
Encoding monadic computations in C# using iterators

Tomas Petricek

Charles University in Prague, Faculty of Mathematics and Physics
tomas@tomasp.net

Abstract. Many programming problems can be eas-
ily solved if we express them as computations with some
non-standard aspect. This is a very important problem, be-
cause today we’re struggling for example to efficiently pro-
gram multi-core processors and to write asynchronous code.
Unfortunately main-stream languages such as Java or C#
don’t support any direct way for encoding unrestricted non-
standard computations. In languages like Haskell and F#,
this can be done using monads with syntactic extensions
they provide and it has been successfully applied to a wide
range of real-world problems. In this paper, we present
a general way for encoding monadic computations in the
C# 2.0 language with a convenient syntax using an exist-
ing language feature called iterators. This gives us a way to
use well-known non-standard computations enabling easy
asynchronous programming or for example the use of soft-
ware transactional memory in plain C#. Moreover, it also
opens monads in general to a wider audience which can
help in the search for other useful and previously unknown
kinds of computations.

1 Introduction

In functional programming languages such as Haskell
and F#, monadic computations are used to solve wide
range of problems. In Haskell [5], they are frequently
used to deal with state or I/O, which is otherwise diffi-
cult in a purely functional language. F# uses monadic
computations to add non-standard aspects such as
asynchronous evaluation, laziness or implicit error
handling to an existing piece of code written in F#. In
this article, we’ll prefer the F# point of view, meaning
that we want to be able to adjust C# code to execute
differently, using additional aspects provided by the
monadic computation.

The primary motivation for this work is that
monadic computations are very powerful technique for
dealing with many modern computing challenges
caused by the rise of multi-core processors and dis-
tributed web based applications. The standard F# li-
brary uses monadic computations to implement asyn-
chronous workflows [16] which make it easy to write
communication with the web and other I/O operations
in the natural sequential style, but without blocking
threads while waiting. In Haskell, monadic compu-
tations are used for example to implement software
transactional memory, which is a concurrent program-

ming mechanism based on shared memory, which
avoids the need for explicit locking [3].

The motivation for this article is that we want to
be able to use the techniques just described in a main-
stream and widely used C# language. The main con-
tributions of this paper are following:

• As far as we’re aware, we show for the first time
that monadic computations can be encoded in C#
in a syntactically convenient way without placing
any restrictions on the C# statements that can
be used inside the computation. This can be done
purely as a library without changing the language
using widely adopted C# 2.0 features (Section 3).

• We use the presented technique to implement a li-
brary that makes it easier to write scalable multi-
threaded applications that perform long running
I/O operations. We demonstrate it using several
case study examples (Section 4).

• Finally, we describe a method for systematical en-
coding of arbitrary monadic computation in C#
(Section 5). This technique can be used for imple-
menting other useful computations such as soft-
ware transactional memory and others.

There are several related projects, mostly con-
cerned with asynchronous programming (Section 6),
but our aim is wider and focuses on monadic computa-
tions in general. However, asynchronous computations
can nicely demonstrate the problem.

1.1 Asynchronous computations in C# today

Since we’re using asynchronous computations as the
primary real-world motivation for this paper, we
should first clarify what problem we want to solve is.
Let’s start by looking at naive synchronous code that
downloads the first kilobyte of web site content:

1: var req = HttpWebRequest.Create(url);

2: var rsp = req.GetResponse();

3: var strm = rsp.GetResponseStream();

4: var read = strm.Read(buffer, 0, 1024);

On lines 2 and 4 we’re performing I/O operations
that can take a long time, but that aren’t CPU
bounded. When running the operation, the executing
thread will be blocked, but it cannot perform any other



62 Tomas Petricek

work in the meantime. If we wanted to run hundreds
of downloads in parallel, we could create hundreds
of threads, but that introduces significant overheads
(such as allocation of kernel objects and thread stack)
and also increases context switching. The right way to
solve the problem on the .NET platform is to use the
Asynchronous Programming Model (APM):

1: var req = HttpWebRequest.Create(url);

2: req.BeginGetResponse(a1 => {

3: var rsp = req.EndGetResponse(a1);

4: var strm = rsp.GetResponseStream();

5: strm.BeginRead(buffer, 0, 1024, a2 => {

6: int read = strm.EndRead(a2);

7: // ...

