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ABSTRACT 

Skyline queries are generally considered as a promising technique 

for mitigating the challenges posed by the ever growing amount of 

available information. However, despite nearly a decade of re-

search, the application of the Skyline paradigm in real-world in-

formation systems still failed to succeed. This fact was mainly 

attributed to two major problems: the poor performance of the 

employed algorithms and the hardly convincing usefulness of 

Skyline sets as personalized and manageable query results. While 

most performance issues have nowadays been solved, the seman-

tic issues of the result sets still remain: skyline sets are usually far 

too large to be manageable and show a very low degree of focus 

with respect to actual user preferences. This problem is mainly a 

result of the fairness of the underlying Pareto semantics used by 

Skyline queries: they provide no means to compensate across 

different attributes which results in inferior result quality. This 

paper summarizes the recent efforts in overcoming these semantic 

shortcoming by introducing the natural and intuitive concept of 

preference trade-offs to Skyline queries which provides a coopera-

tive user interaction for further focusing and improving the se-

mantic quality of skyline result sets.        

Categories and Subject Descriptors 

H.3.3 [Information Systems]: Information Search and Retrieval.  

General Terms 

Algorithms, Human Factors 

Keywords 

Skyline Queries, Preferences, Trade-off Management. 

1. INTRODUCTION 
The ever growing amount of available information is one of the 

major problems of today‟s information systems. Besides solving 

the resulting performance issues, it is imperative to provide per-

sonalized and tailored access to a vast amount of information in 

order to avoid flooding the user with unmanageable query results.  

To counter this problem, Skyline queries [1] have been proposed 

and stirred a lot of interest within the database community in re-

cent years. Skyline queries rely on the notion of Pareto domi-

nance, i.e. given the choice between two objects, with one object 

being better with respect to at least one attribute but not inferior 

with respect to all other attribute, users will always prefer the first 

object over the second one (the first object is said to dominate the 

second one). This simple concept can be used to implement an 

intuitive personalizable data filter as dominated objects can be 

safely excluded from the data collection, resulting in the Skyline 

set of the query. The semantic rationale of this filter is easy to see 

using an example: if two car dealers in the neighborhood offer the 

same model (with same warranties, etc.) at different prices, why 

should one want to consider the more expensive car?  

In order to compute the Skyline set in a personalized fashion, the 

user needs only to provide so-called ceteris paribus (“all other 

being equal”) preferences on each individual attribute (e.g. “lower 

prices are better than higher prices given that all other attributes 

are equal”). Although, most works on skyline queries only con-

sider numerical domains and preferences [1] [2] [3], skylining can 

also be extended to qualitative categorical preferences (e.g. on 

colors, “given two cars with free color choice, a black car would 

be better than a red car”) which are usually modeled as partial or 

weak orders [4] [5] (see Figure 1 for an example). Furthermore, 

many of these preferences don‟t require any user input during 

elicitation as they can be deduced from common content in the 

collection of user profiles (e.g. preferences on price; no reasona-

ble user would prefer the same object for a higher price). 

 

This focus on individual attribute domains and the complete fair-

ness of the Pareto paradigm are the major advantages of skyline 

queries: they are easy to specify and the algorithm will only re-

move definitely suboptimal objects. However, these characteris-

tics also directly lead to the paradigms shortcomings. Skyline 

queries completely lack the ability to relate attribute domains to 

each other and thus prevent compensation, weighting or ranking 

between attribute domains. This often results in large amounts of 

incomparable objects and generally causes skyline sets to be ra-

ther large, especially in the quite common case of anti-correlated 
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Figure 1. Some preferences within the domain of cars 



attributes. It has been shown that already for only 5 to 10 attrib-

utes, skylines can easily contain 30% or more of the entire data-

base instance [1] [6] [7] [8] which is clearly unmanageable.  

In order to ease this problem, various approaches have been pro-

posed which either take advantage of structural properties of yet-

to-proven semantic implications [9] [10] [11] [12] or rely on itera-

tive and interactive Skyline computation [13] [14]. However, none 

of those recent approaches are able to capture the natural seman-

tics of a compensating trade-off as used in people‟s everyday 

decision processes.  

Consider for example three cars: let object   be a „blue metallic‟ 

car for $18000 and object   be a „blue‟ car for $17000, accompa-

nied by a preference favoring cheaper cars and metallic colors. 

