
Input combination for Monte Carlo Localization

David Obdržálek

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské náměst́ı 25, 118 00 Praha 1, Czech Republic

david.obdrzalek@mff.cuni.cz

Abstract. One of the basic skills for an autonomous ro-
bot is the ability to determine its own position. There are
numerous high-level systems which provide precise position
information, but the same task may be also solved using less
advanced and less accurate sensors. In our paper, we show
how a good output may be acquired from not so good inputs
if it is combined using modified Monte Carlo Localization
(MCL) system. The combination of more inputs also helps
to acquire plausible results even in situations, where adding
new sensor(s) to an existing system raises doubts about the
position calculation, because the newly added sensor may
provide different position information (or data from which
the position is calculated) than what is provided by the al-
ready used sensors. We will show that using such “incor-
rect” data may be beneficial for determining the position
with a reasonable probability.

1 Introduction

Good localization is for an autonomous robot one of
the keys to success. A robot which does not know its
position, or which gets lost while performing its task,
is not something what could be used in real life well.
For some tasks, localization can be quite simple, but
in general, the better autonomous robot we want, the
better (and usually more complicated) localization it
needs. Some systems use single input for the localiza-
tion task and do not need any complex mechanisms to
accomplish all needed goals. Other systems combine
more inputs (and more input types) to acquire data for
the localization process; it may be because of different
nature of the data which is available to be measured
for the localization as well as because different sensing
methods may help to overcome problems with erro-
neous data coming from individual sensors. However,
combining more inputs may at the same time rise ques-
tions about the preciseness of the localization process:
What went wrong if two or more inputs showed dif-
ferent positions? Is it because of faulty sensor, inex-
act measurement, cumulative errors or improper data
handling?

Recently, the research in the robot localization sta-
rted to bring very good results using probabilistic me-
thods. In this paper, we discuss this problem in gen-
eral, and we present one particular implementation
which uses Monte Carlo Localization (MCL).

The following text is organized as follows: Sec-
tion 2 gives characterization of the task and presents
the specifics of our selected problem. Section 3 gives
brief outline of existing localization techniques. Sec-
tion 4 presents Monte Carlo Localization in general,
Section 5 shows our modification to MCL by differ-
entiating between sensor classes and Section 6 shows
some implementation aspects. Sections 7 and 8 sum-
marize the results and conclude the paper.

2 Motivation and characterization of
the task

The goal of robot localization is to determine the po-
sition of the robot which moves through its working
environment. It may use data about the environment
and data about the robot, both using measured data
as well as data known in advance. To a great extent,
the localization algorithm itself can be application in-
dependent and the usage for specific purposes can vary
just by choosing different inputs.

Inputs for the localization system may come from
different sources: data may be acquired for example
using different sensors mounted on the robot (mea-
suring either internal or external properties), by re-
ceiving signals sent from external sources, or even cre-
ated as virtual data which does not represent any real
measurements (e.g. expected position change based on
commands issued by the control system). Because the
different sensors provide data with different level of ac-
curacy and trustworthiness, data should be also han-
dled with different weights.

The localization algorithm processes the selected
inputs to calculate the robot position. If the algorithm
itself does not depend on a specific type(s) of input
data, then it is possible to create a generic solution
which works with different (and configurable) sets of
sensors.

In this paper we present one possible solution of the
localization problem which has been tested on a real
robot. This robot was used to play in the Eurobot au-
tonomous robot contest in 2009 (see [1]). Although the
system was created for the 2009 edition of the contest,
it was designed so that it could be used without re-
programming for future editions too. Moreover, it was



46 David Obdržálek

designed to be independent on this particular task at
all and it may be reused in other projects with differ-
ent inputs as well.

The Eurobot contest rules change every year, but
they always share the same core of basic characteris-
tics (for more details, see the Eurobot Association web
pages at [1]):

– Known indoor environment with highlighted im-
portant landmarks

– Small working area (2.1 × 3 meters)
– Possibility to place localization beacons at prede-

fined places around the working area
– Target objects placed semi-randomly on the work-

ing area
– Predefined starting position of the robot
– Limited height and circumference of the robot
– Two robots moving in the area at the same time

with the necessity to avoid collisions

This list obviously affects the development of ro-
bot hardware and software. However, our aim was to
create a localization algorithm which is not that much
application dependent and can be used for other ap-
plications in different conditions too.