8: }, null);

9: }, null);

In this context “asynchronous” means that the pro-
gram invokes start of the operation, registers a call-
back, transfers the control to the system and releases
the current thread, so that it can perform other work.
In the snippet above, we’re starting two operations
on lines 2 and 5 and we’re using the C# 3.0 lambda
function notation “=>” to specify the callback func-
tion that will be eventually invoked.

The code above is far less readable than the first
synchronous version, but that’s not the only prob-
lem. To download the whole page, we’d need to call
the BeginRead method in a loop until we fetched the
whole page, but that’s ridiculously difficult, because
we can’t use any higher level constructs such as the
while loop when writing code using nested callbacks.
For every simple problem, the programmer has to ex-
plicitly write a state machine using mutable state.

It is worth pointing out that using asynchronous
model does not in principle increase the CPU par-
allelism in the application, but it still significantly
improves the performance and makes the application
more scalable because it considerably reduces the
number of (expensive) threads the application creates.

2 Background

To write non-blocking asynchronous code, we can use
continuation passing style where the next piece of code
to execute after an operation completes is given as
a function as the last argument to the operation. In
the snippet above we’ve written the code in this style
explicitly, but as we’ve seen this isn’t a satisfying so-
lution.

2.1 F# asynchronous workflows

In F#, we can use asynchronous workflows, which
is one particularly useful implementation of monadic

computations that is already defined in F# libraries.
This feature hasn’t been described in the literature
before, so we quickly review it here.

When we wrap code inside an async block, the
compiler automatically uses continuation passing style
for specially marked operations. Moreover, we can use
all standard language constructs inside the block in-
cluding for example the while loop:

1: let downloadUrl(url:string) = async {

2: let req = HttpWebRequest.Create(url)

3: let! rsp = req.AsyncGetResponse()

4: let strm = rsp.GetResponseStream()

5: let buffer = Array.zeroCreate(8192)

6: let state = ref 1

7: while !state > 0 do

8: let! read = strm.AsyncRead(buffer,0, 8192)

9: Console.WriteLine("got {0}b", read);

10: state := read }

This function downloads the entire content of
a web page in a loop. Although it doesn’t use the data
in any way and only reports the progress, it nicely
demonstrates the principle. Its body is an async block,
which specifies that the function doesn’t actually run
the code, but instead returns a value representing com-
putation that can be executed later.

In the places where the original C# code executed
asynchronous operations, we’re now using the let!
Keyword (lines 3 and 8), which represents monadic
value binding. This means that instead of simply as-
signing value to a symbol, the computation invokes
Bind operation that is provided by the async value
(called computation builder) giving it the rest of the
code wrapped inside a function as an argument. The
Bind member specifies non-standard behavior of the
operation. In this case the behavior is that the opera-
tion is executed asynchronously.

The computation builder (in this case async) also
defines the meaning of other primitive constructs such
as the while loop or returning the result from a func-
tion. These primitive operations are exposed as stan-
dard methods with well-defined type signatures:

Bind : Async<’a> * (’a -> Async<’b>) ->

Async<’b>

Return : ’a -> Async<’a>

While : (unti -> bool) * Async<unit> ->

Async<unit>

The first two functions are standard operations
that define the abstract monadic type as first
described in [18]. These operations are also called bind
and unit. The Bind member takes an existing compu-
tation and a function that specifies how to produce
subsequent computation when the first one completes
and composes these into a single one. The Return



Encoding monadic computations in C# 63

member builds a computation that returns the given
value. The additional While member takes a predicate
and a computation and returns result that executes
the computation repeatedly while the predicate holds.

