
PrefWork - a framework for the user preference
learning methods testing?

Alan Eckhardt1,2

1 Department of Software Engineering, Charles University,
2 Institute of Computer Science, Czech Academy of Science,

Prague, Czech Republic
eckhardt@ksi.mff.cuni.cz

Abstract. PrefWork is a framework for testing of meth-
ods of induction of user preferences. PrefWork is thor-
oughly described in this paper. A reader willing to use Pref-
Work finds here all necessary information - sample code,
configuration files and results of the testing are presented
in the paper. Related approaches for data mining testing
are compared to our approach. There is no software avail-
able specially for testing of methods for preference learning
to our best knowledge.

1 Introduction

User preference learning is a task that allows many dif-
ferent approaches. There are some specific issues that
differentiate this task from a usual task of data min-
ing. User preferences are different from measurements
of a physical phenomenon or a demographic informa-
tion about a country; they are much more focused on
the objects of interest and involve psychology or econ-
omy.

When we want to choose the right method for user
preference learning, e.g. for an e-shop, the best way
is to evaluate all possible methods and to choose the
best one. The problems with the testing of methods
for preference learning are:

– how to evaluate these methods automatically,
– how to cope with different sources of data, with

different types of attributes,
– how to measure the suitability of a method,
– to personalise the recommendation for every user

individually.

2 Related work

The most popular tool related to PrefWork is the open
source projec t Weka [1]. Weka is in development for
many years and has achieved to become the most wide-
ly used tool for data mining. It offers many classifica-
tors, regression methods, clustering, data preprocess-
ing, etc. However this variability is also its weakness
? The work on this paper was supported by Czech

projects MSM 0021620838, 1ET 100300517 and GACR
201/09/H057.

- it can be used for any given task, but it has to be
customised, the developer has to choose from a very
wide range of possibilities. For our case, Weka is too
strong.

RapidMiner [2] has a nice user interface and is in
a way similar to Weka. It is also written in Java and
has source codes available. However the ease of use
is not better than that of Weka. The user interface
is nicer than in Weka but the layout of Weka is more
intuitive (allowing to connect various components that
are represented on a plane).

R [3] is a statistical software that is based on its
own programming language. This is the biggest incon-
venience - a user willing to use R has to learn yet
another programming language.

There are also commercial tools as SAS miner [4],
SPSS Clementine [5], etc. We do not consider these,
because of the need to buy a (very expensive) licence.

We must also mention the work of T. Horváth -
Winston [6], which was developed recently. Winston
may suit our needs, because it is light-weighted, has
also a nice user interface, but in the current stage there
are few methods and no support for the method test-
ing. It is more a tool for the data mining lecturing
than the real world method testing.

We are working with ratings the user has associ-
ated to some items. This use-case is well-known and
used across the internet. An inspiration for extend-
ing our framework is many other approaches to user
preference elicitation. An alternative to ratings has
been proposed in [7, 8] - instead of ratings, the sys-
tem requires direct feedback from the user about the
attribute values. The user has to specify in which val-
ues the given recommendation can be improved. This
approach is called critique based recommendations.

Among other approaches, we should mention also
work of Kiessling [9], which uses the user behaviour as
the source for the preference learning.

We also need some implementations of algorithms
of the user preference learning that are publicly avail-
able for being able to compare various methods among
themselves. This is a strength of PrefWork - any
existing method, which works with ratings, can be

8 Alan Eckhardt

integrated into PrefWork using a special adaptor
for each tool (see Section 4.3). There is a little bit
old implementation of collaborative filtering Cofi [10]
and a brand new one (released 7.4.2009) Mahout [11],
developed by Apache Lucene project. Cofi uses Taste
framework [12], which became a part of Mahout. The
expectations are that Taste in Mahout would perform
better than Cofi, so we will try to migrate our
PrefWork adaptor for Cofi to Mahout. Finally there is
IGAP [13] - a tool for learning of fuzzy logic programs
in form of rules, which correspond to user preferences.
Unfortunately, IGAP is not yet available publicly for
download.