Looking at the ranking on attribute level, both cars are incompa-

rable with respect to the Pareto order: one car is cheaper; the 

other has the most preferred color. In this scenario, a natural ques-

tion of a car dealer would be, whether the customer is willing to 

compromise on those attributes, i.e. if he/she is willing to pay an 

additional $1000 for the metallic paint job (we call such a com-

promise a trade-offs). If the answer is yes, then object   is the 

better choice for the user and should dominate object   with re-

spect to a trade-off enhanced Pareto order. Still, if some object   

like a „blue‟ car for $15000 exists,   and   would still be incom-

parable as the premium for the metallic color on that car   is larg-

er than the $1000 the user is willing to pay.  

However, actually computing a trade-off enhanced skyline effi-

ciently from the respective enhanced Pareto order is very hard. 

This is because the modified Pareto order loses some properties 

(namely the separability characteristic discussed in the next sec-

tion) which, for computing normal skylines, allows for the design 

of efficient algorithms avoiding the actually underlying object 

orders altogether. In this paper, we summarize our recent efforts 

in integrating trade-offs into the skyline computation and show 

how the computational obstacles of trade-off skylines can be 

overcome in order to render the Skyline paradigm semantically 

meaningful.  

2. THEORETICAL FOUNDATIONS 
In order to realize trade-off skylines, it is necessary to formalize 

the basic notions and establish the required theoretical ground 

work. These initial steps are given by our early publications [15] 

[16] on the topic from an order-theoretical point of view and have 

been summarized in [17]. 

In this basic theory, so-called base preferences    to    on the 

individual attribute domains are given as strict partial orders. If an 

attribute value   of the  th-attribute is considered better than  , we 

write (   )     or     . Analogously, respective compatible 

base equivalences    to    are given as equivalence relations, 

representing a user‟s indifference with respect to some attribute 

values (e.g. “a black car is as good as a similar blue car”, equiva-

lence is in general written as (   )     or     ). Finally, we 

can define a shorthand notation for   being better or equal to   

(i.e. (   )     (   )    ), denoted as     . 

These base preferences and base equivalences can be aggregated 

into a full Pareto order   (also called object order), and full ob-

ject equivalence   using an aggregation function based on the 

Pareto semantics.  These orders encode all domination relation-

ships between all database objects in            with    
being the domain of the  th attribute. I.e. if an object    is domi-

nating an object    with respect to the Pareto semantics, then 

(     )    (or also denoted       ). The object equivalence   

is computed in a similar fashion. In order to ensure that both ag-

gregation can succeed without any contradictions, a compatibility 

criterion is also defined in [15] for both base preferences and 

equivalences as well as for the resulting object preferences and 

equivalences. The two object orders will later be extended with 

the additional domination relationships inferred from user trade-

offs. 

Now, the skyline set is given as all those objects which are not 

dominated by any other object wrt. to the Pareto semantics and 

users‟ trade-offs. Using the Pareto order  , this leads to the fol-

lowing definition: 

    *     |       (     )   +;        .  

Traditional Skyline algorithms not incorporating trade-offs can be 

based on a different definition of the Skyline set which does not 

need the object order  . This is because in normal Pareto orders 

show the characteristic of separability [18] with respect to the 

individual attributes (i.e. the object order without any trade-offs 

can be decomposed losslessly into its respective base prefer-

ences). In particular, this characteristic allows for building effi-

cient skyline algorithms: when testing any two objects   and   

for domination, a skyline algorithm does not have to materialize 

the separable Pareto order   to perform that test. Instead, the test 

for domination can be replaced by component-wise comparisons: 

if attribute values of object   are better or equal with respect to 

each attribute than object  ‟s (and „strictly better‟ in at least one), 

then   dominates B and   can be pruned from the skyline. 

However, as we introduced the concept of trade-offs in [16] 

(called amalgamated preferences),  we have shown that trade-offs 

will induce addional relationships in the object preference and 

equivalence order. In the general case, these newly added 

relationships will violate the separability and will render 

algorithms based on simple component-wise comparison useless, 

requireing a full materilization. 

This can be explained by the definition of trade-offs: trade-offs 

can be considered as a user decision between two sample objects 

focusing on a subset of the available attributes. For example, con-

sidering the domain of cars, a user could focus on the attributes 

color and price. A trade-off then describes in a qualitative fashion 

how much a user is willing to sacrifice in some dimension(s) to 

gain better performance in some other dimension(s) on the basis 

of a practical example. A possible trade-off    could be: “I would 

prefer a car for $18000 with a metallic blue paint job over a car 

for $16000 with a plain blue paint job.” Then we write     

((                    )    (           )).  

