
Improved rate upper bound of collision
resistant compression functions

Richard Ostertág?

Department of Computer Science, Faculty of Mathematics, Physics and Informatics,
Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic

ostertag@dcs.fmph.uniba.sk
http://www.dcs.fmph.uniba.sk

Abstract. Based on Stanek’s results [1] we know that in
model with integer rate PGV like compression functions no
high speed collision resistant compression functions exist.
Thus we try to study more general multiple block ciphers
based model of compression functions with rational rate,
like 6/5. We show a new upper bound of the rate of collision
resistant compression functions in this model.

1 Motivation and goals

The cryptographic hash functions are a basic building
block of many other cryptographic constructions (such
as digital signature schemes, message authentication
code, . . .). For more complete overview see e.g. [2, 3].

Majority of modern hash functions is based on
Merkle-Damgård paradigm [4, 5]. Many compression
functions are explicitly based on block cipher. Even
some of “dedicated” hash functions (which were not
constructed in this way) have this structure. For ex-
ample, it is possible to extract 160 bits block cipher
with 512 bits key (called SHACAL-1) from compres-
sion function implemented in SHA-1 hash function [6].

The idea of hash function construction by iterating
block cipher is at least 30 years old [7]. Nevertheless no
systematic analysis of this idea was done until 1994.
In this year Preneel, Govaerts and Vandewalle done
the first systematic study of 64 hash functions based
on block cipher [8]. Thereafter Black, Rogaway and
Shrimpton [9] analyzed these constructions in black-
box model and showed that 20 of them are collision
resistant up to birthday-attack bound.

At least from the usability point of view, speed
is important property of hash function. So it is only
natural to attempt to speedups it. One of possible
speedups of iterated hash functions based on block ci-
phers is increasing the number of input message blocks
processed by one use of block cipher. Another possibil-
ity of speedup is a restriction of keys used in all block
ciphers to a small fixed set of keys. Then it is possible
to pre-schedule subkeys for each round of used block
ciphers, whereby saving a big amount of work.

? Supported by VEGA grant No. 1/0266/09.

Traditional constructions [8] of hash functions re-
quire one block cipher transformation per input mes-
sage block (so called rate-1 hash functions) and they
require rekeying for every input message block. Black,
Cochran and Shrimpton [10] showed in year 2005 that
it is not possible to construct a provably secure rate-1
iterated hash function based on block cipher, which
uses only small fixed set of keys.

For these reasons our goal is to maximize rate of
iterated hash function based on block cipher. In other
words, we attempt to maximize the number of input
message blocks processed by a single block cipher in-
vocation.

2 Notation

We now briefly introduce basic definitions and nota-
tions, following closely [10, 9].

Let Vm be set of all m-ary binary vectors, i.e. Vm =
{0, 1}m. Let V ∗

m = (Vm)∗ be set of all binary strings
that we get by concatenation of zero or more elements
from Vm. Let k and n be positive integers. A block
cipher is a function E : Vk × Vn → Vn, where for
each key K ∈ Vk, the function EK(·) = E(K, ·) is
a permutation on Vn. Let Bloc(k, n) be the set of all
block ciphers E : Vk × Vn → Vn. Let denote E−1 the
inverse of block cipher E.

A block cipher based compression function is
a function f : Bloc(k, n)×Va×Vb → Vc, where a, b and
c are positive integers such that a+b ≥ c. We will write
the first argument (the block cipher) as superscript of
the compression function, i.e. fE(·, ·) = f(E, ·, ·). An
iterated hash function based on compression function
f : Bloc(k, n) × Va × Vb → Va is the hash function
H : Bloc(k, n)×V ∗

b → Va defined by HE(m1 . . . ml) =
hl, where hi = fE(hi−1,mi) and h0 is fixed element
from Va (so called initialization vector). Let HE(ε) =
h0 for empty string ε. We often omit superscript E
of functions f and H when it is apparent from the
context which block cipher is used.

If the computation of fE(h, m) uses t queries on E,
then compression function f (and its iterated hash
function H) is rate-r, where r = (b/n)/t. Often b is

54 Richard Ostertág

divisible by n. The rate r represents average number
of input message blocks processed by a single enci-
phering transformation E. For example, if b/n = 3
and t = 2 then we get rate- 32 compression function.