We did not find any other mining algorithm spe-
cialised on user preferences available for free down-
load, but we often use already mentioned Weka. It
is a powerful tool that can be more or less easily in-
tegrated into our framework and provide a reasonable
comparison of a non-specialised data mining algorithm
to other methods that are specialised for preference
learning.

3 User model

For making this article self-contained, we describe in
brief our user model, as in [14]. In this section, we de-
scribe our user model. This model is based on a scoring
function that assigns the score to every object. User
rating of an object is a fuzzy subset of X(set
of all objects), i.e. a function R(o) : X → [0, 1], where
0 means the least preferred and 1 means the most pre-
ferred object. Our scoring function is divided into two
steps.

Local preferences In the first step, which we call lo-
cal preferences, all attribute values of object o are nor-
malised using fuzzy sets fi : DAi

→ [0, 1]. These fuzzy
sets are also called objectives or preferences over at-
tributes. With this transformation, the original space

of objects’ attributes X =
N∏

i=1

DAi
is transformed into

X ′=[0, 1]N . Moreover, we know that the object o∈X ′

with transformed attribute values equal to [1, . . . , 1] is
the most preferred object. It probably does not
exist in the real world, though. On the other side,
the object with values [0, . . . , 0] is the least preferred,
which is more probable to be found in reality.

Global preferences In the second step, called global
preferences, the normalised attribute values are aggre-
gated into the overall score of the object using an ag-
gregation function @ : [0, 1]N → [0, 1]. Aggregation
function is also often called utility function.

Aggregation function may have different forms; one
of the most common is a weighted average, as in the
following formula:

@(o) =(2 ∗ fPrice(o) + 1 ∗ fDisplay(o) + 3 ∗ fHDD(o)+
1 ∗ fRAM (o))/7 ,

where fA is the fuzzy set for the normalisation of at-
tribute A.

Another totally different approach was proposed
in [15]. It uses the training dataset as partitioning of
normalised space X ′. For example, if we have an object
with normalised values [0.4, 0.2, 0.5] with rating 3, any
object with better attribute values (e.g. [0.5, 0.4, 0.7])
is supposed to have the rating at least 3. In this way,
we can find the highest lower bound on any object with
unknown rating. In [15] was also proposed a method
for interpolation of ratings between the objects with
known ratings and even using the ideal (non-existent)
virtual object with normalised values [1, ..., 1] with rat-
ing 6.

4 PrefWork

Our tool PrefWork was initially developed as a master
thesis of Tomáš Dvořák [16], who has implemented it
in Python. In this initial implementation, only Id3 de-
cision trees and collaborative filtering was implemen-
ted. For better ease of use and also for the possibility
of integrating other methods, PrefWork was later re-
written to Java by the author. Many more possibilities
were added until the today state. In the following sec-
tions, components of PrefWork are described.

Most of the components can be configured by XML
configurations. Samples of these configurations and
Java interfaces will be provided for each component.
We omit methods for configuration from Java inter-
faces such as configTest(configuration,section)
which is configured using a configuration from a sec-
tion in an XML file. Also data types of function argu-
ments are omitted for brevity.

4.1 The workflow

In this section a sample of workflow with PrefWork is
described.

The structure of PrefWork is in Figure 1. There
are four different configuration files - one for database
access configuration (confDbs), one for datasources
(confDatasources), one for methods (confMethods)
and finally one for PrefWork runs (confRuns). A run
consists of three components - a set of methods, a set
of datasets and a set of ways to test the method. Every
method is tested on every dataset using every way to

PrefWork - a framework for the user . . . 9

Test

CSV File

Results
Interpreter

Inductive
Method

Database/
CSV

Datasource Data

How to divide
data to

training and testing
sets

Train data/Test data
Predicted rating

Results of method testing

Results confDbs
confDatasources

confMethods
confRuns

Fig. 1. PrefWork structure.

test. For each case, results of the testing are written
into a csv file.

A typical situation a researcher working with
PrefWork finds himself in is: “I have a new idea X. I am
really interested, how it performs on that dataset Y.”