When compiling code that uses computation ex-
pressions, the F# compiler syntactically transforms
the code into code composed from the calls to these
primitive operations. The translated version of the
previous example can be found in the online supple-
mentary material for the article [12].

2.2 C# Iterators

One of the non-standard computations that is very of-
ten used in practice is a computation that generates
a sequence of values instead of yielding just a single
result. This aspect is directly implemented by C# it-
erators [2], but without any aim to be more generally
useful. In this article, we show that it can be used in
a more general fashion. However, we start by briefly
introducing iterators. The following example uses it-
erators to generate a sequence of all integers:

1: IEnumerator<int> GetNumbers() {

2: int num = 0;

3: while (true) {

4: Console.WriteLine("generating {0}", num);

5: yield return num++;

6: }

7: }

The code looks just like ordinary method
with the exception that it uses the yield return
keyword to generate elements a sequence. The while
loop may look like an infinite loop, but due to the
way iterators work, the code is actually perfectly valid
and useful. The compiler translates the code into a
state machine that generates the elements of the se-
quence lazily one by one. The returned object of type
IEnumerator<int> can be used in the following way:

1: var en = GetNumbers();

2: en.MoveNext();

3: Console.WriteLine("got {0}", en.Current);

4: en.MoveNext();

5: Console.WriteLine("got {0}", en.Current);

The call to the GetNumbers method (line 1) re-
turns an object that represents the state machine gen-
erated by the compiler. The variables used inside the
method are transformed into a local state of that ob-
ject. Each call to the MoveNext method (lines 2 and 4)
runs one step of the state machine until it reaches the
next yield return statement (line 5 in the earlier snip-
pet) updating the state of the state machine. This also
executes all side-effects of the iterator such as printing

to the console, so the program above shows the “gen-
erating” message directly followed by “got” for num-
bers 0 and 1. There are two key aspects of iterators
that are important for this paper:

• The iterator body can contain usual control struc-
tures such as loops or exception handlers and the
compiler automatically turns them into a state
machine.

• The state machine can be executed only to a cer-
tain point (explicitly specified by the user using
yield return), then paused and later resumed
again by invoking the MoveNext method again.

In many ways this resembles the continuation pass-
ing style from functional languages, which is essen-
tial for monadic computations and F# asynchronous
workflows.

3 Monadic computations in C#

Now that we’ve introduced asynchronous workflows
in F# (as an example of monadic computations) and
C# iterators, we can ask ourselves the question
whether iterators could be used for encoding other
non-standard computations then code that generates
a sequence.

The key idea of this article is that it is indeed pos-
sible to do that and that we can write standard C# li-
brary to support any monadic computation. In this
section, we’ll briefly introduce how the library looks
using the simplest possible example and in section 5
we’ll in detail explain how the encoding works.

3.1 Using option computations

As the first example, we’ll use computations that pro-
duce value of type Option<’a> 1, which can either
contain no value or a value of type ’a. The type can
be declared using F#/ML notation like this:

type Option<’a> = Some of ’a | None

Code that is composed from simple computations
that return this type can return None value at any
point, which bypasses the entire rest of the computa-
tion. In practice this is useful for example when per-
forming series of data lookup that may not contain the
value we’re looking for. The usual way for writing the
code would check whether the returned value is None

1 In Haskell, this type is called Maybe and the correspond-
ing computation is known as Maybe monad.



64 Tomas Petricek

after performing every single step of the computation,
which significantly complicates the code 2.

To show how the code looks when we apply our
encoding of the option computation using iterators,
we’ll use method of the following signature:

ParseInt : string -> Option<int>

The method returns Some(n) when the parameter
is a valid number and otherwise it returns None. Now
we can write code that reads a string, tries to parse it
and returns 10 times the number if it succeeds. The re-
sult of the computation will again be the option type.