More formally, a trade-off   is always defined over a set of attrib-

utes given by respective indexes denoted as    *     +. Then, 

a trade-off is a relationship between two tuples      
   
   de-

noted as    (    ).  

Working towards a computation scheme for trade-off Skylines, 

we established rules defining which relationships are added by 

each trade-off. Basically, to integrate a trade-off into the object 

order  , a trade-off   will induce a trade-off domination relation-

ship between any object    and    (denoted as       ) for 

which    is better or equal than   with respect to  ,   is equal or 

better to    with respect to  , and finally    is better or equal than 

   with respect to  all attributes not in   ̅, whereas  ̅ contains all 



attribute indices not in  .  Refer to Figure 2 for a visualization of 

this concept. 

Of course, all domination relationships are transitive and   must 

finally be closed transitively. This transitive closure may generate 

complex domination relationships spanning several trade-offs 

which we call trade-off chains (discussed in the next section).  

These considerations lead to an incremental computation scheme 

[16]: basically, trade-off Skylines can be computed  starting with 

the initial Skyline based on    and then be refined by 

incrementally adding individual trade-offs. Each trade-off induces 

additional relationships into   (then denoted as   , see Figure 4), 

and thus the newly dominated objects are to be removed from the 

previous Skyline result set. This allows for an interactive 

compuation of the trade-off skyline in direct cooperation with the 

user.  

However, this computation approach still relies on materializing 

the object orders and proved to be computationally prohibitive in 

later experiments.  

3. SIMPLE TRADE-OFF SKYLINES 
 As mentioned in the previous section, the main reason for the 

need of an inefficient materialization of the object order is the loss 

of the object order‟s separability. To design better performing 

algorithms, a fundamental technique is to rely as far as possible on 

basic component-wise attribute comparisons and just materialize a 

minimal subset of the total object order  . A general algorithm 

based on this idea is covered in the next section. In this section, 

we will present a trade-off skyline computation algorithm initially 

presented in [19] which additionally restricts the semantics of 

allowed trade-offs in order to enforce object orders which can 

very easily be materialized partially.   

The underlying rationale is as follows: most problems with com-

puting trade-off enhanced product orders arise from trade-off 

chains, i.e. domination relationships which are induced by not one 

trade-off alone but are the result of the transitive closure of multi-

ple trade-off induced domination relationships and ordinary Pare-

to domination relationships. Thus, a possibility for simplification 

of the trade-off computation problem is to restrict the complexity 

of the possible trade-off chains. A good heuristic which works 

well with many real-world scenarios is to allow only trade-offs on 

pairs of two antagonistic attributes each (e.g. power and fuel effi-

ciency for cars, or display size and weight for laptop computers). 

Furthermore, those attribute pairs must be disjoint. If both condi-

tions are fulfilled, all resulting trade-off chains are of a simpler 

nature and thus allow for algorithms showing high performance 

due to the possibility of primarily relying on attribute compari-

sons. 

The resulting algorithm can be summarized as follows: first, we 

start with the Pareto skyline without any trade-offs. Trade-offs are 

then incrementally elicited and the skyline is refined accordingly. 

This refinement takes advantage of the restrictions on two attrib-

utes: a trade-off (   ) can be visualized on a two-dimensional 

plane by two areas (see figure Figure 3): the area containing all 

objects projected on the respective trade-off attributes dominating 

the head   of the trade-off (denoted the green set, objects in this 

area are potential candidates for dominating other objects via the 

trade-off) and the area being dominated by the tail   of the trade-

off (called the red set containing all objects which are potentially 

dominated by objects in the green set). The objects in the red and 

green sets can easily be selected from the database using a simple 

SQL statement. Afterwards, each object in the green set needs to 

be compared to all objects in the red set; if the green object domi-

nates or is equal to any red object with respect to all attributes 

(expect the two attributes used to define the trade-off), the red 

object is dominated by the green object via the trade-off and is 

thus removed. 

In order to capture trade-off chains, multiple of these area checks 

have to be executed consecutively. Usually, the red and green sets 

contain only few objects, thus the runtime measured in our exper-

iments is usually well below 500ms.   