The first thing is to create corresponding Java
class X that implements interface InductiveMethod
(see 4.3) and add a section X to confMethods.xml.
Then copy an existing entry defining a run (e.g. IFSA,
see 4.5) and add method X to section methods. Run
ConfigurationParser and correct all errors in the new
class (and there will be some, for sure). After the run
has finished correctly, process the csv file with results
to see how X performed in comparison with other
methods.

A similar case is when introducing a new dataset
into PrefWork - confDatasets.xml and confDBs.xml
have to be edited if the data are in SQL database
or in a csv file. Otherwise a new Java class (see 4.2)
able to handle the new type of data has to be created.
For example, we still have not implemented the class
for handling of arff files - these files have the defini-
tion of attributes in themselves, so the configuration
in confDatasets.xml would be much more simple (see
Section 4.2 for an example of a configuration of a data-
source with its attributes).

4.2 Datasource

Datasource is, as the name hints, the source of data
for inductive methods. Currently, we are working only
with ratings of objects. Data are vectors, where the
first three attributes typically are: the user id, the ob-
ject id and the rating of the object. The attributes of
the object follow. There is a special column that con-

tains a random number associated to each rating. Its
purpose will described later.

Every datasource has to implement the following
methods:

interface BasicDataSource{
boolean hasNextRecord();
void setFixedUserId(value);
List<Object> getRecord();
Attribute[] getAttributes();
Integer getUserId();
void setLimit(from, to,

recordsFromRange);
void restart();
void restartUserId();

}

There are two main attributes of datasource - a list
of all users and a list of ratings of the current user.
getUserId returns the id of the current user. The
most important function is getRecord, which returns
a vector containing the rating of the object and its
attributes. Following calls of getRecords return all
objects rated by the current user. A typical sequence
is:

int userId = data.getUserId();
data.setFixedUserId(userId);
data.restart();
while(data.hasNextRecord()){
List<Object> record =

data.getRecord();

// Work with the record
...

}

10 Alan Eckhardt

Another important function is setLimit, which limits
the data using given boundaries from and to. The
random number associated to each vector returned
by getRecord has to fit into this interval. If
recordsFromRange is false, then the random number
should be outside of the given interval on the contrary.
This method is used when dividing the data into train-
ing and testing sets. For example, let us divide the data
to 80% training set and 20% testing set. First, we call
setLimit(0.0,0.8,true) and let the method train
on these data. Then, setLimit(0.0,0.8,false) is
executed and vectors returned by the datasource are
used for the testing of the method.

Let us show a sample configuration of a datasource
that returns data about notebooks:

<NotebooksIFSA>
<attributes>
<attribute><name>userid</name>
<type>numerical</type>

</attribute>
<attribute><name>notebookid</name>
<type>numerical</type>

</attribute>
<attribute><name>rating</name>
<type>numerical</type>
</attribute>

<attribute><name>price</name>
<type>numerical</type>

</attribute>
<attribute><name>producer</name>
<type>nominal</type>

</attribute>
<attribute><name>ram</name>
<type>numerical</type>

</attribute>
<attribute><name>hdd</name>
<type>numerical</type>

</attribute>
</attributes>
<recordsTable>
note_ifsa

</recordsTable>
<randomColumn>
randomize

</randomColumn>
<userID>userid</userID>
<usersSelect>
select distinct userid from note_ifsa
</usersSelect>

</NotebooksIFSA>

First, a set of attributes is defined. Every attribute
has a name and a type - numerical, nominal or list.
An example of list attribute is actors in a film. This
attribute can be found in the IMDb dataset [17].

Let us also note the select for obtaining the user
ids (section usersSelect) and the name of the column
that contains the random number used in setLimit
(randomColumn).

Other types of user preferences. PrefWork as it is
now supports only ratings of objects. There are many
more types of data containing user preferences - user
clickstream, user profile, filtering of the result set etc.

PrefWork does not work with any information
about the user, either demographic like age, sex, place
of birth, occupation etc. or his behaviour. These types
of information may bring a large improvement in the
prediction accuracy, but they are typically not present
- users do not want to share any personal information
for the sole purpose of a better recommendation.
Another issue is the complexity of user information;
a semantic processing would have to be used.