2.1 Black-box model

Black-box model (see e.g. [9]) is also known as ideal-
cipher model. In this model, an adversary A is given
access to oracles E and E−1, where E is a block ci-
pher. We write the oracles as superscripts, i.e. AE,E−1

.
Where used oracles are clear from the context, the su-
perscript of A will be omitted.

Adversary A tries to find collisions in the com-
pression function. Other cryptographic properties of
compression functions are also important, but we fo-
cus exclusively on collision resistance, as on the most
“problematic” property of compression functions. We
will see that our results are negative, so it is not nec-
essary to analyze other properties.

In the black-box model the adversary’s collision
finding effort is measured by the number of queries
made to oracles E and E−1. Computational power of
the adversary is not limited in any way — i.e. we as-
sume information-theoretic adversary.

Attacks in this model treat the block cipher as
a black-box. The only modeled structural property of
the block cipher is its invertibility. This model can-
not guarantee security of compression functions based
on weak block ciphers with inappropriate properties
(such as weak keys). On the other hand, black-box
model is stronger than model in which block cipher
is assumed to be random function, because adversary
can compute E−1.

We say that inputs (h,m) and (h′,m′) of com-
pression function f collide, if they are distinct and
fE(h,m) = fE(h′,m′). We say that (h,m) collides
with empty string, if fE(h,m) = h0, where h0 is ini-
tialization vector.

We write random draw of element x from finite
set S as x

$←− S. We will use notation (x, y) ← AE,E−1

for computation of two colliding inputs x and y by
adversary A (represented by probabilistic algorithm)
with knowledge of oracles E and E−1.

Definition 1 (Coll. res. of comp. function [9]).
Let f be block cipher based compression function, f :
Bloc(k, n)×Va×Vb → Vc. Fix a constant h0 ∈ Vc and
an adversary A. Then the advantage of adversary A
(denoted by Advcomp

f (A)) in finding collisions in com-
pression function f is the following probability:

Pr
[
E

$←− Bloc(k, n);
(
(h, m), (h′,m′)

) ← AE,E−1
:

(
(h,m) 6= (h′,m′) ∧ fE(h,m) = fE(h′,m′)

)

∨ fE(h,m) = h0

]
.

For any q ≥ 0 we write:

Advcomp
f (q) = max

A
{Advcomp

f (A)}

where the maximum is taken over all adversaries that
ask oracles (E or E−1) at most q queries.

Definition 2 (Collision resistance of hash func-
tion [9]). Let H be hash function based on block ci-
pher. Let A be an adversary. Then the advantage of the
adversary A in finding collisions in hash function H
is the following probability:

Advcoll
H (A) = Pr

[
E

$←− Bloc(k, n); (M, M ′)←AE,E−1
:

M 6= M ′ ∧HE(M) = HE(M ′)
]

.

For any q ≥ 0 we write:

Advcoll
H (q) = max

A
{Advcoll

H (A)}

where the maximum is taken over all adversaries that
ask oracles (E or E−1) at most q queries.

The Merkle-Damgård construction of iterated hash
functions is based on the following theorem. It states
that iterated hash function is collision resistant if un-
derlying compression function is collision resistant.

Theorem 1 (Merkle-Damgård [4, 5]).
Let f : Bloc(k, n) × Vn × Vn → Vn be a compression
function and let H be an iterated hash function of f .
Then Advcoll

H (q) ≤ Advcomp
f (q) for any q ≥ 1.

Birth-day attack is generic way of attacking colli-
sion resistance of any compression or hash function.
The advantage of finding collision by applying birth-
day attack is Θ(q2/2n), where q is number of evalua-
tion of the function and n is output length.

If q depends on n, then we assume that q(n) =
o(2n/2), because greater q(n) does not make sense, as
we can still use generic birth-day attack with lower
q(n) = 2n/2 with unacceptably high probability (≈1/2)
of finding collision.

Compression function f (or hash function H) is
usually called collision resistant up to birthday attack
bound or simply collision resistant if Advcomp

f (q) =
O(q2/2n) (or Advcoll

H (q) = O(q2/2n)). Since birth-day
attack is always possible, we can rewrite these equa-
tions into equivalent form Advcomp

f (q) = Θ(q2/2n) (or
Advcoll

H (q) = Θ(q2/2n)).

