
Preference Trade-Offs – Towards manageable Skylines
Christoph Lofi

Institut für Informationssysteme
Technische Universität Braunschweig
Mühlenpfordtstr. 23 – Braunschweig

lofi@ifis.cs.tu-bs.de

Wolf-Tilo Balke
Institut für Informationssysteme

Technische Universität Braunschweig
Mühlenpfordtstr. 23 – Braunschweig

balke@ifis.cs.tu-bs.de

ABSTRACT

Skyline queries are generally considered as a promising technique

for mitigating the challenges posed by the ever growing amount of

available information. However, despite nearly a decade of re-

search, the application of the Skyline paradigm in real-world in-

formation systems still failed to succeed. This fact was mainly

attributed to two major problems: the poor performance of the

employed algorithms and the hardly convincing usefulness of

Skyline sets as personalized and manageable query results. While

most performance issues have nowadays been solved, the seman-

tic issues of the result sets still remain: skyline sets are usually far

too large to be manageable and show a very low degree of focus

with respect to actual user preferences. This problem is mainly a

result of the fairness of the underlying Pareto semantics used by

Skyline queries: they provide no means to compensate across

different attributes which results in inferior result quality. This

paper summarizes the recent efforts in overcoming these semantic

shortcoming by introducing the natural and intuitive concept of

preference trade-offs to Skyline queries which provides a coopera-

tive user interaction for further focusing and improving the se-

mantic quality of skyline result sets.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Retrieval.

General Terms

Algorithms, Human Factors

Keywords

Skyline Queries, Preferences, Trade-off Management.

1. INTRODUCTION
The ever growing amount of available information is one of the

major problems of today‟s information systems. Besides solving

the resulting performance issues, it is imperative to provide per-

sonalized and tailored access to a vast amount of information in

order to avoid flooding the user with unmanageable query results.

To counter this problem, Skyline queries [1] have been proposed

and stirred a lot of interest within the database community in re-

cent years. Skyline queries rely on the notion of Pareto domi-

nance, i.e. given the choice between two objects, with one object

being better with respect to at least one attribute but not inferior

with respect to all other attribute, users will always prefer the first

object over the second one (the first object is said to dominate the

second one). This simple concept can be used to implement an

intuitive personalizable data filter as dominated objects can be

safely excluded from the data collection, resulting in the Skyline

set of the query. The semantic rationale of this filter is easy to see

using an example: if two car dealers in the neighborhood offer the

same model (with same warranties, etc.) at different prices, why

should one want to consider the more expensive car?

In order to compute the Skyline set in a personalized fashion, the

user needs only to provide so-called ceteris paribus (“all other

being equal”) preferences on each individual attribute (e.g. “lower

prices are better than higher prices given that all other attributes

are equal”). Although, most works on skyline queries only con-

sider numerical domains and preferences [1] [2] [3], skylining can

also be extended to qualitative categorical preferences (e.g. on

colors, “given two cars with free color choice, a black car would

be better than a red car”) which are usually modeled as partial or

weak orders [4] [5] (see Figure 1 for an example). Furthermore,

many of these preferences don‟t require any user input during

elicitation as they can be deduced from common content in the

collection of user profiles (e.g. preferences on price; no reasona-

ble user would prefer the same object for a higher price).

This focus on individual attribute domains and the complete fair-

ness of the Pareto paradigm are the major advantages of skyline

queries: they are easy to specify and the algorithm will only re-

move definitely suboptimal objects. However, these characteris-

tics also directly lead to the paradigms shortcomings. Skyline

queries completely lack the ability to relate attribute domains to

each other and thus prevent compensation, weighting or ranking

between attribute domains. This often results in large amounts of

incomparable objects and generally causes skyline sets to be ra-

ther large, especially in the quite common case of anti-correlated

Copyright is held by the author/owner(s).

GvD Workshop’10, 25.-28.05.2010, Bad Helmstedt, Germany.