Effects on the Skyline 
During our work on [19], we also evaluated the effects of simple 

trade-offs on the properties of resulting trade-off refined skyline 

sets. As an example, we will present an evaluation performed on a 

real-life data set containing 20,537 sale offers for notebook com-

puters. After providing 7 base preferences, the resulting Pareto 

skyline was computed containing still 182 notebook offers, in-

  

Figure 3. Red and Green sets for simplified trade-off compu-

tation 

 

 

 

Figure 2. Trade-Off domination relationship 𝒐𝟏  𝑻 𝒐𝟐 

 

 

Figure 4. Incrementally extending the object order 

 



cluding all types of notebooks from lightweight netbooks to large 

and heavy desktop replacements.  

In this evaluation, we assume that the user is willing to sacrifice 

mobility in favor for performance and display size. Using a trade-

off elicitation heuristic [19], this results in 13 trade-offs (which 

have been inferred from just two user interactions). Incorporating 

these trade-offs reduces the skyline set to just 59 notebooks (32% 

of the original skyline‟s size). Furthermore, the focus and quality 

of the result is increased: instead of containing large numbers of 

notebooks from all different categories, the result focuses on 17”-

screen notebooks (a cluster containing the majority of all desktop 

replacement machines) while many of the smaller notebooks have 

been removed as a result of the provide trade-offs (see Figure 5). 

However, in contrast to simple filters, this refinement retained 

important characteristics of the Pareto semantics as all remaining 

notebooks, even those in the cluster of smaller netbooks, are espe-

cially interesting and non-dominated objects which are potentially 

still a good deal even after the user refined his intentions by prov-

ing trade-offs.   

4. FULL TRADE-SKYLINES 
In this section, we will present our latest works on trade-off en-

hanced skyline computation. In contrast to the simplified algo-

rithm of the previous section, no semantic restrictions are forced 

on the structure of possible trade-offs, i.e. trade-offs are possible 

on any combination and number of attributes and may thus form 

trade-off chains of high complexity. Especially, this enforces 

thorough considerations with respect to consistency of trade-offs.   

In previous sections, we implicitly assumed that trade-offs are 

provided in a consistent and non-contradicting fashion. However, 

this is not necessarily true as users may easily specify trade-offs 

which will form a cyclic trade-off chain and render the whole set 

of trade-offs inconsistent and unusable. Obviously, inconsisten-

cies must be detected and resolved. This job is performed by our 

consistency check algorithms presented in [20] [21]. In a later 

work, this algorithm has been further expanded to also cover the 

actual computation of trade-off skylines [22]. 

The base idea of our full trade-off skyline computation and con-

sistency check algorithm is to abstract from materializing the 

prohibitively complex object order and build a tree data-structure 

(called TTree) which represents only possible trade-off chains (in 

a generic way independent of the actual content of the database). 

If any contradictions can be detected within this data structure, the 

provided trade-off set is rejected as being inconsistent. If no in-

consistency is found, the tree can later be used for the actual sky-

line computation.  

To better explain the concept of TTrees, consider Figure 6 show-

ing a TTree build from three trade-offs    to   : on the lowest 

branch   , we can see that a trade-off chain from    to    over    

and again    is possible (and of course, also all shorter chains).  

 

To decide if two given trade-offs    and    can be chained in gen-

eral (written as      ), their respective tail and head part is tested 

for Pareto domination (          , see Figure 7).  This concept 

can also be extended to cover trade-off chains involving an arbi-

trary number of trade-offs (please refer to [22] for the full theoret-

ical foundations on general trade-off chains). 

 

The TTree is constructed incrementally, starting with an empty 

root node. Then, trade-offs are added to the tree one by one by 

testing for each existing node (representing a trade-off chain each) 

whether the current trade-off can be appended to that node or not 

to form a longer trade-off chain (using the extended chaining cri-

teria from [22]). If the node can be appended, the current branch is 

checked for consistency (see [21]). After adding all provided 

trade-offs, also all possible trade-off chains have been construct-

ed.  

Unfortunately, a TTree constructed in such a fashion grows quick-

ly in size. This effect can mainly be accounted to redundantly 

stored information as several trade-off chains can carry the same 

or even weaker semantic information than other trade-off chains. 

A further optimization technique during tree construction is thus 

to avoid or remove all trade-off chains which are subsumed by 

another trade-off chain (i.e. carry redundant information) [22]. 

This technique significantly decreases the size of TTrees (then 

 

Figure 6.  Basic TTree for 𝑻  *𝒕𝟏 𝒕𝟐 𝒕𝟑+ 
 

 

Figure 7.  𝒐𝟏  𝑻 𝒐𝟐 with two trade-offs 𝒕𝟏  𝒕𝟐 

 

 

 

Figure 5. Skyline Result Focus 
Notebook dataset; user is looking for a desktop replacement 

y-axis: number of result objects, x-axis: display size of notebook 

 



called pruned TTree), especially for extreme trade-off sets which 

would otherwise generate overly complex chains.  