3 Known results

In [11] we have proposed a model of rate-r compression
functions that cover all compression functions that

Improved rate upper bound of collision . . . 55

process r input message blocks of length n per block
cipher invocation with a key of length k. In that paper
we have showed that 1 + k/n is the upper bound of
rate of any collision resistant compression function in
such a model.

For typical constructions, when k = n, we get
that if any high-rate collision resistant function in our
model exists, then it is rate-2 compression function.

Consequently we have analyzed in [11] all rate-2
generalizations of compression functions from [8] (all
of them are covered by our model). We have proved
that none of them is collision resistant in the black-
box model. Staneková and Stanek showed in [12] that
either hash functions constructed from them are not
collision resistant.

But these functions does not cover whole set of
rate-2 compression functions from our model. Hence
the question, if there exist any rate-2 collision resistant
compression function still remains open.

This question is answered by Stanek in [1], where
he improves our upper bound by utilizing the possi-
bility of asking q queries during the attack (before the
adversary ask only one query).

Theorem 2 (Stanek [1]). Let E ∈ Bloc(k, n). Let
fX : Va × Vrn → Vn, fK : Va × Vrn → Vk and fC :
Va × Vrn × Vn → Va be arbitrary functions. Let f :
Va × Vrn → Va be compression function defined by
f(h,m) = fC

(
h, m,EfK(h,m)(fX(h,m))

)
. Let q ≥ 1

denote maximum number of queries on E and E−1.
Let r > 1 + k−log2 q

n . Then Advcomp
f (q) = 1.

By substituting q = n, a = n and k = n into theo-
rem 2 we get upper bound for rate r in the following
form r > 2− log2 n

n . If we take into account that in our
model rate r is always an integer, then we get following
corollary of previous theorem.

Corollary 1 (Stanek [1]). Let E ∈ Bloc(n, n). Let
fX : Vn × Vrn → Vn, fK : Vn × Vrn → Vn and fC :
Vn×Vrn×Vn → Vn be arbitrary functions. Let function
f : Vn×Vrn → Vn be a compression function defined by
f(h,m) = fC

(
h,m, EfK(h,m)(fX(h,m))

)
. Let r > 1.

Then f is not collision resistant in black-box model.

Now our result about nonexistence of rate-2 col-
lision resistant PGV-like compression functions
from [11] follows from corollary 1. But the attack based
on theorem 2 has exponential time complexity (and
asks n oracle queries, even if it is not necessary).
Therefore our attacks from [11] constructed specifi-
cally for rate-2 PGV-like compression and hash func-
tions are still justified as they use only polynomial
time and ask at most two queries.

Until now we have not modeled any compression
function which uses more block ciphers per one com-
pression function computation. For example:

f(h,m) = fC
(
h,m,E1

(
fK
1 (h,m), fX

1 (h,m)
)
,

E2

(
fK
2 (h,m), fX

2 (h,m)
))

.

If m is created from four input message blocks,
then this will be rate-2 compression function but is
not covered by model from [11]. Also using of mul-
tiple block ciphers allows compression functions with
rational rate. For example, if m is created from three
input message blocks, then we get rate- 32 compression
function. Therefore we have concentrated on creation
of new more general model.

4 The generalized model of
compression function

A compression function f based on t block ciphers1
is function defined by f : Bloc(k, n)t × Va × Vb →
Vc, where a, b and c are positive integers such that
a + b ≥ c. When we will need to emphasize number of
used block ciphers t, then we will write t as superscript
of compression function, i.e. f t. Iterated hash function
based on compression function f : Bloc(k, n)t × Va ×
Vb → Va is function H : Bloc(k, n)t × V ∗

b → Va de-
fined by H((E1, . . . , Et),m1 . . . ml) = hl, where hi =
f((E1, . . . , Et), hi−1,mi) and h0 is fixed element from
Va. We define H((E1, . . . , Et), ε) to be equal to h0. If
block ciphers used in functions f and H are clear from
the context, then we will omit them as arguments of
these functions.