The exactly needed precision level is application
dependent and varies a lot from one application to an-
other. For the specific conditions it is however impor-
tant to maintain the precision in an acceptable range.
Therefore, our aim was to create a localization algo-
rithm which would be able to reach the required preci-
sion level even using less precise inputs. The precision
should not be predefined nor implied by the algorithm.

3 Localization algorithms

The area of autonomous robot localization is well re-
searched (see e.g. [2]), and several ways can be used
to solve the localization problem. Therefore we do not
try to invent a new algorithm. Instead, we will out-
line some existing localization algorithms and discuss
some of their implementation details, together with
technical problems we have met.

For localization based on various input values one
can choose from many algorithms; the most know are:

Kalman filter [3, 4] generalizes the floating mean. It
can handle noisy data so it is suitable for process-
ing the data from less precise sensors. However,
the model must be described with the expected
value and variability which is often too difficult
constraint.

Markov localization based on grid [5] resolves
one of the problems of Kalman filter, which needs
to know the expected value and the variance of in-
put data. This algorithm splits the area to the grid

of proper size and tries to determine the one the
robot is in. Unfortunately, this requires large oper-
ational memory to store the data and computing
power to handle it.

Monte-Carlo localization [6] can represent multi-
modal distribution and thus localize the robot glo-
bally. It can process inputs from many sensors with
different accuracies. Moreover, it can be easily im-
plemented.

For our given task, it is not possible to use standard
Kalman filter, because its basic requirements are not
met: in our case, the expected value and variance of
the measured values are not known.

The second mentioned localization algorithm, Mar-
kov grid-based localization, would overcome this prob-
lem, but would impose another problem at the same
time – the need to handle lot of data. The position of
a robot is specified as one cell in a grid covering the
whole working area. It is needed to store some data
for each grid cell, and to reach good precision level,
the grid must be fine. Our hardware platform provided
sufficient storage with reasonable power for processing
the navigation task and for controlling the hardware,
but including Markov localization would cause over-
loading of the system and the goal to create a success-
ful autonomous robot could not be reached: neither
the memory volume nor the computational power of
our hardware were strong enough to handle Markov
grid-based localization alone, not talking about com-
bining it with all the other needed tasks.

Therefore, we have decided to implement Monte-
Carlo localization and let it use the remaining resour-
ces in the system as long as it does not affect its func-
tionality. This also directly implied the selection of the
MCL parameters in the tuning phase – “eat as much
as you like as long as supply lasts”. At the same time,
we gained the possibility to use more different sensors
for the localization task.

The Monte-Carlo localization will be further dis-
cussed in Section 4 and our implementation in Sec-
tions 5 and 6.

4 General description of MCL

In this section we will briefly outline Monte Carlo Lo-
calization (MCL), introduced by Dieter Fox in the
late 1990s [6]. This algorithm meets all the require-
ments mentioned in problem statement section earlier
in this paper. It is a well defined and researched algo-
rithm and it is also well established in many applica-
tions (see e.g. [7–10]).

Monte Carlo Localization maintains a list of possi-
ble states of the state space (representing the positions
of the robot). Each state is weighted by its probability



Input combination for MCL 47

of correspondence with the actual state of the robot.
In the most common implementation, the state repre-
sents the coordinates in 2D Cartesian space and the
heading direction of the robot. It may be of course
easily extended to 3D space and/or contain more in-
formation depicting the robot state. All these possible
states compose the so called probability cloud.

The Monte Carlo Localization algorithm consists
of three phases: Prediction, Measurement, and Resam-
pling.

During the Prediction phase, a new value for each
item of the cloud is computed, resulting in a new prob-
ability cloud. To simulate various inaccuracies that
appear in a real hardware, random noise is added to
each position in the prediction phase. This is very use-
ful. For example: If the wheels were slipping and no
random noise was added, the probability cloud would
travel faster than the real hardware.