Figure 1. Some preferences within the domain of cars

attributes. It has been shown that already for only 5 to 10 attrib-

utes, skylines can easily contain 30% or more of the entire data-

base instance [1] [6] [7] [8] which is clearly unmanageable.

In order to ease this problem, various approaches have been pro-

posed which either take advantage of structural properties of yet-

to-proven semantic implications [9] [10] [11] [12] or rely on itera-

tive and interactive Skyline computation [13] [14]. However, none

of those recent approaches are able to capture the natural seman-

tics of a compensating trade-off as used in people‟s everyday

decision processes.

Consider for example three cars: let object be a „blue metallic‟

car for $18000 and object be a „blue‟ car for $17000, accompa-

nied by a preference favoring cheaper cars and metallic colors.

Looking at the ranking on attribute level, both cars are incompa-

rable with respect to the Pareto order: one car is cheaper; the

other has the most preferred color. In this scenario, a natural ques-

tion of a car dealer would be, whether the customer is willing to

compromise on those attributes, i.e. if he/she is willing to pay an

additional $1000 for the metallic paint job (we call such a com-

promise a trade-offs). If the answer is yes, then object is the

better choice for the user and should dominate object with re-

spect to a trade-off enhanced Pareto order. Still, if some object

like a „blue‟ car for $15000 exists, and would still be incom-

parable as the premium for the metallic color on that car is larg-

er than the $1000 the user is willing to pay.

However, actually computing a trade-off enhanced skyline effi-

ciently from the respective enhanced Pareto order is very hard.

This is because the modified Pareto order loses some properties

(namely the separability characteristic discussed in the next sec-

tion) which, for computing normal skylines, allows for the design

of efficient algorithms avoiding the actually underlying object

orders altogether. In this paper, we summarize our recent efforts

in integrating trade-offs into the skyline computation and show

how the computational obstacles of trade-off skylines can be

overcome in order to render the Skyline paradigm semantically

meaningful.

2. THEORETICAL FOUNDATIONS
In order to realize trade-off skylines, it is necessary to formalize

the basic notions and establish the required theoretical ground

work. These initial steps are given by our early publications [15]

[16] on the topic from an order-theoretical point of view and have

been summarized in [17].

In this basic theory, so-called base preferences to on the

individual attribute domains are given as strict partial orders. If an

attribute value of the th-attribute is considered better than , we

write () or . Analogously, respective compatible

base equivalences to are given as equivalence relations,

representing a user‟s indifference with respect to some attribute

values (e.g. “a black car is as good as a similar blue car”, equiva-

lence is in general written as () or). Finally, we

can define a shorthand notation for being better or equal to

(i.e. () ()), denoted as .

These base preferences and base equivalences can be aggregated

into a full Pareto order (also called object order), and full ob-

ject equivalence using an aggregation function based on the

Pareto semantics. These orders encode all domination relation-

ships between all database objects in with
being the domain of the th attribute. I.e. if an object is domi-

nating an object with respect to the Pareto semantics, then

() (or also denoted). The object equivalence

is computed in a similar fashion. In order to ensure that both ag-

gregation can succeed without any contradictions, a compatibility

criterion is also defined in [15] for both base preferences and

equivalences as well as for the resulting object preferences and

equivalences. The two object orders will later be extended with

the additional domination relationships inferred from user trade-

offs.

Now, the skyline set is given as all those objects which are not

dominated by any other object wrt. to the Pareto semantics and

users‟ trade-offs. Using the Pareto order , this leads to the fol-

lowing definition:

 * | () +; .

Traditional Skyline algorithms not incorporating trade-offs can be

based on a different definition of the Skyline set which does not

need the object order . This is because in normal Pareto orders

show the characteristic of separability [18] with respect to the

individual attributes (i.e. the object order without any trade-offs

can be decomposed losslessly into its respective base prefer-

ences). In particular, this characteristic allows for building effi-

cient skyline algorithms: when testing any two objects and

for domination, a skyline algorithm does not have to materialize

the separable Pareto order to perform that test. Instead, the test

for domination can be replaced by component-wise comparisons:

if attribute values of object are better or equal with respect to

each attribute than object ‟s (and „strictly better‟ in at least one),

then dominates B and can be pruned from the skyline.