Now we will start to define the general model of
compression function f t : Bloc(k, n)t × Va × Vb → Va

based on t block ciphers. Model is based on following
assumptions:

– Computation of compression function f t asks ex-
actly one query on each oracle Ei for the purpose
of evaluation of f t(h,m).
This assumption is without loss of the generality.
We do not assume that in practice all E1, . . . , Et

are distinct, but the model allows it. If for com-
putation of function f t we need to evaluate Ei,
e.g. two times, then we can set Et+1 = Ei and
use function f t+1 defined analogically as f t but
with the only exception, that in place of second
evaluation of Ei evaluation of Et+1 will be used.

1 As we will clarify in following paragraph, it is important
that t queries on oracles are made during each evaluation
of compression function f . It does not matter, if the
same block cipher is invoked t times, or if t different
block ciphers are invoked exactly once. Hence some of
t block ciphers can be equal.

56 Richard Ostertág

Analogically, it does not make sense to specify
block cipher Ei if it is not used during any cal-
culation of compression function f .
This assumption about f t guarantees that every
computation of f t always asks exactly t queries
on oracles.

– Computation of compression function f t asks or-
acles Ei in order of their indexes2. Thus we can
assume that evaluation of block cipher Ei had to
occur before evaluation of Ei+1.

– The length of input message block mi of compres-
sion function does not have to be divisible by block
cipher E plain text block length n.

In following text we will often work with sequences,
therefore we now clarify some necessary notation.

Definition 3. Empty sequence will be denoted by ().
We will write (a1, a2, . . . , an) for a sequence with n el-
ements a1, a2, . . ., an. Sequences will be denoted by
upper case letters with a overscore, for example Y .
For addition of element an+1 at the end of a sequence
(a1, a2, . . . , an) we will use operation “ ·” in the follow-
ing way: (a1, a2, . . . , an)·an+1 = (a1, a2, . . . , an, an+1).

Let for all i ∈ {1, 2, . . . , t} fX
i : Va×Vb×V i−1

n → Vn

and fK
i : Va× Vb× V i−1

n → Vk be arbitrary functions.
Let fC : Va×Vb×V t

n → Va be arbitrary function. Com-
putation of compression function f t : Bloc(k, n)t ×
Va × Vb → Va in generalized model is defined by the
following algorithm 1.

Algorithm 1 The gen. model of compression function
1: function f((E1, . . . , Et); h; m)
2: Y 0 = ()
3: for i = 1 to t do
4: Xi ← fX

i (h, m, Y i−1)
5: Ki ← fK

i (h, m, Y i−1)
6: Yi ← Ei(Ki, Xi)
7: Y i ← Y i−1 · Yi

8: end for
9: return fC(h, m, Y t)
10: end function

Remark 1. Function fX
i , respective function fK

i pre-
pares the plain text, respective the key for the block
cipher Ei. Both inputs h and m are arguments of these
functions together with all already computed cipher
texts Y1, Y2, . . . , Yi−1. At the end of the algorithm,

2 Requirement of fixed evaluation order of block ciphers
is not so restrictive as it can seem. We can simulate
compression function with variable evaluation order of
t block ciphers by compression function with fixed eval-
uation order of t2 block ciphers. See e.g. discussion at
the end of section 2 in [13].

function fC processes both inputs h and m with all in-
termediate results Y1, Y2, . . . , Yt into final result. The
algorithm uses t functions fX

i and t functions fK
i .

But function fC is just one. Introduction of analogous
“postprocessing” for every block cipher (i.e. for each
round) is needless. Calculation of local postprocessing
at the end of i-th round can be incorporated into func-
tions fX

j and fK
j of following rounds (i.e. for all j > i)

and into function fC .

The compression function f t (and its iterated hash
function H) have rate r = (b/n)/t.

This generalized model of compression functions
covers all compression functions, which takes messages
of length a and b and process them using exactly
t block ciphers E1, E2, . . . , Et from Bloc(k, n) in this
specified order, into message of length a. All rate-1
schemes from [8] and their rate-2 generalizations fall
into this model.

5 Upper bound of rate of collision
resistant compression functions

Before proof of the upper bound we first define some
auxiliary notions and prove some lemmas.

Definition 4. Let i ∈ {0, 1, . . . , t} and (h,m) ∈ Va ×
Vb. If i = 0 then Y i,(h,m) = (). If i > 0 then we define
Y i,(h,m) recursively as follows:

Y i−1,(h,m) · Ei

(
fK

i

(
h,m, Y i−1,(h,m)

)
,

fX
i

(
h,m, Y i−1,(h,m)

))
.