4.3 Inductive method

InductiveMethod is the most important interface - it is
what we want to evaluate. Inductive method has two
main methods:

interface InductiveMethod {
int buildModel(trainingDataset,

userId);
Double classifyRecord(record,

targetAttribute);
}

buildModel uses the training dataset and the userId
for the construction of a user preference model. After
having it constructed, the method is tested - it is be-
ing given records via method classifyRecord and is
supposed to evaluate them.

Various inductive methods were implemented.
Among the most interesting are our method Statisti-
cal ([18, 15]) and Instances ([15]), WekaBridge that
allows to use any method from Weka (such as Sup-
port vector machine) and ILPBridge that transforms
data to a prolog program and then uses Progol [19] to
create the user model. CofiBridge allows to use Cofi
as a PrefWork InductiveMethod.

A sample configuration of method Statistical is:

<Statistical>
<class>Statistical</class>
<rater>
<class>WeightAverage</class>
<weights>VARIANCE</weights>
</rater>
<representant>
<class>AvgRepresentant</class>
</representant>

PrefWork - a framework for the user . . . 11

<numericalNormalizer>
Linear

</numericalNormalizer>
<nominalNormalizer>

RepresentantNormalizer
</nominalNormalizer>
<listNormalizer>

ListNormalizer
</listNormalizer>

</Statistical>

Every method requires a different configuration, only
the name of the class is obligatory. Note that the
methods based on our two-step user model (Statis-
tical and Instances for now) can be easily configured
to test different heuristics for the processing of differ-
ent types of attributes. Configuration contains three
sections: numericalNormalizer, nominalNormalizer
and listNormalizer for the specification of the
method for the particular type of attribute. Also see
Section 4.5 for an example of this configuration.

4.4 Ways of the testing of the method

Several possible ways for the testing of methods can
be defined, the division to training and testing sets
is the most typically used. The method is trained on
the training set (using buildModel) and then tested on
the testing set (using classifyRecord). Another typical
method is k-fold cross validation that divides data into
k sets. In each of k runs, one set is used as the testing
set and the rest as the training set.

interface Test {
void test(method, trainDataSource,

testDataource);
}

When the method is tested, the results in the form
userid, objectid, predictedRating, realUserRating
have to be processed. The interpretation is done by
a TestResultsInterpreter. The most common is
DataMiningStatistics, which computes such measures
as correlation, RMSE, weighted RMSE, MAE, Kendall
rank tau coefficient, etc. Others are still waiting to be
implemented - ROC curves or precision-recall statis-
tics.

abstract class TestInterpreter {
abstract void writeTestResults(

testResults);
}

4.5 Configuration parser

The main class is called ConfigurationParser. The de-
finition of one test follows:

<IFSA>
<methods>
<method>
<name>Statistical</name>
<numericalNormalizer>
Standard2CPNormalizer

</numericalNormalizer>
</method>
<method><name>Statistical</name>
</method>
<method><name>Mean</name></method>
<method><name>SVM</name></method>
</methods>
<dbs>
<db>
<name>MySQL</name>
<datasources>NotebooksIFSA
</datasources>
</db>
</dbs>
<tests>
<test>
<class>TestTrain</class>
<ratio>0.05</ratio>
<path>resultsIFSA</path>
<testInterpreter>
<class>DataMiningStatistics
</class>

</testInterpreter>
</test>
<test>
<class>TestTrain</class>
<ratio>0.1</ratio>
<path>resultsIFSA</path>
<testInterpreter>
<class>DataMiningStatistics
</class>

</testInterpreter>
</test>
</tests>

</IFSA>

First, we have specified which methods are to be
tested - in our case it is two variants of Statistical,
then Mean and SVM. Note that some attributes of
Statistical, which was defined in confMethods, can be
“overridden” here. The basic configuration of Statisti-
cal is in Section 4.3. Then the datasource for testing of
the methods is specified – we are using MySql database
with datasource NotebooksIFSA. Several datasources
or databases can be specified here. Finally, the ways
of the testing and interpretation are given in section
tests. TestTrain requires ratio of the training and the
testing sets, the path where the results are to be writ-
ten, and the interpretation of the test results.