However, as we introduced the concept of trade-offs in [16]

(called amalgamated preferences), we have shown that trade-offs

will induce addional relationships in the object preference and

equivalence order. In the general case, these newly added

relationships will violate the separability and will render

algorithms based on simple component-wise comparison useless,

requireing a full materilization.

This can be explained by the definition of trade-offs: trade-offs

can be considered as a user decision between two sample objects

focusing on a subset of the available attributes. For example, con-

sidering the domain of cars, a user could focus on the attributes

color and price. A trade-off then describes in a qualitative fashion

how much a user is willing to sacrifice in some dimension(s) to

gain better performance in some other dimension(s) on the basis

of a practical example. A possible trade-off could be: “I would

prefer a car for $18000 with a metallic blue paint job over a car

for $16000 with a plain blue paint job.” Then we write

(() ()).

More formally, a trade-off is always defined over a set of attrib-

utes given by respective indexes denoted as * +. Then,

a trade-off is a relationship between two tuples

 de-

noted as ().

Working towards a computation scheme for trade-off Skylines,

we established rules defining which relationships are added by

each trade-off. Basically, to integrate a trade-off into the object

order , a trade-off will induce a trade-off domination relation-

ship between any object and (denoted as) for

which is better or equal than with respect to , is equal or

better to with respect to , and finally is better or equal than

 with respect to all attributes not in ̅, whereas ̅ contains all

attribute indices not in . Refer to Figure 2 for a visualization of

this concept.

Of course, all domination relationships are transitive and must

finally be closed transitively. This transitive closure may generate

complex domination relationships spanning several trade-offs

which we call trade-off chains (discussed in the next section).

These considerations lead to an incremental computation scheme

[16]: basically, trade-off Skylines can be computed starting with

the initial Skyline based on and then be refined by

incrementally adding individual trade-offs. Each trade-off induces

additional relationships into (then denoted as , see Figure 4),

and thus the newly dominated objects are to be removed from the

previous Skyline result set. This allows for an interactive

compuation of the trade-off skyline in direct cooperation with the

user.

However, this computation approach still relies on materializing

the object orders and proved to be computationally prohibitive in

later experiments.

3. SIMPLE TRADE-OFF SKYLINES
 As mentioned in the previous section, the main reason for the

need of an inefficient materialization of the object order is the loss

of the object order‟s separability. To design better performing

algorithms, a fundamental technique is to rely as far as possible on

basic component-wise attribute comparisons and just materialize a

minimal subset of the total object order . A general algorithm

based on this idea is covered in the next section. In this section,

we will present a trade-off skyline computation algorithm initially

presented in [19] which additionally restricts the semantics of

allowed trade-offs in order to enforce object orders which can

very easily be materialized partially.

The underlying rationale is as follows: most problems with com-

puting trade-off enhanced product orders arise from trade-off

chains, i.e. domination relationships which are induced by not one

trade-off alone but are the result of the transitive closure of multi-

ple trade-off induced domination relationships and ordinary Pare-

to domination relationships. Thus, a possibility for simplification

of the trade-off computation problem is to restrict the complexity

of the possible trade-off chains. A good heuristic which works

well with many real-world scenarios is to allow only trade-offs on

pairs of two antagonistic attributes each (e.g. power and fuel effi-

ciency for cars, or display size and weight for laptop computers).

Furthermore, those attribute pairs must be disjoint. If both condi-

tions are fulfilled, all resulting trade-off chains are of a simpler

nature and thus allow for algorithms showing high performance

due to the possibility of primarily relying on attribute compari-

sons.

The resulting algorithm can be summarized as follows: first, we

start with the Pareto skyline without any trade-offs. Trade-offs are

then incrementally elicited and the skyline is refined accordingly.