Sequence Y i,(h,m) represents individual Yi calculated
during individual rounds of f t(h,m) evaluation. It can
easily be seen that Y i−1,(h,m) is prefix of Y i,(h,m) and
that Y t,(h,m) is equal to Y t, which is created during
evaluation of compression function f t(h, m).

Definition 5. Let i ∈ {1, 2, . . . , t}, X ∈ Vn, K ∈ Vk

and let 2n+k > α > 0 be an integer. Let S ⊆ Va, where
|S| = s > 0. Then D0

α = S × Vb and Di
α is union

of α largest sets Di
X,K taken through all X and K

(let denote them Di
Xi

1,Ki
1
, . . . , Di

Xi
α,Ki

α
), where Di

X,K

is defined as follows:

Di
X,K =

{
(h,m) ∈ Di−1

α

∣∣∣fX
i

(
h,m, Y i−1,(h,m)

)
= X∧

∧ fK
i

(
h, m, Y i−1,(h,m)

)
= K

}
.

Set Di
X,K is subset of Di−1

α . It consists of those ele-
ments, which in next (i-th) round will lead to the same
query Ei(X, K) on oracle Ei. That means that to com-
pute next round for all elements from Di

X,K one oracle

Improved rate upper bound of collision . . . 57

query is sufficient. Construction of sets Di
X,K have of

course exponential complexity, but does not require
any oracle queries. Since we use black-box model, ad-
versary have computationally unlimited power and is
limited only by number of oracle queries.

Set D1
α is the largest set of tuples (h,m) ∈ S × Vb,

for which we can made first round of compression
function f t with spending exactly α queries on ora-
cle E1. By definition D1

α is union of α largest sets
D1

X1
1 ,K1

1
, . . . , D1

X1
α,K1

α
. For the calculation of the first

round for elements from every set D1
X1

j ,K1
j
we need

one query E1(X1
j ,K1

j) on oracle E1. Since all tuples
(X1

j , K1
j) are distinct, we need exactly α queries for

selected α sets.
We do not know how to estimate cardinality of

set, which is the largest set of tuples (h, m) ∈ S × Vb,
for which we can do first two rounds of compression
function f with at most 2α queries on oracles E1 and
E2. However we know how to estimate cardinality of
set D2

α, which is such largest set of tuples (h,m) ∈ D1
α.

Therefore we have constructed set Di
α as subset of

Di−1
α . Then we are able to lower bound cardinality of

set Di
α in following way.

Lemma 1. Let 1 ≤ α ≤ 2n+k and let 0 ≤ i ≤ t be
integers. Then |Di

α| ≥ αi2b−i(n+k)s.

Proof. (Using mathematical induction over i.)
Ind. basis: |D0

α| = |S × Vb| = s2b ≥ α02b−0(n+k)s.
Ind. hypothesis: Let |Di

α| ≥ αi2b−i(n+k)s.
Ind. step: Then |Di+1

α | ≥ αi+12b−(i+1)(n+k)s.
Set |Di+1

α | is by definition 5 union of α < 2n+k

largest sets Di+1
X,K . Nonempty sets Di+1

X,K are all dis-
tinct and their union is equal to Di

α. In other words,
elements of the set Di

α are divided into 2n+k shelves.
Then using pigeonhole principle we can estimate car-
dinality of α largest of them in the following way:

|Di+1
α | ≥ α

|Di
α|

2n+k
≥

≥ α
αi2b−i(n+k)s

2n+k
= αi+12b−(i+1)(n+k)s .

ut

Lemma 2. At most tα queries on oracles E1, . . . , Et

are sufficient for computation of set Dt
α among with

values of compression function f t(h, m) for all tuples
(h, m) from the set Dt

α.

Proof. We construct matrix M , which has on i-th row
tuples (Xi

1,K
i
1) . . . (Xi

α,Ki
α) used during the construc-

tion of set Di
α by taking the union of α largest sets

Di
Xi

1,Ki
1
, . . . , Di

Xi
α,Ki

α
. M has t rows and α columns, so

matrix M have totally tα elements.

M =

(X1
1 ,K1

1) . . . (X1
j ,K1

j) . . . (X1
α, K1

α)
...

...
...

(Xi
1,K

i
1) . . . (Xi

j ,K
i
j) . . . (Xi

α, Ki
α)

...
...