During the measurement phase, data from real sen-
sors are processed to adjust probability of the positions
in the cloud. The probability of samples with lesser
likelihood (according to sensors) is lowered and vice
versa. For example, when the sensors show the robot
orientation is northwards, weight for samples repre-
senting other orientations is lowered.

The last phase - resampling - manages size and cor-
rectness of the cloud. Samples with probability lower
than a given threshold are removed from the cloud. To
keep the number of positions constant, new positions
are added. These new positions are placed around ex-
isting positions with high probability.

Formally, the goal is to determine robot’s state in
step k, presuming the original state and all the mea-
surements Mk = {mi, i = 1..k} are known. Robot’s
state is given by a vector x = 〈x, y, α〉, where x and y
is the robot position and α is its heading.

During the prediction phase, the probability den-
sity p

(
xk | Mk

)
for step k is enumerated. It is based

only on presumed movement of the robot without any
input from real sensors. Therefore, for any known com-
mand uk−1 given to the robot, we have

p
(
xk | Mk−1

)
=

=
∫

p (xk | xk−1, uk−1) p
(
xk−1 | Mk−1

)
dxk−1

In the measurement phase, we will compute the fi-
nal value of probability density for actual step k. To
do so, data from sensors is used. It implies the proba-
bility of p (mk | xk), where mk is the actual state and
xk is the assumed position. The probability density in
step k is then described by the following equation:

p
(
xk | Mk

)
=

p (mk | xk) p
(
xk|Mk−1

)

p (mk|Mk−1)

During the initialization of MCL, it is needed to
set the probability cloud. If the robot’s position is
known, then for its (known) state x the probability
p

(
x | M0

)
= 1, and for all other states y 6= x the

probability p
(
y | M0

)
= 0.

If the robot’s position is not known, the probability
of all positions is the same and p

(
x | M0

)
must be set

for all x so that
∫

p
(
x | M0

)
dx = 1

One of the most important features of this method
is its ability to process data from more than one sour-
ce. Every sensor participates on computing the prob-
ability for the given state. For example, if we have
a compass sensor and it reads that the robot is head-
ing to the north, we can lower the probability of dif-
ferently oriented samples. If robot’s bumper signalizes
collision, there is a high probability for the robot to be
near a wall or another obstacle. It is therefore possible
to discard the part of the probability cloud which lies
in an open space.

The Monte Carlo Localization can be implemented
easily, yet it provides very good results especially in
cases, where the sensors do not provide exactly cor-
rect data (e.g. the distance measurement is subject to
errors). Our implementation of the MCL algorithm,
which shows its great usability, is described in more
detail in the following section.

5 Sensor classes in modified MCL

We have decided to modify the original MCL algo-
rithm and use sensor input also for the prediction
phase. We allow selected reliable sensors to change the
position of MCL samples in addition to changing the
weights of samples based on the sensor readouts. This
allows to maintain the probability cloud more in shape
with the actual robot movement, yet we keep the core
MCL idea of adding random noise to handle unex-
pected inputs or inputs which are not in accordance
to actual robot movement.

In our implementation, we divide the inputs com-
ing from sensors in two categories, which will be fur-
ther discussed in following paragraphs:

– Advancing inputs
– Checking inputs

Our system contains two interfaces for these two
types of inputs. The device or its abstraction in Hard-
ware Abstraction Layer implements the corresponding
interface based on its type, so the MCL core can use it
as its input. The MCL core calls each device when it
has new data, and the work with the samples is done



48 David Obdržálek

by each device separately. This keeps the main code
easier to read, simpler, and input independent. Also,
the device itself knows the best how to interpret the
raw data it measures.

The level of reliability can be specified for each
input device. Then, the samples are adjusted by the
devices with respect to their configured ‘credibilities’.
For example: two sets of odometry encoders, one pair
on driven wheels and one pair on dedicated wheels,
have different accuracy because the driven wheels may
slip on the surface when too much power is used. Then,
the credibility of driven wheels encoders will be set
lower than the credibility of the sensors mounted on
undriven wheels. In addition, setting the reliability
level helps to deal with different frequencies of data
sampling.

