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ABSTRACT
Protecting the environment by saving energy and thus reducing car-
bon dioxide is one of today’s hottest topics and is of a rapidly grow-
ing importance in the computing domain. In addition, to ecologi-
cal reasons here issues such as the up-time of mobile or embedded
devices, battery charge cycles etc. are key problems. Recent stud-
ies have shown that software has a major impact onto the energy
consumption of the device it is executed on. Thus, intelligent se-
lection and assembly of software components promises significant
savings. However, this requires knowledge about how much energy
a (software) component consumes. In other words, a classification
scheme following the idea of the European Union energy label is re-
quired. This paper discusses recent findings and first ideas of estab-
lishing an energy classification scheme for software, using the ’big-
O’ notation as its general metaphor. The scheme is motivated, in-
troduced and validated by using resource substitution strategies, as
one means for optimizing energy consumption via software adap-
tation. We demonstrate that the classification scheme can be used
to characterize the fitness of a strategy and/or algorithm. Further-
more, we discuss to use such energy labels/classes when estimating
the energy consumption of systems assembled from different com-
ponents.

1. INTRODUCTION AND MOTIVATION
The basic idea of computing is that software utilizes hardware in
order to solve well-defined problems and ease human life. This
started by supporting the task of calculating trajectories of missiles
and now covers nearly all aspects of human life. Almost all stan-
dard computers and even modern mobile devices like smart phones,
laptops, or embedded systems are based on the well known Von-
Neumann-Architecture [19]. Data and program code is stored in
main memory. The central process unit (CPU), comprised of a con-
trol and arithmetic-logic unit, accesses the memory (i.e., a single
separate storage structure) over a bus system. Nowadays it is com-
mon, that computers are connected to networks like the Internet.
This enables information exchange and task distribution among de-
vices with different in-built resources. Current trends in software
development like .NET make use of this cloud of heterogeneous de-
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vices in order to solve more complex tasks than it would be possible
with a single device. Clouds are either used to store data or to dis-
tribute workload. Thus, various hardware resources with different
properties are utilized for data processing and storage. One essen-
tial difference between these resources is their energy consumption
in relation to their performance. Large data centres already started
to optimize their ’Power Usage Effectiveness’ (PUE) that deter-
mines the energy efficiency and that is determined by dividing the
amount of power entering a data centre by the power used to run
the computer infrastructure within it. For single devices this step is
to be done in the near future.

Especially for mobile devices that are typically battery-driven, en-
ergy consumption has to be optimized/reduced since the amount of
energy consumed is correlated to the up-time of the device. Recent
research efforts have shown that such resources can be substituted
by each other to optimize one resource. Hence, it is possible to re-
design a software system in such a way that the available resources
are used in an energy efficient manner. In other words, one re-
source might be substituted by one or more other resources (e.g.,
exchanging memory consumption against processing power) in or-
der to optimize the usage of the first resource. Unfortunately, there
is no formal basis that classifies the ’fitness’ of a chosen substitu-
tion strategy regarding energy efficiency.

This paper presents first ideas towards an energy-consumption based
complexity-classification for resource-substitution-strategies. We
therefore generalize our previous findings regarding the energy con-
sumption of basic algorithms (i.e., sorting and basic DB algorithms
such as joins) and the application of resource-substitution strate-
gies. The goal is to define a formal classification scheme, similar to
the big-O Notation that can be used to classify the ’energy-fitness’
of strategies and algorithms. By having such a classification it will
be possible to not only characterize the performance and memory
usage but also the energy consumption of a system.

The remainder of this paper is structured as follows: Section 2 in-
troduces the principle of resource substitution and covers related
work. Section 3 focuses on energy consumption and closely inves-
tigates the actual energy consumption of the considered resources.
Section 4 discusses our ideas on the energy complexity classifica-
tion. Finally, section 5 summarizes the paper and gives an outlook
on future research.



2. RESOURCE SUBSTITUTION — STRA-
TEGIES & TECHNIQUES

In general, a resource is any physical or virtual entity of limited
availability. Three main aspects can characterize resources: utility,
quantity, and use. This is especially true for mobile and embed-
ded systems that are characterized by a scarcity of resources. Such
systems typically depend on the resources that are provided by the
device the system is executed on, or the environment infrastructure.
In detail, the following resources are in the main focus:

• The Central Processing Unit (CPU) is responsible for exe-
cuting the instructions of a computer program. In principle
each CPU consists of an arithmetic logic unit (ALU), a con-
trol unit, and registers (on-CPU-memory). There are various
CPUs available on the market, e.g. XScale, SnapDragon,
other processors based on the ARM architecture, Intel’s x86
processors or the processors of the PPC family.