...
(Xt

1,K
t
1) . . . (Xt

j ,K
t
j) . . . (Xt

α, Kt
α)

The only place where queries are made during the com-
putation of sets Di

α is the computation of Y i,(h,m).
During the construction of set D0

α no queries on ora-
cles are necessary as it is S×Vb by definition. Similarly
during the construction of set D1

α no queries on oracles
are necessary as Y 0,(h,m) is by definition empty.

During the construction of Di
α for i ∈ {2, 3, . . . , t}

all queries will be on oracles E1, . . . , Ei−1. Queries on
oracle E1 will be only from the first row of matrix M ,
queries on oracle E2 will be only from the second row,
and so on, ending with queries on oracle Ei−1, which
are only from (i− 1)-th row of matrix M . Last row of
matrix M (together with all others) is used during the
computation of values f t(h,m) = fC(h,m, Y t,(h,m))
for all (h,m) ∈ Dt

α.
During the computation of Di

α a new i-th row is
created in the matrix M . Tuples (Xi−1

j ,Ki−1
j) from

(i−1)-th row are for the first time evaluated by oracle
Ei−1. Queries on oracle El for l < i − 1 will be only
from already evaluated row l of matrix M . That fol-
lows from the fact that Di

α ⊆ Di−1
α . Therefore we will

need at most tα queries on oracles E1, . . . , Et during
the computation of Dt

α together with values of com-
pression function f t(h,m) for all (h,m) ∈ Dt

α if we
remember already asked queries together with corre-
sponding answer. ut
Theorem 3. Let f : Bloc(k, n)t × Va × Vb → Va be
arbitrary rate-r compression function defined by algo-
rithm 1, while r = b/n

t . Let q ≥ 1 be maximum allowed
number of queries on oracles Ei and E−1

i . Let q be an
integer of the form q = tα, where α ≥ 1 is also an in-
teger3. Let r > 1 + k

n − log2 α
n . Then Advcomp

f (q) = 1.

Proof. By asking at most q queries we are according to
lemma 2 able to compute values of f t(h,m) ∈ Va for all
(h,m) ∈ Dt

α. Let S = Va, thus s = |S| = 2a. Accord-
ing to lemma 1 we know that |Dt

α| ≥ αt2b−t(n+k)s =
αt2a+b−t(n+k). We can guarantee that between com-
puted values there are at least two identical values if:

αt2a+b−t(n+k) > 2a

t log2 α + a + b− t(n + k) > a

b > t(n + k)− t log2 α .

3 This requirement is natural. For computation of f t we
need t oracle queries. Hence if we set q = tα, then as if
we allow α complete computations of f t.

58 Richard Ostertág

Now we rewrite this inequality into required form by
using following equality r = b/n

t :

b > t(n + k)− t log2 α

b/n

t
>

n + k

n
− log2 α

n

r > 1 +
k

n
− log2 α

n
.

This means that with probability 1 we can find (and
so the adversary) collision in the compression func-
tion f , while asking at most q queries on oracles. Hence
Advcomp

f (q) = 1 holds. ut
Computation of the particular Di

α has exponential
complexity. Also finding the collision between values
f t(h,m) for all (h,m) ∈ Dt

α has exponential complex-
ity. But computationally unlimited adversary of black-
box model can do all this unless he does not ask more
than q queries on oracles.

Theorem 3 gives upper bound depending on num-
ber of oracle queries. The following corollary adapts
the previous theorem in such a way, that instead of
number of queries q, the number of output bits a of
compression function is used in the inequality for r.

Corollary 2. Let f t : Bloc(k, n)t × Va × Vb → Va be
arbitrary rate-r compression function defined by algo-
rithm 1, where r = b/n

t . Let 0 ≤ ε < 1
2 be arbitrary

constant. Let r > 1 + k
n − ε a

n . Then f t is not collision
resistant.

Proof. Let 0 ≤ λ < 1 be arbitrary constant. Then we
set q = t2λ a

2 , i.e. α = 2λ a
2 . Then by substituting into

theorem 3 we get that Advcomp
f (q) = 1 (that means

according to size of q that f t is not collision resistant)
if:

r > 1 +
k

n
− log2 α

n

r > 1 +
k

n
− log2 2λ a

2

n

r > 1 +
k

n
− (λ/2)

a

n
.