This refinement takes advantage of the restrictions on two attrib-

utes: a trade-off () can be visualized on a two-dimensional

plane by two areas (see figure Figure 3): the area containing all

objects projected on the respective trade-off attributes dominating

the head of the trade-off (denoted the green set, objects in this

area are potential candidates for dominating other objects via the

trade-off) and the area being dominated by the tail of the trade-

off (called the red set containing all objects which are potentially

dominated by objects in the green set). The objects in the red and

green sets can easily be selected from the database using a simple

SQL statement. Afterwards, each object in the green set needs to

be compared to all objects in the red set; if the green object domi-

nates or is equal to any red object with respect to all attributes

(expect the two attributes used to define the trade-off), the red

object is dominated by the green object via the trade-off and is

thus removed.

In order to capture trade-off chains, multiple of these area checks

have to be executed consecutively. Usually, the red and green sets

contain only few objects, thus the runtime measured in our exper-

iments is usually well below 500ms.

Effects on the Skyline
During our work on [19], we also evaluated the effects of simple

trade-offs on the properties of resulting trade-off refined skyline

sets. As an example, we will present an evaluation performed on a

real-life data set containing 20,537 sale offers for notebook com-

puters. After providing 7 base preferences, the resulting Pareto

skyline was computed containing still 182 notebook offers, in-

Figure 3. Red and Green sets for simplified trade-off compu-

tation

Figure 2. Trade-Off domination relationship 𝒐𝟏 𝑻 𝒐𝟐

Figure 4. Incrementally extending the object order

cluding all types of notebooks from lightweight netbooks to large

and heavy desktop replacements.

In this evaluation, we assume that the user is willing to sacrifice

mobility in favor for performance and display size. Using a trade-

off elicitation heuristic [19], this results in 13 trade-offs (which

have been inferred from just two user interactions). Incorporating

these trade-offs reduces the skyline set to just 59 notebooks (32%

of the original skyline‟s size). Furthermore, the focus and quality

of the result is increased: instead of containing large numbers of

notebooks from all different categories, the result focuses on 17”-

screen notebooks (a cluster containing the majority of all desktop

replacement machines) while many of the smaller notebooks have

been removed as a result of the provide trade-offs (see Figure 5).

However, in contrast to simple filters, this refinement retained

important characteristics of the Pareto semantics as all remaining

notebooks, even those in the cluster of smaller netbooks, are espe-

cially interesting and non-dominated objects which are potentially

still a good deal even after the user refined his intentions by prov-

ing trade-offs.

4. FULL TRADE-SKYLINES
In this section, we will present our latest works on trade-off en-

hanced skyline computation. In contrast to the simplified algo-

rithm of the previous section, no semantic restrictions are forced

on the structure of possible trade-offs, i.e. trade-offs are possible

on any combination and number of attributes and may thus form

trade-off chains of high complexity. Especially, this enforces

thorough considerations with respect to consistency of trade-offs.

In previous sections, we implicitly assumed that trade-offs are

provided in a consistent and non-contradicting fashion. However,

this is not necessarily true as users may easily specify trade-offs

which will form a cyclic trade-off chain and render the whole set

of trade-offs inconsistent and unusable. Obviously, inconsisten-

cies must be detected and resolved. This job is performed by our

consistency check algorithms presented in [20] [21]. In a later

work, this algorithm has been further expanded to also cover the

actual computation of trade-off skylines [22].

The base idea of our full trade-off skyline computation and con-

sistency check algorithm is to abstract from materializing the

prohibitively complex object order and build a tree data-structure

(called TTree) which represents only possible trade-off chains (in

a generic way independent of the actual content of the database).

If any contradictions can be detected within this data structure, the

provided trade-off set is rejected as being inconsistent. If no in-

consistency is found, the tree can later be used for the actual sky-

line computation.

To better explain the concept of TTrees, consider Figure 6 show-

ing a TTree build from three trade-offs to : on the lowest

branch , we can see that a trade-off chain from to over

and again is possible (and of course, also all shorter chains).