Computing the Skyline 
Each trade-off chain in the TTree can be represented by a single, 

integrated trade-off  [22]. By generating the TTree, the complex 

problem of domination relations via longer trade-off chains can 

thus be reduced to simple domination tests involving just single 

trade-offs (each representing a possible chain).  

Based on this consideration, computing the trade-off skyline can 

be performed as follows: first, the Pareto skyline without any 

trade-offs is computed. Based on the resulting skyline set, addi-

tional trade-offs are elicited from the user and a respective pruned 

TTree is generated. Each branch (i.e. possible trade-off chain) of 

the TTree is condensed into a single trade-off and stored in an 

indexed data structure [22]. Finally, a standard skyline algorithm 

which is based on object comparisons can be applied on the ini-

tially computed Pareto skyline (e.g. Block-Nested Loops (BNL) 

Algorithm [1]). However, instead of using a simple Pareto domi-

nation criterion when testing for dominance of objects    and   , 

the domination test is replaced by two index look-ups on the index 

of trade-offs previously generated from the TTree: it has to be 

tested if there is a trade-off such that its head is dominated by    

and its tail dominates    (as shown previously in Figure 2). If 

such a trade-off can be found,    is dominated by    via this 

trade-off and removed. 

To further improve the runtime performance of our trade-off sky-

line computation scheme, we also designed a family of parallel 

skyline algorithms based on the BNL algorithm [23]. These algo-

rithms are perfectly suited to compute our trade-off skylines effi-

ciently on modern multi-core hardware. 

Trade-Off Elicitation 
Up to now, we assumed that users will directly provide trade-offs 

to the system. However, this task requires a significant cognitive 

effort. To overcome this disadvantage, we designed two trade-off 

elicitation heuristics: the first heuristic initially published in [19] 

proposes trade-offs to the user who may accept or dismiss the 

suggestions. A major cause for unmanageable large skyline result 

sets is object incomparability resulting from anti-correlated attrib-

utes. Accordingly, this heuristic analyzes the correlation and clus-

tering properties of the data objects to suggest trade-offs which 

will minimize the incomparability between strongly anti-

correlated attribute clusters.  

Our second heuristic [24] is based on simple item comparisons: 

the user is presented with two example items from the database 

(e.g. most popular items, or most distinctive items, etc; see Figure 

8 for an example) and simply decides which of the two items he 

prefers. This decision is used by the heuristic to deduce a set of 

so-called conceptional trade-offs which generalize the decision. 

The conceptual trade-offs resulting from our heuristic approach 

can be proven to be qualitative representations of  more complex 

quantitative utility functions as used in ranking or top-k retrieval, 

while at the same time avoiding the elicitation overhead generally 

imposed by quantitative approaches. 

5. SUMMARY AND CONCLUSIONS 
In paper we summarized our efforts to extend the well-established 

skyline paradigm with the concept of preference trade-offs, which 

allow for compensation between individual attribute dimensions 

in a qualitative fashion. Compensating (or trading) between dif-

ferent choices is indeed a very natural concept, frequently encoun-

tered in every days‟ decision processes. Trade-offs help to in-

crease the focus and manageability of skylines without any arbi-

trary assumptions beyond the control of the user. However, up to 

now it was not possible to augment the strict Pareto semantics of 

traditional skylines with the compensating semantics of trade-offs.  

In our previous works, we established the theoretical foundations 

for trade-off enhanced skylines from an order-theoretical point of 

view. Unfortunately, we could prove that trade-offs will break the 

convenient property of separability when performing object dom-

ination tests, an integral component within any existing skyline 

algorithm. Accordingly, at least some parts or even the whole 

object order must be materialized. In order to avoid the full mate-

rialization of the object order, we first presented a simplified 

trade-off computation scheme which enforces some semantic 

restrictions on possible trade-offs and which resulted in a very 

efficient algorithm. Finally, we presented a general solution to the 

trade-off enhanced skyline challenge: our latest algorithms cover 

the full semantic expressiveness of preference trade-offs while at 

the same time providing good runtime performance. Furthermore, 

these latest algorithms also deal with detecting inconsistencies and 

contradicting user input and have even been extended with elicita-

tion heuristics reducing the cognitive load during trade-off elicita-

tion.     
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