Now we make a substitution ε = λ/2 and required
inequality follows:

r > 1 +
k

n
− ε

a

n
, where 0 ≤ ε <

1
2

.

ut
As we have already mentioned, constructions of

compression function based on block cipher, often have
the same size of the key and the plain-text input of
block cipher, i.e. k = n. Similarly, the output of com-
pression function have usually the same size, i.e. a = n.
For this typical situation we can simplify corollary 2.

Corollary 3. Let f t : Bloc(n, n)t × Vn × Vb → Vn be
arbitrary rate-r compression function defined by algo-
rithm 1, where r = b/n

t . Let r > 3/2. Then compres-
sion function f t is not collision resistant.

Proof. After substituting n for a and k into corollary 2
we get that compression function f t is not collision
resistant if r > 1 + n

n − εn
n = 2 − ε for an arbitrary

constant 0 ≤ ε < 1
2 .

That implies that compression function f t is not
collision resistant if r > 2− 1

2 = 3/2. ut

In generalized model rate r of compression func-
tion can be rational number and not only integer as
in [11]. Therefore based on our results we cannot con-
clude that no high rate compression function exists
in the generalized model. Still it is possible that e.g.
rate- 65 collision resistant compression function exists.

6 Conclusion

In our effort to find high speed collision resistant com-
pression function we have introduced and studied new
generalized model of compression function since in all
previous models it was proved that no such functions
exists. This model introduces rational rates, so we can
study more precisely the rate upper bound of collision
resistant compression functions. Based on previous re-
sults, it seems to be less than or equal to 2. We have
improved this bound to be less than or equal to 3

2 .

References

1. M. Stanek: Analysis of fast blockcipher-based hash
functions. In: Computational Science and Its Applica-
tions – ICCSA 2006, Springer, 2006, 426–435.

2. D.R. Stinson: Cryptography: Theory and Practice,
Third Edition. Chapman & Hall/CRC, Boston, MA,
USA, 2005.

3. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone:
Handbook of Applied Cryptography. CRC-Press, Boca
Raton, FL, USA, 1996.

4. R.C. Merkle: One way hash functions and DES.
Volume 435 of Lecture Notes in Computer Science,
Springer Berlin, Heidelberg, 1990, 428–446.

5. I.B. Damgård: A design principle for hash functions.
Volume 435 of Lecture Notes in Computer Science,
Springer Berlin, Heidelberg, 1990, 416–427.

6. H. Handschuh, L.R. Knudsen, M.J. Robshaw: Analysis
of SHA-1 in encryption mode. Volume 2020 of Lecture
Notes in Computer Science, Springer Berlin, Heidel-
berg, 2001, 70–83.

7. M.O. Rabin: Digitalized signatures. In Millo R.D.,
Dobkin D., Jones A., Lipton R., eds.: Foundations
of Secure Computations, New York, Academic Press,
1978, 155–166.

Improved rate upper bound of collision . . . 59

8. B. Preneel, R. Govaerts, J. Vandewalle: Hash functions
based on block ciphers: A synthetic approach. Volume
773 of Lecture Notes in Computer Science, Springer
Berlin, Heidelberg, 1994, 368–378.

9. J. Black, P. Rogaway, T. Shrimpton: Black-box analy-
sis of the block-cipher-based hash-function construc-
tions from PGV. Volume 2442 of Lecture Notes in
Computer Science, Springer Berlin, Heidelberg, 2002,
103–118.

10. J. Black, M. Cochran, T. Shrimpton: On the impos-
sibility of highly-efficient blockcipher-based hash func-
tions. Volume 3494 of Lecture Notes in Computer Sci-
ence, Springer Berlin, Heidelberg, 2005, 526–541.

11. R. Ostertág, M. Stanek: On high-rate cryptographic
compression functions. Computing and Informatics
26, 2007, 77–87.

12. L. Staneková, M. Stanek: Generalized PGV hash func-
tions are not collision resistant. In: ITAT: Information
Technologies – Applications and Theory, Seòa: PONT,
2006, 139–143.

13. P. Rogaway, J. Steinberger: Security/efficiency trade-
offs for permutation-based hashing. Volume 4965 of
Lecture Notes in Computer Science, Springer Berlin,
Heidelberg, 2008, 220–236.