To decide if two given trade-offs and can be chained in gen-

eral (written as), their respective tail and head part is tested

for Pareto domination (, see Figure 7). This concept

can also be extended to cover trade-off chains involving an arbi-

trary number of trade-offs (please refer to [22] for the full theoret-

ical foundations on general trade-off chains).

The TTree is constructed incrementally, starting with an empty

root node. Then, trade-offs are added to the tree one by one by

testing for each existing node (representing a trade-off chain each)

whether the current trade-off can be appended to that node or not

to form a longer trade-off chain (using the extended chaining cri-

teria from [22]). If the node can be appended, the current branch is

checked for consistency (see [21]). After adding all provided

trade-offs, also all possible trade-off chains have been construct-

ed.

Unfortunately, a TTree constructed in such a fashion grows quick-

ly in size. This effect can mainly be accounted to redundantly

stored information as several trade-off chains can carry the same

or even weaker semantic information than other trade-off chains.

A further optimization technique during tree construction is thus

to avoid or remove all trade-off chains which are subsumed by

another trade-off chain (i.e. carry redundant information) [22].

This technique significantly decreases the size of TTrees (then

Figure 6. Basic TTree for 𝑻 *𝒕𝟏 𝒕𝟐 𝒕𝟑+

Figure 7. 𝒐𝟏 𝑻 𝒐𝟐 with two trade-offs 𝒕𝟏 𝒕𝟐

Figure 5. Skyline Result Focus
Notebook dataset; user is looking for a desktop replacement

y-axis: number of result objects, x-axis: display size of notebook

called pruned TTree), especially for extreme trade-off sets which

would otherwise generate overly complex chains.

Computing the Skyline
Each trade-off chain in the TTree can be represented by a single,

integrated trade-off [22]. By generating the TTree, the complex

problem of domination relations via longer trade-off chains can

thus be reduced to simple domination tests involving just single

trade-offs (each representing a possible chain).

Based on this consideration, computing the trade-off skyline can

be performed as follows: first, the Pareto skyline without any

trade-offs is computed. Based on the resulting skyline set, addi-

tional trade-offs are elicited from the user and a respective pruned

TTree is generated. Each branch (i.e. possible trade-off chain) of

the TTree is condensed into a single trade-off and stored in an

indexed data structure [22]. Finally, a standard skyline algorithm

which is based on object comparisons can be applied on the ini-

tially computed Pareto skyline (e.g. Block-Nested Loops (BNL)

Algorithm [1]). However, instead of using a simple Pareto domi-

nation criterion when testing for dominance of objects and ,

the domination test is replaced by two index look-ups on the index

of trade-offs previously generated from the TTree: it has to be

tested if there is a trade-off such that its head is dominated by

and its tail dominates (as shown previously in Figure 2). If

such a trade-off can be found, is dominated by via this

trade-off and removed.

To further improve the runtime performance of our trade-off sky-

line computation scheme, we also designed a family of parallel

skyline algorithms based on the BNL algorithm [23]. These algo-

rithms are perfectly suited to compute our trade-off skylines effi-

ciently on modern multi-core hardware.

Trade-Off Elicitation
Up to now, we assumed that users will directly provide trade-offs

to the system. However, this task requires a significant cognitive

effort. To overcome this disadvantage, we designed two trade-off

elicitation heuristics: the first heuristic initially published in [19]

proposes trade-offs to the user who may accept or dismiss the

suggestions. A major cause for unmanageable large skyline result

sets is object incomparability resulting from anti-correlated attrib-

utes. Accordingly, this heuristic analyzes the correlation and clus-

tering properties of the data objects to suggest trade-offs which

will minimize the incomparability between strongly anti-

correlated attribute clusters.

Our second heuristic [24] is based on simple item comparisons:

the user is presented with two example items from the database

(e.g. most popular items, or most distinctive items, etc; see Figure

8 for an example) and simply decides which of the two items he

prefers. This decision is used by the heuristic to deduce a set of

so-called conceptional trade-offs which generalize the decision.

