uniformly distributed objects in ai. Gai is pre-
sented with a dotted line in Figure 1.

Suppose om is the object in the middle. Gai could be cal-
culated as follows:

Gai =
X

∀p, p6=m

L2

l2mp(N − 1)2
=

L2

(N − 1)2
·

0@ X
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1
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Figure 2: SUGRA on two dimensional data

Remark 5. The gravitation values of cluster objects and



non-cluster objects have great differences. The non-cluster
objects have usually very small values of gravitation, mean-
while the cluster objects have larger values. This property is
very important for the clustering process.

If a data set has many objects, which means N is a big num-
ber, then Gai ≈ 3.29, from experiments we found out that
using the average gravitation Gai as a threshold to separate
cluster and non-cluster objects returns good results. This is
not a silver bullet, but can be thought as a starting point, the
threshold could be regulated near this value.

Figure 2 represents an example of SUGRA on two dimen-
sional data. The value 3.29 have separated the gravitation
on the two dimensional space respectively, where the red
points illustrates the gravitation of rand points.

2.3 Algorithm of SUGRA
This algorithm consists of two steps:

1. Data selection (Clustering in one dimensional spaces)

2. Dimension selection (Clustering in high dimensional
spaces)

As a Bottom-Up algorithm, SUGRA handles data firstly in
one dimensional space, because one dimensional data can be
dealt with easily. Finding clusters in high dimensional space
is based on the clusters found in one dimension.

2.3.1 Data selection
Algorithm 1: Data selection

Input: D = (A,O)
Output: Sai

foreach ai ∈ A do1

Sort oai2

initialize t=13

foreach oai
p ∈ oai do4

if Gai
p > Gai then5

if oai
p−1 ∈ S

ai
t and |oai

p − oai
p−1| < L then6

add oai
p to Sai

t7

else8

t++9

add oai
p to Sai

t10

end11

end12

end13

end14

As discussed above, the clusters are firstly selected on each
dimension through the gravitation. First of all, oai are
sorted in ascending order. For example, if Gai

p has a greater

value than the threshold Gai , oai
p is then chosen as a cluster-

candidate. If its neighbor oai
p−1 is also a cluster-candidate

and their distance is smaller than the average distance, they
will be considered in one cluster, otherwise oai

p is set into a
new cluster. The process will stop when there is no more
new cluster found in ai. The processes are the same for other

dimensions. Algorithm 1 shows more details about the data
selection.

After the data selection process, we get subspace cluster-
ing results in every one dimensional space Sai , a subspace
cluster St ∈ Sai could have the form like

St = ({ai}, {o1, o5, o9, · · · }) (12)

2.3.2 Dimension selection
Algorithm 2: Dimension selection

Input: Sai

Output: SD

add all St ∈ Sai to SD1

foreach S ∈ SD do2

while find S′ ∈ SD and S 6= S′ do3

if |S ∩ S′|O ≥ 2 then4

add S ∩ S′ to SD5

end6

end7

end8

return9

In data-selection, the one dimensional clusters were found
with the forms like (12), the finding of subspace cluster in
high dimension is just based on the intersection defined in
(7). For subspace clusters S1 and S2, if |S1 ∩S2|O ≥ 2, then
S1 ∩ S2 is a new subspace cluster.

Every combination of clusters should be checked through the
intersection, this process will stop when no more new cluster
is found. The final result will keep only the largest subspace
clusters. The detailed algorithm is shown in Algorithm 2.

2.4 Further discussions
The choosing of parameters is usually difficult for a subspace
clustering algorithm, a little deviation may cause a different
result. The boundaries between cluster objects and non-
cluster objects are especially indistinct and they could be
recognized hardly. SUGRA uses the gravitation function
that marks the cluster and non-cluster objects with great
differences, which makes the parameter decision easily.

Data selection. The experimental experience shows that
Gai could separate the cluster objects and non-cluster ob-
jects very well by data selection, as defined in Definition 7,
Gai ≈ 3.29 does not depend on |O| and could be used as
threshold for almost all situations. If the results are not sat-
isfying, the threshold could be set a little smaller or greater.

Dimension selection. The condition |S1∩S2|O ≥ 2 is used
in dimension selection to decide, whether S1 ∩ S2 is a sub-
space cluster. The condition indicates that an object-group
with more than two objects will be taken as a new cluster.
This setting has a high precision, because not only big clus-
ters but also small clusters could be found, but naturally it
takes much time. In contrast, choosing a greater number
may gain time but lose some interesting small clusters.



2.4.1 Run time
The run time of the data selection in a dimension ai is |O|2,
and for D = (A,O) is |A| · |O|2.

In dimension selection, every possible combination of sub-
space clusters could be examined, so the maximum run time
of dimension selection is 2m, where m is the number of one
dimensional subspace clusters found in data selection.

3. CONCLUSIONS
Subspace clustering is able to discover clusters and extract
their features from the subspace of high dimensional data,
which is commonly gathered in many fields. Most famil-
iar subspace clustering approaches have the problems with
determining the parameters. We attempt to apply the grav-
itation function in subspace clustering in order to find out
a new method make the determination of the parameters
easier. The method is named SUGRA, which belongs to
Bottom-Up algorithms. Firstly, it finds out clusters by using
gravitation function in one dimensional space, then it com-
bines the clusters in higher dimensions for searching high
dimensional subspace clusters.

In SUGRA, the non-cluster objects have always low grav-
itation values (<3.29), meanwhile the cluster objects have
very large values, which depend on the clusters’ density and
number of objects. The value 3.29 does not depend on the
number of objects, so it enables separating the non-cluster
objects in order to get cluster objects. We don’t have to
choose parameters like other algorithms, SUGRA can get
almost a satisfying result for a start by using this threshold.

The future research will be focused on optimizing the grav-
itation function and the algorithm in order to improve the
subspace clustering results. The gravitation technique should
be used not only in one dimensional data but also directly in
multiple dimensions. Another work is to let SUGRA adapt
various data types, such as categorical data.
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