
Boosted surrogate models in evolutionary optimization?

Martin Holeňa
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Abstract. The paper deals with surrogate modelling,
a modern approach to the optimization of empirical ob-
jective functions. The approach leads to a substantial de-
crease of time and costs of evaluation of the objective func-
tion, a property that is particularly attractive in evolution-
ary optimization. In the paper, an extension of surrogate
modelling with regression boosting is proposed. Such an ex-
tension increases the accuracy of surrogate models, thus
also the agreement between results of surrogate modelling
and results of the intended optimization of the original ob-
jective function. The proposed extension is illustrated on
a case study in the area of searching catalytic materials op-
timal with respect to their behaviour in a particular chem-
ical reaction. A genetic algorithm developed specifically for
this application area is employed for optimization, multi-
layer perceptrons serve as surrogate models, and a method
called AdaBoost.R2 is used for boosting. Results of the case
study clearly confirm the usefulness of boosting for surro-
gate modelling.

1 Introduction

For more than two decades, evolutionary algorithms,
especially their most frequently encountered represen-
tative – genetic algorithms, belong to the most suc-
cessful methods for solving difficult optimization tasks
[3, 11, 31, 32, 42]. The popularity of evolutionary algo-
rithms is to some extent due to their biological inspi-
ration, which increases their comprehensibility out-
side computer science. Nevertheless, they share sev-
eral purely mathematical properties of all stochastic
optimization methods, most importantly, the valuable
ability of to escape a local optimum and continue the
search for a global one, and the restriction of the infor-
mation on which they rely to function values only.
Consequently, they do not need information about gra-
dients or second-order partial derivatives, differently
to smooth optimization methods (such as steepest de-
scent, conjugate gradient methods, the popular Le-
venberg-Marquardt method, etc. ). This makes them
particularly attractive for the optimization of empiri-
cal objective functions, the values of which cannot be
analytically computed, but have to be obtained ex-
perimentally, through some measurement or testing.
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Indeed, the impossibility to compute analytically the
function values of such a function makes also an ana-
lytical computation of its gradient and second-order
derivatives impossible, whereas measurement errors
usually hinder obtaining sufficiently accurate estima-
tes of the derivatives.

Like other methods relying solely on function val-
ues, evolutionary algorithms need the objective func-
tion to be evaluated in quite a large number of points.
In the context of optimization of empirical objective
functions, this can be quite disadvantageous because
the evaluation of such a function in the points form-
ing one generation of an evolutionary algorithm is of-
ten costly and time-consuming. Hence, the above men-
tioned advantages of using evolutionary algorithms for
the optimization of empirical objective functions are
frequently counterbalanced by considerably high costs
and time needed for the evaluation of such functions.
An area, where the trade-off between successful op-
timization and costly objective function evaluations
plays a crucial role, is the computer-aided search for
new materials and chemicals optimal with respect to
certain properties [2]. Here, evolutionary algorithms
are used in more than 90 % of optimization tasks,
and the rarely encountered alternatives are simulated
annealing [9, 22, 23], simplex method [17], and holo-
graphic search strategy [37, 38, 41], which also use sole-
ly function values, therefore needing a similarly high
number of objective function evaluations as evolution-
ary algorithms. Testing a generation of materials or
chemicals typically needs hours to days of time and
costs hundreds to thousands euros. Therefore, the evo-
lutionary optimization rarely runs for more than ten
generations.

The usual approach to decreasing the cost and
time of optimization of empirical objective functions
is to evaluate the objective function only sometimes
and to evaluate a suitable regression model of that
function otherwise. The employed model is termed
surrogate model of the empirical objective function,
and the approach is referred to as surrogate modelling.
Needless to say, the time and costs needed to evalu-
ate a regression model are negligible compared to an
empirical objective function. However, it must not be
forgotten that the final optimized function coincides
with the original empirical objective function only in
some points, whereas in the remaining points it coin-
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cides only with its surrogate model. Consequently, the
agreement between the results of surrogate modelling
and the results of the intended optimization of the
original objective function depends on the accuracy of
the approximation of the original objective function
by the surrogate model.