1: IEnumerator<IOption> ReadInt() {

2: Console.Write("Enter a number: ");

3: var optNum = ParseInt(Console.ReadLine());

4: var m = optNum.AsStep();

5: yield return m;

6: Console.WriteLine("Got a valid number!");

7: var res = m.Value * 10;

8: yield return OptionResult.Create(res);

9: }

The code reads a string from the console and calls
the ParseInt method to get optNum value, which has
a type Option<int> (line 3). Next, we need to per-
form non-standard value binding to access the value
and to continue running the rest of the computation
only when the value is present. Otherwise the method
can return None as the overall result straight ahead.

To perform the value binding, we use the AsStep
method that generates a helper object (line 4) and
then return this object using yield return (line 5).
This creates a “hole” in the code, because the rest of
the code may or may not be executed, depending on
whether the MoveNext method of the returned state
machine is called again or not. When optNum contains
a value, the rest of the code will be called and we can
access the value using the Value property (line 7)3.

Finally, the method calculates the result (line 7)
and returns it. To return from a non-standard compu-
tation written using our encoding, we create another
helper object, this time using OptionResult.Create
method. These helper objects are processed when ex-
ecuting the method.

To summarize, there are two helper objects. Both
of them implement the IOption interface, which
means that they can both be generated using yield re-
turn. The methods that create these two objects have
the following signatures:
2 We could as well use exceptions, but it is generally ac-

cepted that using exceptions for control flow is a wrong
practice. In this case, the missing value is an expected
option, so we’re not handling exceptional condition.

3 The F# code corresponding to these two lines is: let!
value = optNum

AsStep : Option<’a> -> OptionStep<’a>

OptionResult.Create : ’a -> OptionResult<’a>

The first method creates an object that corre-
sponds to the monadic bind operation. It takes the op-
tion value and composes it with the computation that
follows the yield return call. The second method
builds a helper that represents monadic unit opera-
tion. That means that the computation should end
returning the specified value as the result.

3.2 Executing option calculation

When we write code in the style described in the previ-
ous section, methods like ReadInt only return a state
machine that generates a sequence of helper objects
representing bind and unit. This alone wouldn’t be at
all useful, because we want to execute the computa-
tion and get a value of the monadic type (in this case
Option<’a>) as the result. How to do this in terms of
standard monadic operations is described in section 5,
but from the end user perspective, this simply means
invoking the Apply method:

Option<int> v = ReadInt().Apply<int>();

Console.WriteLine(v);

This is a simple piece of standard C# code that
runs the state machine returned by the ReadInt
method. Apply<’a> is an extension method 4 defined
for the IEnumerator<IOption> type. Its type signa-
ture is:

Apply : IEnumerable<IOption> -> Option<’a>

The type parameter (in the case above int) speci-
fies what the expected return type of the computation
is, because this unfortunately cannot be safely tracked
in the type system. Running the code with different
inputs gives the following console output:

Enter a number: 42 Enter a number: $%?!

Got a valid number! None

Some(420)

Strictly speaking, Apply doesn’t necessarily have
to execute the code, because its behavior depends on
the monadic type. The Option<’a> type represents
a value, so the computation that produces it isn’t de-
layed. On the other hand the Async<’a> type, which
represents asynchronous computations is delayed
meaning that the Apply method will only build a com-
putation from the C# compiler generated state ma-
chine.
4 Extension methods are new feature in C# 3.0. They

are standard static methods that can be accessed using
dot-notation as if they were instance methods [1].



Encoding monadic computations in C# 65

The encoding of non-standard computations
wouldn’t be practically useful if it didn’t allow us to
compose code from primitive functions and as we’ll see
in the next section, this is indeed possible.

3.3 Composing option computations

When encoding monadic operations, we’re working
with two different types. The methods we write using
the iterator syntax return IEnumerator<IOption>,
but the actual monadic type is Option<’a>.
When writing code that is divided into multi-
ple methods, we need to invoke method return-
ing IEnumerator<IOption> from another method
written using iterators. The following example uses
the ReadInt method from the previous page to read
two integer values (already multiplied by 10) and add
them.