5.1 Advancing inputs

This input type is used for changing the samples which
form the probability cloud. Such input could be for ex-
ample odometry, from which relative movement since
last iteration is calculated. This difference is then used
to change the samples properties. i.e. to move them.
The information provided by these kind of inputs ap-
plied to samples is ‘blurred’ by randomly generated
noise as described earlier in the general MCL descrip-
tion. After moving the samples, boundary conditions
are checked (i.e. to exclude samples which fell out of
the physical working area). As a result the probabil-
ity of samples representing impossible positions is de-
creased.

These advancing inputs are added to the origi-
nal MCL algorithm, which deals only with theoret-
ical movement based on movement commands. It is
not necessary to use it so, but it brings much better
precision for little cost.

Our robot currently uses only one advancing input:
the odometry information from encoders mounted on
dedicated sensor wheels.

5.2 Checking inputs

Checking inputs do not affect the position of the sam-
ples. Instead, they are just adjusting their probabil-
ity (also called sample weights). The reason for this
is that inputs of this type provide absolute position
information and not relative difference from the last
measurement. This also does not need to be one exact
point, but an area or position probability distribution,
which fits perfectly to the Monte Carlo Localization
algorithm.

All checking inputs may be processed separately;
we regulate them only by setting their reliability levels.

Our robot uses these checking inputs:

– Compass - checks the direction of samples
– Beacons - check the distance from stationary bea-

cons
– Bumpers - check collisions with playing field bor-

ders and other objects
– IR distance sensors - check distance to borders and

obstacles

6 Implementation aspects

Our implementation of MCL is based on previous work
on a robot which participated in Eurobot 2008 con-
test (see [11]). That first “pilot” MCL implementa-
tion in 2008 was not complete; it was rather proof-
of-concept than a reliable software unit, and we also
knew the computational power will be different if 2009
so performance was not considered at all. However,
the results seemed very promising, so it has not been
dropped but has been further developed and extended
to use it in 2009 for real. In the following paragraphs,
we emphasize several implementation aspects we con-
sider as important for the successful result.

6.1 Position estimation

It is expected that the MCL outputs the estimation
of robot position. Because of its nature, the result-
ing position (“most probable position”) can be com-
puted from the samples at any time. This estimation
is very simple, just computing the weighted average of
all samples. In addition we can determine the overall
reliability of this estimation. Therefore, we have made
the interface to the MCL asynchronous to the inputs,
and the MCL core can be called at any time whenever
needed. This approach obviously dramatically saves
the computational power in comparison to incremen-
tal localization methods which might need periodical
updates or re-calculations.

6.2 Localization without initial knowledge

Monte Carlo Localization can also determine the robot
position from scratch. At the beginning of localization
(when the robot is lost) samples are spread uniformly
all over the playing field as described in Section 4.
The sensors providing absolute positioning informa-
tion lower the weight of misplaced samples and new
samples are placed in regions with higher probability
(see Figure 2). This is repeated until sufficiently reli-
able position estimation of the robot is reached.

At the same time, it is possible to reach a result
even without absolute sensors – as the robot moves,
the sensors which provide relative information (ad-
vancing inputs) will move the samples as usually and



Input combination for MCL 49

Intersection

B1

B2

B3

2

1

3

dt1

dt2

dt3

Fig. 1. Beaconing system; B1, B2, B3 are the beacons, and the robot (marked by grey circle) measured distances dt1,
dt2, dt3 from individual beacons.

Fig. 2. MCL after processing one beacon input: The circular belt marks the input from the bottom left beacon. The
“pins” represent oriented MCL samples; sample probability is proportional to their darkness.



50 David Obdržálek

the boundary checks gradually cut the impossible con-
figurations until the required precision is reached
(e.g. only one and small cloud remains).

6.3 Adding / removing sensors

When new sensors are added to a system, the infor-
mation they provide may affect the position the robot
“thinks” it is in. It may be because the new sensor
gives better data (in which case we certainly appre-
ciate the change). On contrary, the new sensor could
provide data with lesser quality then the already exist-
ing sensors. This is not a big problem in MCL, because
such low quality data may change the samples prop-
erties (position) or weight, but because of the nature
how MCL works, such change may be perceived as
adding the random noise which is part of MCL any-
way. So, it may even help the algorithm to work well.
It could be said in general – the more different inputs,
the better.