This paper suggests to increase the accuracy of sur-
rogate models by means of boosting. Boosting is a pop-
ular approach to increasing the accuracy of classifica-
tion, and due to the success of classification boosting,
also several methods of regression boosting have al-
ready been proposed. However, so far no attempt has
been reported to combine regression boosting with sur-
rogate modelling. Hence, the purpose of the research
reported in the paper is basically a proof of concept: to
extend surrogate modelling through the incorporation
of regression boosting, and to validate that extension
on several sufficiently complex case studies. One of
those case studies is described in the paper.

In the following section, basic principles of surro-
gate modelling and its strategies in evolutionary opti-
mization are recalled, and important surrogate models
are listed. Section 3 recalls the principles of boosting
and explains a particular method of regression boost-
ing that will be employed later in a case study in mate-
rials science. That case study is sketched and its main
results are presented in Section 4.

2 Surrogate modelling

Surrogate modelling is a general approach to the op-
timization of costly objective functions in which the
evaluation of the objective function is restricted to
points that are considered to be most important for
the progress of the employed optimization method [5,
25, 27, 30, 39, 40]. It is most frequently encountered in
connection with the optimization of empirical objec-
tive functions, but has been equally successfully ap-
plied also to expensive optimization tasks in engineer-
ing design in which the objective function is not em-
pirical, but its evaluation is connected with intensive
computations [25]. In the context of computer-aided
search for new materials and chemicals optimal with
respect to certain properties, surrogate modelling can
be viewed as replacing real experiments with simulated
virtual experiments in a computer: such virtual ex-
periments are sometimes referred to as virtual screen-
ing [2].

Although surrogate modelling is a general opti-
mization approach (cf. its application in the context
of conventional optimization in [5]), it is most fre-
quently encountered in connection with evolutionary
algorithms. The reason is that in evolutionary opti-
mization, the approach leads to the approximation of
the landscape of the fitness function, i.e., to a method

that is known to be useful in general [19, 20, 29]. In evo-
lutionary algorithms, most important for the progress
of the method are on the one hand points that best in-
dicate the global optimum (typically through highest
values of the fitness function), on the other hand points
that most contribute to the diversity of the population.

In the context of evolutionary optimization, surro-
gate modelling has the following main steps:
(i) Collecting an initial set of points in which the ob-

jective function has already been empirically eval-
uated. This can be the first generation or several
first generations of the evolutionary algorithm, but
such points are frequently available in advance.

(ii) Approximating the objective function by a surro-
gate model, with the use of the set of all points in
which it has been empirically evaluated.

(iii) Running the evolutionary algorithm for a popu-
lation considerably larger than is the desired pop-
ulation size, with the empirical objective function
replaced by the surrogate model.

(iv) Forming the next generation of the desired size
as a subset of the large population obtained in
the preceding step that includes points most im-
portant according to considered criteria for the
progress of optimization (such as indication of glo-
bal optimum, diversity).

(v) Empirically evaluating the objective function in
all points that belong to the next generation of
the desired size, and returning to step (ii).
Actually, the above steps (ii)–(v) correspond to

only one possible strategy of surrogate modelling in
evolutionary optimization: the individual-based con-
trol, sometimes also referred to as pre-selection [40].
An alternative strategy to the steps (ii)–(v) is to run
the algorithm for only the desired population size, in-
terleaving one generation/several generations in which
the original objective function is empirically evaluated
with a certain number of generations in which the sur-
rogate model is evaluated. This is the generation-based
control of surrogate modelling in evolutionary opti-
mization.

For empirical objective functions, it is typical to be
highly nonlinear. Therefore, nonlinear regression mod-
els should be used as surrogate models. They can be
basically divided into two large groups according to
whether the set of functions among which the sur-
rogate model has to be chosen has an explicit finite
parametrization.