• The memory of a computing system stores data and program
code. In general it can be divided into main memory (RAM),
secondary memory (hard discs) and tertiary memory (DVD,
tapes, etc.). Storing data on mobile devices differs from stor-
ing data on classic computers. Mobile devices typically use
flash memory. Especially recent Smart-Phones or even some
variants of Apple’s ’MacBook Air’ use this media as sec-
ondary memory. Nearly all current mobile devices allow the
use of additional storage media in form of memory cards or
Microdrives.

• While a bus system is responsible for in-computer commu-
nication, networks are used for inter-computer communica-
tion. The overall principle is that the sender prepares and ad-
dresses the data to send and transmits it electronically or opti-
cally via wire or through the air (wirelessly). Today, a device
can have basically network access almost everywhere. Wire-
less local-area networks are hot-spotted networks with a rea-
sonable speed. GSM-networks (and extensions like GPRS,
EDGE or HSDPA) are slower but widely available. UMTS-
infrastructure has been installed all over Europe but full cov-
erage is far from existing.

Different techniques for handling data in mobile information sys-
tems have different resource consumptions characteristics (CPU or
memory focused, etc.). Interestingly, it is possible to exchange or
substitute resources by each other (i.e., resource substitution strate-
gies) in order to optimize the use of one. Table 1 gives an general
overview about possible substitutions that holds for all distributed
systems, and thus also for client/server information systems with
mobile clients. According to this table, the resource communica-
tion might be replaced by the resources CPU or memory (e.g., do
computations and store data locally). Unfortunately, Table 1 does
not include energy as a separate resource due to its orthogonal na-
ture being affected by other resources. However, due to ever in-
creasing functionality of mobile devices, limited battery capacities
and environmental protection, energy consumption has to be ad-
dressed, too.

In the following we discuss in-depth the substitution possibilities
with respect to energy consumption. Even if these ideas originally
were examined in the context of mobile information system (mIS)
[12], the findings can be generalized to all kinds of networked data
management applications.

CPU vs. Communication: A high CPU load can be substituted by
data communication. CPU-intensive calculations might be
outsourced to a server [14] or distributed among many com-
puters [1]. For example, semantic caching is a CPU-intensive
approach. [10] presents an approach for migrating the task
of finding reusable data in the cache to the server. In addi-
tion, [11] analyzes server site cache invalidation. Although,
both approaches require complex software operations on the
server, they drastically reduce client CPU load. On the other
hand, we can easily reduce data transmission by using com-
pression, which requires additional CPU usage.

CPU vs. Memory The substitution of CPU load by memory ac-
cess is the well known as view materialization in the area of
database systems. In general this represents the decision re-
garding the storage of temporary results. In order to save
CPU cycles one can also use alternative access paths (in-
dexes) to the data. Furthermore, standard compression ap-
proaches might be used for saving memory.

Memory vs. Communication Replication and caching can reduce
the amount of communication. However, full replication re-
duces communication, whereas the efficiency of caching de-
pends on the re-usability of cached data [6]. The benefit of
caching not only depends on the memory but also on the
CPU. In general one it can be stated that data, available on a
device, must not be transmitted. But, redundant data might
be outdated. Hence, synchronization mechanisms that con-
nect to a server or receive updates via a broadcast channel are
required. The substitution of the resource memory by com-
munication is common for data centres where data is stored
at central places. If a client needs the data accesses the server
and reads the data. There are certain approaches following
this substitution strategy (e.g., the Internet message access
protocol (IMAP) allows to read email without prior down-
load).

As discussed earlier, the idea of using resource substitution to opti-
mize the use of a specific resource stems from the domain of mIS.
Here, especially the resource memory is oversimplified. It is com-
mon to reduce the usage of secondary memory by caching data in
primary memory. It is also common to swap data to secondary
memory if the primary memory does not have any space left.

3. ENERGY CONSUMPTION REGARDING
RESOURCES AND RESOURCE SUBSTI-
TUTION

In this paper we consider the following resources: CPU, primary
memory (RAM), secondary memory, network, whereby the latter
represents the communication aspects. As tertiary memory is mostly
used for backup purposes, we do not consider it in the addressed
context of this paper regarding the use of resource substitution for
reducing the energy consumption of a system.

Energy consumption is usually correlated with hardware proper-
ties. However, there are strategic issues and findings by other re-
searchers that examine and argue about software properties that
have an impact on energy. Energy consumption associated with
wireless data-transmission is not negligible [7]. CPU usage needs
comparatively less energy than memory storage [16, 4]. Compress-
ing a file by more then 10%, transmitting and decompressing it
requires less energy than transmitting it uncompressed [18]. File



substitute CPU Communication Memory
CPU - Migration of computations Materialization and re-usage

to the server of temporary results
Communication Local execution of - Local data storage

calculations
Memory Data compression and Data management on -

compact data structures the server only

Table 1: Substitutable resources [3]

compression also reduces the energy consumption of operations on
hard disks [15].