The conceptual trade-offs resulting from our heuristic approach

can be proven to be qualitative representations of more complex

quantitative utility functions as used in ranking or top-k retrieval,

while at the same time avoiding the elicitation overhead generally

imposed by quantitative approaches.

5. SUMMARY AND CONCLUSIONS
In paper we summarized our efforts to extend the well-established

skyline paradigm with the concept of preference trade-offs, which

allow for compensation between individual attribute dimensions

in a qualitative fashion. Compensating (or trading) between dif-

ferent choices is indeed a very natural concept, frequently encoun-

tered in every days‟ decision processes. Trade-offs help to in-

crease the focus and manageability of skylines without any arbi-

trary assumptions beyond the control of the user. However, up to

now it was not possible to augment the strict Pareto semantics of

traditional skylines with the compensating semantics of trade-offs.

In our previous works, we established the theoretical foundations

for trade-off enhanced skylines from an order-theoretical point of

view. Unfortunately, we could prove that trade-offs will break the

convenient property of separability when performing object dom-

ination tests, an integral component within any existing skyline

algorithm. Accordingly, at least some parts or even the whole

object order must be materialized. In order to avoid the full mate-

rialization of the object order, we first presented a simplified

trade-off computation scheme which enforces some semantic

restrictions on possible trade-offs and which resulted in a very

efficient algorithm. Finally, we presented a general solution to the

trade-off enhanced skyline challenge: our latest algorithms cover

the full semantic expressiveness of preference trade-offs while at

the same time providing good runtime performance. Furthermore,

these latest algorithms also deal with detecting inconsistencies and

contradicting user input and have even been extended with elicita-

tion heuristics reducing the cognitive load during trade-off elicita-

tion.

6. ACKNOWLEDGMENTS
Part of this work was supported by a grant of the German Re-

search Foundation (DFG) within the Emmy Noether Program of

Excellence.

7. Bibliography
[1] Stephan Börzsonyi, Donald Kossmann, and Konrad Stocker,

"The Skyline Operator," in Int. Conf. on Data Engineering

(ICDE), Heidelberg, Germany, 2001.

[2] Donald Kossmann, Frank Ramsak, and Steffen Rost,

"Shooting Stars in the Sky: An Online Algorithm for Skyline

Queries," in Conf. on Very Large Data Bases (VLDB), Hong

Kong, China, 2002.

[3] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger,

"An Optimal and Progressive Algorithm for Skyline

Queries," in Int. Conf. on Management of Data (SIGMOD),

San Diego, USA, 2003.

Figure 8. Interface for example comparisons

[4] M. Lacroix and P. Lavency, "Preferences: Putting more

Knowledge into Queries," in Conf. Very Large Databases

(VLDB), Brighton, UK, 1987.

[5] Chee Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan,

"Stratified Computation of Skylines with Partially Ordered

Domains," in Int. Conf. on Management of Data (SIGMOD),

Baltimore, MD, USA, 2005.

[6] Wolf-Tilo Balke, Jason Zheng, and Ulrich Güntzer,

"Approaching the Efficient Frontier: Cooperative Database

Retrieval Using High-Dimensional Skylines," in Conf. on

Database Systems for Advanced Applications (DASFAA),

Beijing, China, 2005.

[7] Parke Godfrey, "Skyline cardinality for relational processing.

How many vectors are maximal?," in Symp. on Foundations

of Information and Knowledge Systems (FoIKS), Vienna,

Austria, 2004.

[8] Parke Godfrey, Ryan Shipley, and Jarek Gryz, "Preference

Structures and Their Numerical Representations," in Conf. on

Very Large Databases (VLDB), Trondheim, Norway, 2005.

[9] Wolf-Tilo Balke, Ulrich Güntzer, and Wolf Siberski,

"Restricting Skyline Sizes using Weak Pareto Dominance,"

Informatik - Forschung und Entwicklung (IFE), vol. 21, no.