12 Alan Eckhardt

date;Ratio;dataset;method;userId;mae;rmse;weightedRmse;monotonicity;tau;weightedTau;correlation;buildTime;
testTime;countTrain;countTest;countUnableToPredict

28.4.2009
12:18;0,05;NotebooksIFSA;Statistical,StandardNorm2CP;1;0,855;0,081;1,323;1,442;0,443;0,358;0,535;94;47;10;188;0;

28.4.2009
12:18;0,05;NotebooksIFSA;Statistical,StandardNorm2CP;1;0,868;0,078;1,216;1,456;0,323;0,138;0,501;32;0;13;185;0;

28.4.2009
12:18;0,05;NotebooksIFSA;Statistical,StandardNorm2CP;1;0,934;0,083;1,058;1,873;0,067;0,404;0,128;31;16;12;186;0;

28.4.2009 12:31;0,025;NotebooksIFSA;Statistical,Peak;1;0,946;0,081;1,161;1,750;0,124;0,016;0,074;15;16;4;194;0
28.4.2009 12:31;0,025;NotebooksIFSA;Statistical,Peak;1;0,844;0,076;1,218;1,591;0,224;0,215;0,433;0;16;6;192;0
28.4.2009 12:31;0,025;NotebooksIFSA;Statistical,Peak;1;1,426;0,123;1,407;1,886;0,024;0,208;-0,063;16;0;4;194;0

Fig. 2. A sample of results in a csv file.

The definitions of runs are in confRuns.xml in sec-
tion runs. The specification of the run to be executed
is in section run of the same file.

4.6 Results of testing

In Figure 2 is a sample of the resulting csv file. In
our example, there are three runs with method Sta-
tistical with normaliser StandardNorm2CP and three
runs with normaliser Peak. Runs were performed on
different settings of the training and the testing sets,
so the results are different even for the same method.

The results contain all necessary information re-
quired for generation of a graph or a table with the
results. Csv format was chosen for its simplicity and
wide acceptance, so any other possible software can
handle it. We are currently using Microsoft Excel and
its Pivot table that allows aggregation of results by
different criteria. Among other possibilities is also the
already mentioned R [3].

Example figures of the output of PrefWork are in
Figures 3 and 4. The lines represent different meth-
ods, X axis represents the size of the training set and
the Y axis the value of the error function. In Fig-
ure 3 the error function is Kendall rank tau coefficient
(the higher it is the better) and in Figure 4 is RMSE
weighted by the original rating (the lower the better).
The error function can be chosen, as is described in
Section 4.4.

It is impossible to compare PrefWork to another
framework generally. A simple comparison to other
such systems is in Section 2. This can be done only
qualitatively; there is no attribute of frameworks that
can be quantified. The user itself has to choose among
them the one that suits his needs the most.

4.7 External dependencies

PrefWork is dependent on some external libraries. Two
of them are sources for inductive methods - Weka [1]
and Cofi [10]. Cofi also requires taste.jar.

Average of Tau coefficient

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

2 5 10 15 20 40 75
Training set size

Ta
u

co
ef

fic
ie

nt
weka,SVM
Mean
Statistical, Linear regression
Statistical,2CP-regression
weka,MultilayerPerceptron

Fig. 3. Tau coefficient.

Average of Weighted RMSE

0,55

0,75

0,95

1,15

1,35

1,55

2 5 10 15 20 40 75
Training set size

W
ei

gh
te

d
R

M
SE

weka,SVM
Mean
Statistical, Linear regression
Statistical,2CP-regression
weka,MultilayerPerceptron

Fig. 4. Weighted RMSE.

PrefWork - a framework for the user . . . 13

PrefWork requires following jars to function cor-
rectly:

Weka weka.jar
Cofi cofi.jar
Cofi taste.jar

Logging log4j.jar
CSV parsing opencsv-1.8.jar
Configuration commons-configuration-1.5.jar
Configuration commons-lang-2.4.jar
MySql mysql-connector-java-5.1.5-

bin.jar
Oracle ojdbc1410.2.0.3.jar

Tab. 1. Libraries required by PrefWork.

5 Conclusion

PrefWork has been presented in this paper with a thor-
ough explanation and description of every component.
Interested reader should be now able to install Pref-
Work, run it, and implement a new inductive method
or a new datasource.