If we remove a sensor from the robot or if it stops
providing data and there are other sensors available, it
does not imply the MCL results will be worse. It means
there are fewer inputs which adjust the samples or
their weights but the remaining sensors will adapt the
probability cloud in accordance to their inputs and so
sufficient level of result preciseness can be maintained.
Therefore, the system is less vulnerable than a system
which relies during the localization on one sensor or
sensor set.

6.4 Beacons

In the following paragraphs, we present our design of
a sensor set which provides relatively good information
about the robot position and in cooperation with other
sensors it helps to create a robust localization system
– the beacon system.

The main idea of this beacon system is to mount
several beacons around the working area of the ro-
bot and let the robot measure the distance to these
beacons. Then, the robot will be able to estimate its
position because the beacons position is known. This
sensor set provides absolute position information, but
its correctness may be attacked by the environment
features, as for example the signal may get reflected
by close obstacles like walls or the robot could not be
able to measure the distance to one beacon because
the signal may get lost (or get blocked by an obsta-
cle).

The principle In our system, we measure the time
the signal travels from the transmitter at the beacon
to the receiver mounted on the robot (TOF – Time
of Flight). Of course this works only if the speed is

constant. This condition is met as we are using ultra-
sonic waves in a small environment with more or less
constant conditions and the robot speed is negligible.

Since the speed of the sound waves is known, we
can measure the time difference, from which the dis-
tance may be easily calculated. It is possible to use two
beacons for good position calculation (provided the
measurements are precise and we know at which half-
plane the robot is). If there 3 or more beacons located
around the working area, the trilateration will theoret-
ically give a single solution. Practically, the measure-
ments may not be precise and so the calculation may
not lead to any intersection of the circles. In our sys-
tem, this is not a problem, because the measurements
are not used for trilateration but handled separately
to adapt the probability cloud used in MCL.

To correctly measure the traveling time, we syn-
chronize the transmitter-receiver system by using in-
frared light (see below).

Many other systems based on the TOF principle
have been developed; for examples see e.g. [12, 13].

Hardware The transmitting system consists of three
stationary interconnected beacons located at specified
places around the working area of the robot. When
the system receives signals from the three beacons and
calculates the three distances, it can theoretically de-
termine its position by using trilateration. In praxis,
such simplest form does not fully work. The robot may
move between receiving signals from all the beacons,
some signals may not be received or they may provide
incorrect information because of reflections. Even that,
good estimation may be acquired as was discussed in
Section 6.

The signal is sent one-way only, the receivers do not
communicate with the transmitters. Therefore, there
can be multiple independent identical receivers, which
are able to determine its individual positions. These
receivers may be then used for localizing more objects
and if the information is passed to a single center,
it may be of substantial help (for example to create
opponent avoidance system by placing one receiver on
the opponent and reading it by wireless transfer).

Transmitters at each beacon work in the following
way:

1. Send timing information (infrared)
2. Wait for a defined period of time
3. Send distance measuring information (ultrasonic)
4. Wait for a defined period of time

(this is sequentially repeated for all beacons)

As we want to measure time difference between the
signal being sent and received, we need to have syn-



Input combination for MCL 51

chronized clocks. This is done in step 1 by using in-
frared modulated signals. Besides that, the transmit-
ted information contains additional information about
the beacon which is going to transmit sound waves.

Sound waves are transmitted as ultrasonic waves,
and are always transmitted only from one beacon at
a time. The transmitted signal contains also the iden-
tification of the source beacon.

Receiver waits for the infrared timing information.
When it is received, the receiver resynchronizes its in-
ternal timer and generates a message. These messages
are transported to the localization unit. Every mes-
sage contains time stamp, information that synchro-
nization occurred, and the information about beacon
which is going to transmit ultrasonic information in
this time step. Upon reception of the timing infor-
mation, the receiver switches its state to wait for ul-
trasonic signal. When correct ultrasonic information
arrives, the receiver generates similar message as is
the message after IR reception, but containing time
stamp for ultrasonic reception and beacon identifica-
tion transmitted in the ultrasonic data. The differ-
ence in these two timestamps is linearly dependent
to distance with a constant offset (the two signals are
not transmitted exactly at the same time). Since each
beacon identifies itself in both infrared and ultrasonic
transmissions, the probability of mismatch is reduced.