1: IEnumerator<IOption> TryCalculate() {

2: var n = ReadInt().Apply<int>().AsStep();

3: yield return n;

4: var m = ReadInt().Apply<int>().AsStep();

5: yield return m;

6: var res = m.Value + n.Value;

7: yield return OptionResult.Create(res);

8: }

When the method needs to read an integer, it calls
the ReadInt to build a C# state machine. To make
the result useable, it converts it into a value of type
Option<int> (using the Apply method) and finally
uses the AsStep method to get a helper object that
can be used to bind the value using yield return.

We could of course provide a method composed
from Apply and AsStep to make the syntax more con-
venient, but this paper is focused on explaining the
principles, so we write this composition explicitly.

The previous example also nicely demonstrates the
non-standard behavior of the computation. When it
calls the RadInt method for the second time (line 4)
it does that after using non-standard value binding
(using yield return on line 3). This means that the
user will be asked for the second number only if the
first input was a valid number. Otherwise the result of
the overall computation will immediately be None.

Calculating with options nicely demonstrates the
principles of writing non- standard computations. We
can use non-standard bindings to mark places where
the code can abandon the rest of the code if it already
knows the overall result. Even though this is already
useful, we can make even stronger point to support
the idea by looking at asynchronous computations.

4 Case study: asynchronous C#

As discussed in the introduction, writing non-blocking
code in C# is painful even when we use latest C#
features such as lambda expression. In fact, we haven’t
even implemented a simple loop, because that would
make the code too lengthy. We’ve seen that monadic
computations provide an excellent solution 5 and we’ve
seen that these can be encoded in C# using iterators.

As next, we’ll explore one larger example that fol-
lows the same encoding of monadic computations as
the one in the previous section, but uses a different
monad to write asynchronous code that doesn’t block
the tread when performing long-running I/O. The fol-
lowing method reads the entire content of a stream
in a buffered way (using 1kb buffer) performing each
read asynchronously.

1: IEnumerator<IAsync> ReadToEndAsync(Stream s)

{

2: var ms = new MemoryStream();

3: byte[] bf = new byte[1024];

4: int read = -1;

5: while (read != 0) {

6: var op = s.ReadAsync(bf, 0, 1024).

AsStep();

8: yield return op;

9: ms.Write(bf, 0, op.Value);

10: read = op.Value;

11: }

12: ms.Seek(0, SeekOrigin.Begin);

13: string s = new StreamReader(ms).

ReadToEnd();

14: yield return AsyncResult.Create(s);

15: }

The code uses standard while loop which would be
previous impossible. Inside the body of the loop, the
method creates an asynchronous operation that reads
1kb of data from the stream into the specified buffer
(line 6) and runs the operation by yielding it as a value
from the iterator (line 7). The operation is then exe-
cuted by the system and when it completes the iterator
is resumed. It stores the bytes to a temporary storage
and continues looping until the input stream is fully
processed. Finally, the method reads the data using
StreamReader to get a string value and returns this
value using AsyncResult.Create method (line 14).

The encoding of asynchronous computations is es-
sentially the same as the encoding of computations
with option values. The only difference is that the
method now generates a sequence of IAsync values.
Also, the AsStep method now returns an object of type
AsyncStep<’a> and similarly, the helper object used
5 To justify this, we can say that asynchronous workflows

are one of the important features that contributed to
the recent success of the F# language.



66 Tomas Petricek

for returning the result is now AsyncResult<’a>.
Thanks to the systematic encoding described in sec-
tion 5, it is very easy to use another non-standard
computation once the user understands one example.

The method implemented in the previous listing
is very useful and surprisingly, it isn’t available in
the standard .NET libraries. We’ll use it to asynchro-
nously download the entire web page. However, we
first need to asynchronously get the HTTP response,
so we’ll write the code as another asynchro-
nous method using iterator syntax. In section 3.3,
we’ve seen how to compose option computations and
since the principle is the same, it isn’t surprising that
composing asynchonous computations is also straight-
forward:

1: var stream = resp.Value.GetResponseStream();

2: var html = ReadToEndAsync(stream).