The software can be downloaded at http://www.
ksi.mff.cuni.cz/∼eckhardt/PrefWork.zip
as an Eclipse project containing all java sources and all
required libraries or can be downloaded as SVN check-
out at [20]. The SVN archive contains Java sources and
sample configuration files.

5.1 Future work

We plan to introduce time dimension to PrefWork.
Netflix [21] datasets uses a timestamp for each rat-
ing. This will enable to study the evolution of the
preferences in time, which is a challenging problem.
However, the integration of the time dimension into
PrefWork can be done in several ways and the right
one is yet to be chosen.

Allowing other sources of data apart from the rat-
ings is a major issue. The clickthrough data can be
collected without any effort of the user and can be sub-
stantially larger than the number of ratings. But its in-
tegration into
PrefWork would require a large reorganisation of ex-
isting methods.

References

1. I.H. Witten, E. Frank: Data Mining: Practical Ma-
chine Learning Tools and Techniques, 2nd Edition.
Morgan Kaufmann, San Francisco (2005).

2. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz,
T. Euler: Yale: Rapid prototyping for complex data
mining tasks. In Ungar, L., Craven, M., Gunopulos, D.,

Eliassi-Rad, T., eds.: KDD’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, New York, NY, USA, ACM
(August 2006), 935–940.

3. R-project. http://www.r-project.org/.
4. SAS enterprise miner. http://www.sas.com/.
5. SPSS Clementine. http://www.spss.com/software/

modeling/modeler/.
6. Š. Pero, T. Horváth: Winston: A data mining assis-

tant. In: To appear in proceedings of RDM 2009, 2009.
7. P. Viappiani, B. Faltings: Implementing example-based

tools for preference-based search. In: ICWE’06: Pro-
ceedings of the 6th international conference on Web
engineering, New York, NY, USA, ACM, 2006, 89–90.

8. P. Viappiani, P. Pu, B. Faltings: Preference-based
search with adaptive recommendations. AI Commun.
21, 2-3, 2008, 155–175.

9. S. Holland, M. Ester, W. Kiessling: Preference min-
ing: A novel approach on mining user preferences for
personalized applications. In: Knowledge Discovery in
Databases: PKDD 2003, Springer Berlin / Heidelberg,
2003, 204–216.

10. Cofi: A Java-Based Collaborative Filtering Library.
http://www.nongnu.org/cofi/.

11. Apache Mahout project. http://lucene.apache.

org/mahout/.
12. Taste project. http://taste.sourceforge.net/old.

html.
13. T. Horváth, P. Vojtáš: Induction of fuzzy and anno-

tated logic programs. In Muggleton, S., Tamaddoni-
Nezhad, A., Otero, R., eds.: ILP06 - Revised Selected
papers on Inductive Logic Programming. Number 4455
in Lecture Notes In Computer Science, Springer Ver-
lag, 2007, 260–274.

14. A. Eckhardt: Various aspects of user preference
learning and recommender systems. In Richta, K.,
Pokorný, J., Snášel, V., eds.: DATESO 2009. CEUR
Workshop Proceedings, Česká technika - nakladatel-
stv́ı ČVUT, 2009, 56–67.

15. A. Eckhardt, P. Vojtáš: Considering data-mining tech-
niques in user preference learning. In: 2008 Interna-
tional Workshop on Web Information Retrieval Sup-
port Systems, 2008, 33–36.

16. T. Dvořák: Induction of user preferences in seman-
tic web, in Czech. Master Thesis, Charles University,
Czech Republic, 2008.

17. The Internet Movie Database. http://www.imdb.

com/.
18. A. Eckhardt: Inductive models of user preferences for

semantic web. In Pokorný, J., Snášel, V., Richta, K.,
eds.: DATESO 2007. Volume 235 of CEUR Workshop
Proceedings., Matfyz Press, Praha, 2007, 108–119.

19. S. Muggleton: Learning from positive data. 1997, 358–
376

20. PrefWork - a framework for testing methods for
user preference learning. http://code.google.com/p/
prefwork/.

21. Netflix dataset, http://www.netflixprize.com.