When the infrared information is not received,
a message is generated saying the synchronization did
not occur and the timestamp is generated from previ-
ously synchronized internal clock. When the ultrasonic
information is not received, localization unit is notified
that nothing was received.

The situation after three successfully received ul-
trasonic signals with synchronized clock can be seen
in Figure 1.

6.5 Beacons and MCL

As described earlier, our beacon system consists of
three transmitting and one receiving beacons. The in-
formation is passed from the beacon system to the
main computing unit via messages containing beacon
id (i.e. transmitter identification) and time difference
between the infrared and ultrasonic transmissions.

There are two reasons why each message contains
the time difference (delta) instead of the calculated
distance: computational power of the microcontroller
and the degree of robustness. The main computing
unit is more powerful than the receiving beacon, so
we let the beacon do less work and we even bene-
fit from this decision. We considered deltas to be the
perfect raw data for our purpose - distance measure-
ment. The computation is done in the main computing

unit which controls all the other devices and is highly
configurable. It means that all the parameters of the
equation for distance calculation can be changed easily
without the need of changing the beacons hardware or
device firmware. It even allows us to calculate or adjust
the parameters on the flight if distance information is
provided based on external measurement.

The configuration of the main computing unit con-
tains not only the important constants for the equa-
tion, but also the positions of the transmitting bea-
cons. As we know the distance and the beacon id, we
can increase the weights of the MCL samples in the
circular belt formed by these two values and a range
constant. MCL samples far from the belt are penalized
(see Figure 2).

This approach is much better and more robust
than just waiting for intersections and then computing
the robot position using simple trilateration. These in-
tersections may not happen very often because of the
time gap between individual beacon transmissions (es-
pecially when the robot is moving fast). At the same
time, it is good to implement different weighting for
the samples on a belt, near an intersection of two belts
and near the intersection of all three belts.

6.6 Camera

The idea of using camera for absolute robot position-
ing seemed very hard at the first time. Later, when
we had the modular MCL implementation finished,
we realized there is a great opportunity to use the
information we get from the camera while looking for
the playing elements positioned at predefined places of
the playing area. Now, we can compare the playing el-
ement positions (acquired from the camera) with their
fixed positions (defined by the Eurobot contest rules)
and adjust the weight of the MCL samples to merge
the two positions. For more details, see [14].

6.7 Gyroscope

In the early stages of robot design, we proposed to use
a compass as one of the input sensors. However, using
a compass in a small indoor competition is not a very
good idea, because its precision can be degraded by in-
fluence of many factors (e.g. huge metallic cupboard,
electromagnetism, steel concrete walls or metal struc-
ture building). Using a gyroscope instead of a compass
would be much more efficient for our purposes, be-
cause gyroscope works completely independently and
the influence of the environment is minimal. The only
problem is the placement of the gyroscope itself, be-
cause it should be placed in the rotational axis of the
robot.



52 David Obdržálek

7 The results and performance

Apparently, processing of a large number of MCL sam-
ples may have impact on performance of the whole
localization system. In general, the more samples are
taken into computation, the more precise the localiza-
tion is, but the slower the computation is.

In our project, we have achieved acceptable speed
using 400 samples. The acquired precision lies within
a margin of single millimeters which is sufficient for
the current task; should higher precision be needed,
it could be easily reached by increasing the samples
count and fine-tuning the weighting functions. Also,
this number of samples and the resulting precision are
independent on the working area size.

On contrary, the Markov grid-based localization
requires to handle a grid with the size of the robot
working area and the number of cells proportional to
required precision. In the case of Eurobot contest, to
reach the same precision we would need to handle a
grid of 2100 x 3000 samples which is magnitudes higher
than the 400 samples needed when using MCL.