3: Execute<string>().AsStep();

4: yield return html;

5: Console.WriteLine(html.Value);

The listing assumes that we already have a re-
sponse object (resp). So far we haven’t seen how to ac-
tually start the download, because asynchronous com-
putations are delayed, meaning that we’re just con-
structing a function that can be executed later. This
makes it possible to compose large number of compu-
tations and spawn them in parallel. The runtime then
uses only a few threads, which makes it very efficient
and scalable. You can find full example that shows
how to start the download in the online supplemen-
tary material for the article [12]

Implementing the functionality we presented
in this section asynchronously using the usual style
would be far more complicated. For example, to imple-
ment the ReadToEndAsync method we need two times
more lines of very dense C# code. However, the code
also becomes hard to read because it cannot use many
high-level language features (e.g. while loop), so it
would in addition also require a decent amount of com-
ments6.

5 Encoding arbitrary monads

As we’ve seen in the previous two sections, writing
monadic computations in C# using iterators requires
several helper objects and methods. In this section,
we’ll look how these helpers can be defined.

Unfortunately, C# doesn’t support higher-kinded
polymorphism, which is used when defining monads in
Haskell and is available in some object-oriented lan-
guage such as Scala [10]. This means that we can’t

6 The source code implementing the same functionality in
the usual style can be found in [12]

write code that is generic over the monadic type
(e.g. Option<’a> and Async<’a>). As a result, we
need to define a new set of helper objects for each type
of computation. To make this task easier, we provide
two base classes that encapsulate functionality that
can be reused. The code that we need to write is the
same for every computation, so writing it is a straight-
forward task that could be even performed by a very
simple code-generator tool.

In this section, we’ll look at the code that needs
to be written to support calculations working with
option values that we were using in section 3. The
code uses only two computation-specific operations.
Indeed, these are the two operations bind and unit
that are used to define monadic computations in func-
tional programming (“O” is a shortcut for “Option”):

Bind : O<’a> -> (’a -> O<’b>) -> O<’b>

Return : ’a -> O<’a>

The bind operation uses the function provided as
the second parameter to calculate the result when the
first parameter contains a value. The unit operation
wraps an ordinary value into an option value. The
implementation of these operations is described else-
where, so we won’t discuss it in detail. You can for ex-
ample refer to [11]. We’ll just assume that we already
have OptionM type with the two operations exposed
as static methods.

5.1 Defining iterator helpers

As a first thing, we’ll implement helper objects that
are returned from the iterator. We’ve seen that we
need two helper objects - one that corresponds to bind
and one that corresponds to unit. These two objects
share common interface (called IOption in case of op-
tion computations) so that we can generate a single
sequence containing both of them. Let’s start by look-
ing at the interface type:

interface IOption {

Option<R> BindStep<R>(Func<Option<R>> k);

}

The BindStep method is invoked by the extension
that executes the non-standard computation (we’ll dis-
cuss it later in section 5.2). The parameter k specifies
a continuation, that is, a function that can be exe-
cuted to run the rest of the iterator. The continuation
doesn’t take any parameters and returns an option
value generated by the rest of the computation. The
implementation of the helper objects that implement
the interface looks like this:



Encoding monadic computations in C# 67

class OptionStep<T> : MonadStep<T>, IOption {

internal Option<T> Input { get; set; }

public Option<R> BindStep<R>(Func<Option<R>> k)

{

return OptionM.Bind(Input,

MakeContinuation(k));

}

}

class OptionResult<T> : MonadReturn<T>, IOption

{

internal OptionResult(T value) : base(value)

{ }

public Option<R> BindStep<R> (Func<Option<R>>

k) {

return OptionM.Return(GetResult<R>());

}

}

The OptionStep<’a> type has a property named
Input that’s used to store the option value from which
the step was constructed using the AsStep method.
When the BindStep method is executed the object
uses the monadic bind operation and gives it the input
as the first argument. The second argument is more in-
teresting. It should be a function that takes the actual
value extracted from the input option value as an ar-
gument and returns a new option value. The extracted
value can be used to calculate the result, but there is
no way to pass a value as an argument back to the it-
erator in the middle of its evaluation, which is why the
function given as the parameter to BindStep method
doesn’t take any parameters.