CPU based energy consumption Ec strongly depends on the used
processor architecture (includes also the basic differences of RISC
or CISC based systems) and clock rate. For Intel desktop pro-
cessors the energy consumption per instruction reaches from 10 ·
10−9J for an i468 to 48 · 10−9J for an Pentium 4 (Cedarmill)
processor [8]. Our own experiments based on the ATMega128L
processor and the measurement environment described in [4] re-
sulted in 1.058 · 10−2J for comparing two arrays of 1,000 integer
values stored in an SRAM module (128K, 12 ns). By normaliz-
ing this value after removing the energy required for reading both
arrays, we calculated that 5.33 · 10−6J are required for one com-
parison on this processor. The energy consumption Ep of primary
memory operations can be divided into the energy that is required
for reading Er

p , for writing Ew
p and for keeping the state of this

volatile memory Es
p. As shown in [9] the following relation holds:

Er
p < Ew

p . The author calculated for one write access to SDRAM
an energy consumption of 3 ·10−17J whereas one read access con-
sumed 1.811 · 10−17J . The results of our experiments with the
ATMega128L processor are shown in Figure 1. Obviously, there
is also a difference between accessing the on-chip memory and the
external SRAM module.
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Figure 1: Reading and writing data from and to memory

Since the energy (consumption) is a function over time, it does
not make sense to take Es

p into account while thinking about re-
source substitution. Furthermore, we have to consider the CPU
instructions required for reading and writing memory cells as well
as the energy consumptions required for transferring data between
CPU and memory. Therefore, we can extend the first relation to

Ec < Er
p < Ew

p .

Similar to primary memory, one can divide the energy consump-
tion of secondary memory Es into Er

s , Ew
s , and Es

s . As a rule
of thumbs one can estimate the energy consumption for reading
data from a hard disk as n3

LBAJ . For one logical block this means
1 Joule, for two blocks 8 Joule, etc. [13]. Interestingly sequen-
tial writing of huge amounts of data requires 4-5 times less en-
ergy than reading the same amount of data as the read/write heads
movements are reduced. However, even if the real values differ
extremely for different devices [20] one can extend the previous
relation to Ec < Er

p < Ew
p < Er

s < Ew
s for single operations.

Finally, we have to consider network communication. It’s energy
consumption can be divided into the energy required for sending
Es

n and for receiving one Byte Er
n. Especially wireless networks

vary in their speed. Therefore, energy consumption for receiving a
certain amount of data also depends on the time for the “download”.
Regarding [2] receiving 50KB with a 20-second interval requires
12.5J (UMTS), 5.0J (GSM), and 7.6J (WiFi). We have to note,
that these values are pure transmission values. Sending data re-
quires more energy. The authors of [17] calculated idle:receive:send
ratios as 1:1.05:1.4. Obviously, more energy (from CPU and main
memory) is required if packaging and addressing is taken into ac-
count. To summarize this, we get the following relation for energy
consumption of the resources involved in resource substitution:

Ec < Er
p < Ew

p︸ ︷︷ ︸
Ep

< Er
s < Ew

s︸ ︷︷ ︸
Es

< Er
n < Es

n︸ ︷︷ ︸
En

CPU usage requires less energy than using primary and secondary
memory, and network communication requires even more energy.
The goal of this paper is to quantify the energy consumption of
strategies and algorithms in distributed environments. One can
specify the overall energy consumption of such an algorithm or
strategy as the sum E = Ec + Ep + Es + En.

4. ENERGY COMPLEXITY CLASSIFICA-
TION

In general, a complexity class is a set of problems of related resource-
based complexity and is defined by the set of problems that can be
solved by an abstract machine M using O(f(n)) of resource R,
where n is the size of the input. In the context of this paper we
are interested in the usage of resources. This is typically covered
by the big-O notation that describes the limiting behaviour of a
function. It allows to simplify functions in order to concentrate
on growth rates. Thus, big-O can be used to describe an algo-
rithm’s usage of computational resources (e.g., the worst case or
average case running time or memory usage of an algorithm is of-