The depicted modification of using sensors for the
prediction phase instead of using just the information
of expected robot movement has increased the preci-
sion too, as it takes into account not only where the
robot was supposed to move, but where it actually
moved. To be able to use sensors for this modification,
it is needed to assure their good credibility. For our
real robot, we have used odometry sensors mounted
on dedicated wheels, which are not subject to skids
and slides of the powered wheels. It has proven this is
sufficient to reach a good level of precision.

8 Conclusion and future work

In our paper, we have described the advantages of the
Monte Carlo Localization compared to other methods
of position estimation and how we benefit of it in our
implementation. Based on available sensor types, we
have decided to adapt the MCL algorithm to use one
sensor class to change the samples instead of using all
sensors to change the sample weights only.

As a practical result, we have developed a mod-
ular system for robot localization which allows easy
extension by different kinds of modules. Our imple-
mentation allows us to add more facilities with almost
no or just minimal work effort and with no changes to
the core localization itself at all, while increasing the
precision of the resulting position. The created system
was successfully used for Eurobot 2009 contest edition,
and its design allows using it for other purposes too.

Because the system has been created for 2009 edi-
tion of Eurobot contest, we want to continue gather-
ing testing data throughout the whole year of 2009 in

the contest and all connected events when the working
conditions for the robot remain unchanged. After fin-
ishing the year, we want to evaluate the performance
of this MCL implementation to be able to judge its us-
age in other environments and with other hardware.

References

1. Eurobot Association: Eurobot autonomous robot con-
test: http://www.eurobot.org, 2009.

2. S. Thrun: Robotic mapping: a survey. In: Exploring
artificial intelligence in the new millennium. Morgan
Kaufmann Publishers Inc., 2003, 1–35.

3. R. Negenborn: Robot localisation and kalman filters:
On finding your position in a noisy world. Master’s
thesis, Utrecht University, 2003.

4. G. Welch, G. Bishop: An introduction to the Kalman
filter. Technical Report TR 95-041, University of
North Carolina at Chapel Hill, 2004.

5. W. Burgard, A. Derr, D. Fox, A.B. Cremers: Integrat-
ing global position estimation and position tracking for
mobile robots: The dynamic Markov localization ap-
proach. In: Proc. of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).,
1998.

6. F. Dellaert, D. Fox, W. Burgard, S. Thrun: Monte
Carlo localization for mobile robots. In: Proc. of the
IEEE International Conference on Robotics & Au-
tomation (ICRA99), 1998.

7. E. Menegatti, M. Zoccarato, E. Pagello, H. Ishiguro:
Image-based Monte-Carlo localisation with omnidirec-
tional images. Robotics and Autonomous Systems 48,
2004, 17–30.

8. D. Hähnel, W. Burgard: Mapping and localization with
rfid technology. In: Proc. of the IEEE International
Conference on Robotics & Automation (ICRA05),
2004, 1015–1020.

9. O. Wulf, M. Khalaf-Allah, B. Wagner: Using 3D data
for Monte Carlo localization in complex indoor envi-
ronments. In: 2nd Bi-Annual European Conference on
Mobile Robots (ECMR05), 2005, 170–175.

10. S. Lenser, M. Veloso: Sensor resetting localization for
poorly modelled mobile robots. In: Proc. of the IEEE
International Conference on Robotics & Automation
(ICRA00), 2000.

11. A. Mikulik, D. Obdrzalek, T. Petrusek, S. Basovnik,
M. Dekar, P. Jusko, R. Pechal, R. Pitak: Logion –
a robot which collects rocks. In: Proceedings of the
EUROBOT Conference 2008, 276–287.

12. S.Y. Yi: Global ultrasonic system with selective acti-
vation for autonomous navigation of an indoor mobile
robot. Robotica 26, 3, 2008, 277–283.

13. L. Dazhai, F.H. Fu, W. Wei: Ultrasonic based au-
tonomous docking on plane for mobile robot. In: IEEE
International Conference on Automation and Logistics
(ICAL 2008), 2008, 1396–1401.

14. S. Basovnik, L. Mach, A. Mikulik, D. Obdrzalek: De-
tecting scene elements using maximally stable colour
regions. In: Proceedings of the EUROBOT Conference
2009.