1. So far, mostly parametric models have been used
for surrogate modelling. From the point of view of
their role in this context and/or their overall im-
portance, the following kinds of parametric nonlin-
ear regression models are most worth mentioning:
(i) Multilayer feed-forward neural networks, more

precisely, the nonlinear mappings computed
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by such networks. Their attractiveness for non-
linear regression in general and for surrogate
modelling in particular [20] is due to their uni-
versal approximation capability, which actual-
ly means that linear spaces of functions com-
puted by certain families of multilayer feed-
forward neural networks are dense in some ge-
neral function spaces [18, 21, 26]. For exam-
ple, considering the most common represen-
tative of such networks – multilayer percep-
trons, the linear space formed by all functions
computed by the family of perceptrons with
one hidden layer and infinitely smooth acti-
vation functions is dense in the space Lp(µ)
of functions with the p-th power of absolute
value finitely integrable with respect to a fi-
nite measure µ, in the space C(X) of functions
continuous on a compact X, and in Sobolev
spaces generalizing Lp(µ) to functions that are
differentiable up to a given order. In the ap-
plication domain of catalytic materials, from
which the case study presented in Section 4 is
taken, nearly all examples of regression analy-
sis published since mid 1990s rely on multi-
layer feed-forward neural networks, typically
on multilayer perceptrons (Figure 1). In the
last edition of “Handbook of heterogeneous
catalysis”, more than 20 such examples are
listed, as well as several additional, based on
other kinds of such networks – radial basis
function networks and piecewise-linear neural
networks [16]. Therefore, these three kinds of
neural networks are now briefly recalled:
– Multilayer perceptrons (MLPs) can have

an arbitrary number of hidden layers, and
the basis functions of their linear space
of computed functions are constructed by
means of sigmoidal activation functions,
such as logistic sigmoid, hyperbolic tan-
gent, or arctangent [13, 43].

– Radial basis function (RBF) networks al-
ways have only one hidden layer, and the
basis functions of their space of computed
functions are radial, i.e., the function value
depends only on the distance of the vector
of input values from some centre, specific
to the function [7].

– Piecewise-linear neural networks are sim-
ply MLPs with piecewise-linear activation
functions. Their linear space of computed
functions is dense only in C(X), but on
the other hand, they allow a straightfor-
ward extraction of logical rules describing
the relationships between input and out-
put values of the network [15].

Fig. 1. Example MLP architecture with two hidden layers,
used in the case study presented in Section 4.

(ii) Support vector regression based on positive
semi-definite kernels [34, 36]. It is worth men-
tioning that they generalize the above recalled
RBF networks, and also the historically first
kind of nonlinear regression – polynomial re-
gression.

(iii) Gaussian process regression [28] is listed here
also due to a relationship to radial basis func-
tion networks, but most importantly due to
the fact that it has already been successfully
employed in surrogate modelling [6].

2. Nonparametric regression models are, in general,
more flexible than parametric models, but the flex-
ibility is typically paid for by more extensive com-
putations. Therefore, their importance has been
increasing only during the last two decades, fol-
lowing the increasing power of available comput-
ers [12, 14]. Nevertheless, there is one noteworthy
exception:
(v) Regression trees have been successfully used

already since the early 1980s [4]. They are ac-
tually a modification of a classification met-
hod, therefore the regression function is piece-
wise-constant. That property accounts for re-
latively low computational requirements of re-
gression trees, but also decreases their flexibil-
ity, otherwise the main advantage of nonpara-
metric methods.

3 Boosting regression models

Boosting is a method of improving classification ac-
curacy that consists in developing the classifier iter-
atively, and increasing the relative influence of the
training data that most contributed to errors in the
previous iterations on its development in the subse-
quent iterations [33]. The usefulness of boosting for
classification has incited its extension to regression [8].
Both for classification and for regression, the basic ap-
proach to increasing the relative influence of particular
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training data is re-sampling the training data accord-
ing to a distribution that gives them a higher probabil-
ity of occurrence. This is equivalent to re-weighting the
contributions of the individual training pairs (xj , yj),
with higher weights corresponding to higher values of
the error measure.

Since surrogate models are regression models, any
method for regression boosting (such as [8, 10, 35])
is suitable for them. In the following, the met-
hod AdaBoost.R2 will be explained in detail, pro-
posed in [8].