3, 2007.

[10] C.-Y. Chan, H.V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z.

Zhang, "Finding k-dominant skylines in high dimensional

space," in Int. Conf. on Management of Data (SIGMOD),

Chicago, USA, 2006.

[11] Y. Yuan et al., "Efficient computation of the skyline cube,"

in Int. Conf. on Very Large Data Bases (VLDB), Trondheim,

Norway, 2005.

[12] Jian Pei, Wen Jin, Martin Ester, and Yufei Tao, "Catching

the best views of skyline: a semantic approach based on

decisive subspaces," in Int. Conf. on Very Large Databases

(VLDB), Trondheim, Norway , 2005.

[13] Jongwuk Lee, Gae-won You, and Seung-won Hwang,

"Telescope: Zooming to Interesting Skylines," in Conf. on

Database Systems for Advanced Applications (DASFAA),

Bangkok, Thailand, 2007.

[14] Jan Chomicki, "Iterative Modification and Incremental

Evaluation of Preference Queries," in Symp. on Found. of Inf.

and Knowledge Systems (FoIKS), Budapest, Hungary, 2006.

[15] Wolf-Tilo Balke, Ulrich Güntzer, and Christoph Lofi,

"Incremental Trade-Off Management for Preference Based

Queries," Intl. Journal of Computer Science & Applications

(IJCSA), vol. 4, no. 2, 2007.

[16] Wolf-Tilo Balke, Christoph Lofi, and Ulrich Güntzer, "User

Interaction Support for Incremental Refinement of

Preference-Based Queries," in Int. Conf. on Research

Challenges in Information Science (RCIS), Ouarzazate,

Morocco, 2007.

[17] Wolf-Tilo Balke, Christoph Lofi, and Güntzer Ulrich,

"Eliciting Matters - Controlling Skyline Sizes by Incremental

Integration of User Preferences," in Int. Conf. on Database

Systems for Advanced Applications (DASFAA), Bangkok,

Thailand, 2007.

[18] Sven Ove Hansson, "Preference Logic," Handbook of

Philosophical Logic , vol. Volume 4 , no. 2, pp. 319-393,

2002.

[19] Christoph Lofi, Wolf-Tilo Balke, and Ulrich Güntzer,

"Efficient Skyline Refinement using Trade-Offs," in 3rd Intl.

Conf. on Research Challenges in Information Science

(RCIS), Fez, Morocco, 2009.

[20] Christoph Lofi, Ulrich Güntzer, and Wolf-Tilo Balke,

"Efficiently Performing Consistency Checks for Multi-

Dimensional Preference Trade-Offs," in IEEE Int. Conf. on

Research Challenges in Information Science (RCIS),

Marakech, Morocco, 2008.

[21] Christoph Lofi, Ulrich Güntzer, and Wolf-Tilo Balke,

"Consistency Check Algorithms for Multi-Dimensional

Preference Trade-Offs," International Journal of Computer

Science & Applications (IJCSA), vol. 5, no. 3b, pp. 165 -

185, 2008.

[22] Christoph Lofi, Ulrich Güntzer, and Wolf-Tilo Balke,

"Efficient Computation of Trade-Off Skylines," in 13th Intl.

Conf. Extending Database Technology (EDBT), Lausanne,

Switzerland, 2010.

[23] Joachim Selke, Christoph Lofi, and Wolf-Tilo Balke,

"Highly Scalable Multiprocessing Algorithms for Preference-

Based Database Retrieval," in 15th International Conference

on Database Systems for Advanced Applications (DASFAA),

Tsukuba, Japan, 2010.

[24] Christoph Lofi and Wolf-Tilo Balke Ulrich Güntzer,

"Eliciting Skyline Trade-Offs using Example-Based

Heuristics for E-Commerce Applications," in Technical

Report on http://www.ifis.cs.tu-bs.de/staff/christoph-lofi,

2010.