ten expressed as a function of the length of its input). This allows
algorithm designers to predict the behaviour of algorithms and to
choose the best fitting algorithm (regarding its complexity class),
in a way that is (nearly) independent of the computer architecture
or clock rate. Regarding the definition of complexity class for en-
ergy we have to consider the resources involved in the computation.
Therefore, we have to distinguish and explicitly separate four sub-
components: Oc(fc(n)) is the complexity for the CPU which is
equivalent to the well known running time, since the energy con-
sumption of a CPU is related to the number of instructions which,
in turn depends on the size of the input. Similarly one can say that
the complexity Op(fp(n)) corresponds to memory-usage complex-
ity, since the energy consumption of primary memory depends on
the number of read/write operations, which are derived or based on
the input size. We have to point out that memory-usage complexity
is not equivalent to the memory complexity known from theoretical
computer science. The memory complexity describes the required
amount of memory but does not include the memory accesses. Ob-
viously, an algorithm could use only a constant amount of mem-
ory but read/write it several times. The same holds for the com-
plexity Os(fs(n)) class characterizing the energy consumption of
secondary memory. As the number of data transmissions is a func-
tion over the input size, too, On(fn(n)) might express the energy
complexity for the network resource. We learned from the pre-
vious chapter that energy consumptions of resources vary. Hence,
we have to use the energy characteristics of the resources as scaling
factors. For simplification we assume that Ec is the energy required
for processing one input element, Ep and Es for storing and retriev-
ing one input element to/from main memory or secondary storage,
respectively, and En for sending/receiving one input element via
the network. Therefore, the energy complexity of an algorithms is
given as sum:

OE(fe(n)) = Oc(Ec ·fc(n))+Op(Ep ·fp(n))+Os(Es ·fs(n))

+On(En · fn(n))

Finding the energy complexity (sub)functions. As men-
tioned earlier, the overall energy complexity class can be notated as
the sum of the class functions of the involved resource. Obviously,
it is possible to analyze the program code in order to find the re-
spective (sub)functions. However, the running time complexity for
most algorithms is known. Considering only CPU and RAM usage
one can find the memory-access complexity by analyzing energy
measurements. We described the measurement approach used in
the following in [4]. Hence, Ec ·fc(n) is the function of the runtime
complexity multiplied with the energy required for one operation.
For example, for Mergesort fc(n) = n · log(n) holds. We mea-
sured the energy for one operation Ec (in this case for one value
comparison) as well as the energy E(n) required by the algorithm
for various n. We know, that E(n) = Ec · fc(n) + Ep · fp(n)
holds. Hence, we can use model fitting techniques and tools like
Eureqa1 for finding fp(n).

Example: Given the running time complexity O(n · log(n)) of
Mergesort, the energy of 5.33 · 10−6J consumed for one
comparison and the normalized overall energy E(n) (E(10) =
0.00006042J . . . E(1000) = 0.0100312J consumed by ex-
ecuting the algorithm for various n [5], we can find the memory-
access complexity fp(n) by using the target function E(n) =

1http://ccsl.mae.cornell.edu/eureqa

5.33 · 10−6 · (n · log(n)) + fp(n). To simplify the task for
the model fitter we first calculated E(n)− 5.33 · 10−6 · (n ·
log(n)) = fp(n), copied the data to Eureqa, and searched
for fp(n). The tool found various functions, e.g. 1.02553 ·
10−5 ·n−5.1406 ·10−5 · log(0.0033665 ·n−0.0236113)−
0.000269206. Almost all of them have shown an n− log(n)
structure. As we know that each comparison requires read-
ing the comparison partners from memory, the memory ac-
cess complexity of our Mergesort implementation is O(n ·
log(n)+n− log(n)), which equals O((n−1) · log(n)+n).

For analyzing the secondary storage complexity and the network
complexity one could use monitoring tools for file systems and
network traffic in combination with model fitting techniques. How-
ever, we did no experiments in this regard so far.

5. SUMMARY, CONCLUSIONS, AND OUT-
LOOK

Energy consumption is becoming a central issue for most user and
manufacturers of computing devices and especially of mobile or
embedded systems. Reasons are manifold and range from pro-
tecting the environment to extending the up- and operating-time
of a system. However, the development and use of such, energy
aware, systems, requires clear indication on the energy it consumes
and, for the sake of easy comparison and selection, the distinc-
tion of energy classes. This becomes even more important, when
it comes to software, since software has a major impact onto the
energy consumed by a system. Within this paper we presented our
ideas regarding the definition of such software classification ap-
proach that uses the ’classic’ big-O notation as its metaphor. As
a starting point we concentrated on resource substitution strate-
gies/algorithms since those have shown their potential in making
a system energy-aware [3]. We introduced different strategies and
discussed their energy-consumption related characteristics. Based
on that we introduced and applied a classification scheme for en-
ergy consumption. The scheme provides valuable information about
the fitness of specific algorithms and strategies regarding the opti-
mization of energy consumption of a system. However, these ideas
have to be applied in practice (e.g., defining the energy class of dif-
ferent algorithms, etc.). The next step then is to come up with tech-
niques for determining the energy class of assembled components
and or systems. Furthermore, we plan to define techniques and
tools for the development of energy-aware software systems that
make use of energy classes. Finally, we are currently discussing a
realistic case study to demonstrate the feasibility and applicability
of our ideas in practice.
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