Similarly to other adaptive boosting methods, each
of the available pairs (x1, y1), . . . . . . , (xp, yp) of input
and output data is in the first iteration of
AdaBoost.R2 used exactly once. This corresponds to
re-sampling them according to the uniform probabil-
ity distribution P1 with P1(x1) = 1

p for j = 1, . . . , p.
In addition, the weighted average error of the 1st iter-
ation is set to zero, Ē1 = 0.

In the subsequent iterations (i ≥ 2), the following
sequence of steps is performed:

1. A sample (ξ1, η1), . . . , (ξp, ηp) is obtained through
re-sampling (x1, y1), . . . , (xp, yp) according to the
distribution Pi−1.

2. Using (ξ1, η1), . . . , (ξp, ηp) as training data, a re-
gression model Fi is constructed.

3. A [0,1]-valued squared error vector Ei of Fi with
respect to (x1, y1), . . . , (xp, yp) is calculated as

Ei = (Ei(1), . . . , Ei(p)) =

=
((Fi(x1)− y1)2, . . . , (Fi(xp)− yp)2)

maxk=1,...,p(Fi(xk)− yk)2
. (1)

4. The weighted average error of the i-th iteration is
calculated as

Ēi =
1
p

p∑

k=1

Pi(xk, yk)Ei(k). (2)

5. Provided Ēi < 0.5 , the probability distribution for
re-sampling (x1, y1), . . . , (xp, yp) is for k = 1, . . . , p
updated according to

Pi(xk, yk) =

=
Pi−1(xk, yk)

(
Ēi

1−Ēi

)(1−Ei(k))

∑p
i=1 Pi−1(xk, yk)

(
Ēi

1−Ēi

)(1−Ei(k))
. (3)

6. The boosting approximation in the i-th iteration is
set to the median of the approximations F1, . . . , Fi

with respect to the probability distribution
(

Ē1

1− Ē1
, . . . ,

Ēi

1− Ēi

)
. (4)

The errors used to asses the quality of the boost-
ing approximation are then called boosting errors, e.g.,
boosting MSE, or boosting MAE, where MSE refers to
the mean squared error between the computed and
measured values, whereas MAE refers to the mean
absolute error, i.e., to the mean Euclidean distance
between them. For simplicity, also the approximation
in the first iteration, F1, is called boosting approxima-
tion if boosting is performed, and the respective errors
are then called boosting errors, although boosting ac-
tually does not introduce any modifications in the first
iteration.

The above formulation of the method deals only
with the case Ēi < 0.5. For Ēi ≥ 0.5, the original
formulation of the method in [8] proposes to stop the
boosting. However, that is not allowed if the stopping
criterion should be based on an independent set of
validation data. Indeed, the calculation of Ēi does not
rely on any such independent data set, but it relies
solely on the data employed to construct the regres-
sion model. A possible alternative for the case Ēi ≥ 0.5
is reinitialization, i.e., proceeding as in the 1st itera-
tion [1].

In connection with using feed-forward neural net-
works as surrogate models, it is important to be aware
of the difference between the iterations of boosting
and the iterations of neural network training. Boost-
ing iterates on a higher level, one iteration of boosting
includes a complete training of an ANN, which can
proceed for many hundreds of iterations. Nevertheless,
both kinds of iterations are similar in the sense that
starting with some iteration, over-training is present.
Therefore, also over-training due to boosting can be
reduced through stopping in the iteration after which
the error for an independent set of data first time in-
creases. Moreover, cross-validation can be used to find
the iteration most appropriate for stopping.

4 Case study in materials science

The extension of surrogate modelling with boosting
will now be illustrated on a case study using data from
the investigation of catalytic materials for the high-
temperature synthesis of hydrocyanic acid. That in-
vestigation and its results have been recently described
in [24]. It has been performed through high-throughput
experiments in a circular 48-channel reactor. In most
of those experiments, the composition of the materials
was designed by means of a genetic algorithm devel-
oped specifically for heterogeneous catalysis [44]. More
precisely, the algorithm was running for 7 generations
of population size 92, and in addition 52 other cata-
lysts with manually designed composition were inves-
tigated. Consequently, data about altogether 696 cat-
alytic materials were gathered.
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The composition and preparation of the investi-
gated catalytic materials and the conditions in which
they had been tested have been in detail described
in [24]. Here, only the independent and dependent
variables are recalled, the latter corresponding to the
considered possible objective functions:

– independent variables: material used as support,
and proportions of the 10 metal additives Y, La,
Mo, Re, Ir, Ni, Pt, Zn, Ag, Au (an 11th metal, Zr,
was left out due to the fact that the proportions
of all active compounds sum up to 100 %);

– dependent variables, i.e., objective functions: con-
versions of CH4 and NH3, and yield of HCN.

As the surrogate model, MLPs were employed, in
accordance with their leading role among nonlinear
regression models in the area of catalytic ma-
terials [2, 16]. Each considered neural network had
14 input neurons: 4 of them coding the material used
as support, the other 10 corresponding to the propor-
tions of the 10 metal additives belonging to indepen-
dent variables; output neurons were 3, corresponding
to the possible objective functions (Figure 1).

The most appropriate MLP architectures were
searched by means of cross-validation, using only data
about catalysts from the 1.–6. generation of the ge-
netic algorithm and about the 52 catalysts with manu-
ally designed composition, thus altogether data about
604 catalytic materials. Data about catalysts from the
7. generation were completely excluded and left out
for validating the search results. To use as much in-
formation as possible from the available data, cross-
validation was applied as the extreme 604-fold vari-
ant, i.e., leave-1-out validation. The set of architec-
tures within which the search was performed was de-
limited by means of the heuristic pyramidal condition:
the number of neurons in a subsequent layer must not
increase the number of neurons in a previous layer.
Denote nI , nh and nO the numbers of input, hidden
and output neurons, respectively, and nH1 and nH2

the numbers of neurons in the first and second hid-
den layer, respectively. Then the pyramidal condition
reads:
(i) for MLPs with 1 hidden layer: nI ≥ nH ≥ nO, in

our case 14 ≥ nH ≥ 3 (12 architectures);
(ii) for MLPs with 2 hidden layers: nI ≥ nH1 ≥

nH2 ≥ nO, in our case 14 ≥ nH1 ≥ nH2 ≥ 3
(78 architectures).
To investigate the usefulness of boosting in our

case study, the same data were used and the same
set of architectures was considered as for architecture
search. In each iteration, a leave-1-out validation was
performed, in the way briefly outlined in the preceding
section: The mean squared error of the performance of
the catalytic materials serving in the individual folds

as test data was calculated, and averaged over all the
604 folds. The criterion according to which boosting is
considered useful to an architecture was: the average
boosting MSE in the 2nd iteration has to be lower than
in the 1st iteration. The iteration till which the aver-
age boosting MSE continuously decreased was then
taken as the final iteration of boosting.

According to that criterion, boosting was useful
to 9 from the 12 considered architectures with one
hidden layer and to 65 from the 78 considered archi-
tectures with two hidden layers. To validate the most
promising results of the investigation of the useful-
ness of boosting in our case study, the data from the
7th generation of the genetic algorithm were used. The
validation included the 5 architectures that were most
promising for boosting from the point of view of the
lowest boosting MSE on test data in the final iteration.
These were the architectures (14,10,6,3), (14,14,8,3),
(14,13,5,3), (14,10,4,3) and (14,11,3), for which the fi-
nal iterations of boosting were 32, 29, 31, 19 and 3, re-
spectively. For each of them, the validation proceeded
as follows:

1. In each iteration up to the final boosting iteration
corresponding to the respective architecture, a sin-
gle MLP was trained with data about the 604 cat-
alytic materials considered during the architecture
search.

2. Each of those MLPs was employed to approximate
the conversions of CH4 and NH3 and the yield of
HCN for the 92 materials from the 7. generation
of the genetic algorithm.

3. In each iteration, the medians with respect to the
probability distribution (4) of the approximations
of the two conversions and of the HCN yield ob-
tained up to that iteration were used as the boost-
ing approximations.

4. From the conversions and the yield predicted by
the boosting approximations, and from the mea-
sured values, the boosting MSE and MAE were
calculated for each MLP.

The boosting errors (MSE and MAE) are sum-
marized in Figure 2, whereas Figure 3 compares the
boosting approximations of the conversions of CH4

and NH3 and of the yield of HCN in the 1st and final
iteration with their measured values. The presented
results clearly confirm the usefulness of boosting for
the five considered architectures. For each of them,
boosting led to an overall decrease of both considered
error measures, the MSE and MAE, on new data from
the 7th generation of the genetic algorithm. Moreover,
the decrease of the MSE (which is the measure em-
ployed during the investigation of the usefulness of
boosting) is uninterrupted or nearly uninterrupted till
the final boosting iteration. On the other hand, the
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Fig. 2. History of the boosting MSE and MAE on the data
from the 7th generation of the genetic algorithm for MLPs
with the five architectures included in the validation of
boosting.

scatter plots in Figure 3 do not indicate any apparent
difference between the effect of boosting on the three
properties employed as catalyst performance measures
in our case study – conversion of CH4, conversion of
NH3, and yield of HCN. Hence, the performed valida-
tion confirms the usefulness of boosting irrespectively
of which of those performance measures is considered.

5 Conclusions

The paper dealt with surrogate modelling, a mod-
ern approach to the optimization of empirical objec-
tive functions, which is particularly attractive in evo-
lutionary optimization. It proposed to extend surro-
gate modelling with regression boosting, to increase
the accuracy of surrogate models, thus also the agree-
ment between results of surrogate modelling and re-
sults of the intended optimization of the original ob-
jective function. Needless to say, regression boosting
is not new, though it is less common than the popular
classification boosting. However, novel is its combina-
tion with surrogate models, which adds the advantage
of increased accuracy to the main advantage of sur-
rogate modelling – decreasing the time and costs of
optimization of empirical objective functions.

Theoretical principles of both surrogate modelling
and boosting are known, therefore the main purpose of
the reported research was to validate the feasibility of
the proposed extension of surrogate modelling on sev-
eral sufficiently complex case studies, one of which was
sketched in this paper. The presented case study re-
sults clearly confirm the usefulness of boosting. For the

five most promising architectures, boosting leads to
an overall decrease of both considered error measures,
MSE and MAE, on new data from the 7th generation
of the genetic algorithm. Moreover, the decrease of the
MSE (which is the boosting error employed during the
investigation of the usefulness of boosting) is uninter-
rupted or nearly uninterrupted till the final boosting
iteration. On the other hand, the scatter plots in Fig-
ure 3 do not indicate any apparent difference between
the effect of boosting on the three catalyst properties
considered as possible objective functions in our case
study – conversion of CH4, conversion of NH3, and
yield of HCN. Hence, the performed validation con-
firms the usefulness of boosting irrespectively of which
of these objective functions is selected.
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S. Kolf, U. Dingerdissen, D. Wolf, R. Weber, and
M. Bewersdorf: New catalytic materials for the
high-temperature synthesis of hydrocyanic acid from
methane and ammonia by high-throughput approach.
Applied Catalysis A: General 334, 2008, 73–83.

25. Y.S. Ong, P.B. Nair, A.J. Keane, and K.W. Wong:
Surrogate-assisted evolutionary optimization frame-
works for high-fidelity engineering design problems. In
Y. Jin, editor, Knowledge Incorporation in Evolution-
ary Computation, Springer Verlag, Berlin, 2005, 307–
331.

26. A. Pinkus: Approximation theory of the MPL model
in neural networks. Acta Numerica 8, 1998, 277–283.

27. K. Rasheed, X. Ni, and S. Vattam: Methods for using
surrogate modesl to speed up genetic algorithm oprim-
ization: Informed operators and genetic engineering.
In Y. Jin, editor, Knowledge Incorporation in Evolu-
tionary Computation, Springer Verlag, Berlin, 2005,
103–123.

28. E. Rasmussen and C. Williams: Gaussian Process for
Machine Learning. MIT Press, Cambridge, 2006.

29. A. Ratle: Accelerating the convergence of evolution-
ary algorithms by fitness landscape approximation. In
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Fig. 3. Comparison of the boosting approximations of the conversions of CH4 and NH3 and of the yield of HCN in the
1st and final iteration with their measured values for the 92 catalytic materials from the 7th generation of the genetic
algorithm.