As we’ve seen in the examples, the
OptionStep<’a> helper exposes this value as the
Value property. This property is inherited from the
MonadStep<’a> type. The MakeContinuation which
we use to build a parameter for monadic bind oper-
ation is also inherited and it simply stores the input
obtained from bind into Value, so that it can be used
in the iterator and then runs the parameter-less con-
tinuation k.

The OptionResult<’a> type is a bit simpler. It
has a constructor that creates the object with some
value as the result. Inside the BindStep method, it
uses the monadic unit operation and gives it that value
as the parameter. This cannot be done in a statically
type-checked way, so we use the inherited GetResult
method that performs dynamic type conversion. Fi-
nally, the OptionResult.Create and AsStep meth-
ods are just simple wrappers that construct these two
objects in the syntactically most pleasant way.

5.2 Implementing iterator evaluation

Once we have an iterator written using the helpers
described in the previous section, we need some way
for executing it using the non-standard behavior of

the monadic computation. The purpose of the itera-
tor isn’t to create a sequence of values, so we need to
execute it in some special way. The following example
shows an extension method Apply that turns the iter-
ator into a monadic value. In case of options the type
of the value is Option<’a> but note that the code
will be exactly the same for all computation types.

static class OptionExtensions {

public static Option<R> Apply<R>

(this IEnumerator<IOption> en) {

if (!en.MoveNext())

throw new InvalidOperationException

("Enumerator ended without a result!");

return en.Current.BindStep<R>(() =>

en.Apply<R>());

}

}

The method starts by invoking the MoveNext
method of the generated iterator to move the itera-
tor to the next occurrence of the yield return state-
ment. If the return value is false, the iterator ended
without returning any result, which is invalid, so the
method throws an exception.

If the iterator performs the step, we can access the
next generated helper object using the en.Current
property. The code simply invokes BindStep of the
helper and gives it a function that recursively calls the
Apply method on the same iterator as the argument.
Note that when the helper is OptionResult<’a>, the
continuation isn’t used, so the recursion terminates.

It is worth noting that for monadic computations
with zero operation we can also write a variant of
the Apply method that doesn’t require the iterator
to complete by returning a result. In that case, we’d
modify the method to return a value constructed by
the monadic zero operation instead of throwing an ex-
ception in the case when the iterator ends.

Finally, there are also some problems with using
possibly deeply nested recursive calls in a language
that doesn’t guarantee the use of tail-recursion. We
can overcome this problem by using some technique for
tail-call elimination. Schinz [15] gives a good overview
in the context of the Scala language. Perhaps the eas-
iest option to implement is to use a trampoline [17].

5.3 Translation semantics

To formalize the translation in a more detail, we’ve
also developed a translation semantics for the library.
We first define an abstract language extension for C#
that adds monadic compuations as a language feature
to C# in a way similar to F#. Then we show that any
code written in the extended C# can be translated
to the standard C# 2.0 by using the iterator encoding



68 Tomas Petricek

presented in this article. The grammar of the language
extension as well as the semantic rules are available in
the online supplementary material [12].

6 Related work and conclusions

There is actually one more way for writing
some monadic computations in C# using the recently
added query syntax. The syntax is very limited, but
may be suitable for some computations. We’ll briefly
review this option and then discuss other relevant re-
lated work and conclusions of this paper.

6.1 LINQ queries

As many people already noted [8], the LINQ query
syntax available in C# 3.0 is also based on the idea
of monad and can be used more broadly than just
for encoding computations that work with lists. The
following example shows how we could write the com-
putation with option values using LINQ syntax:

1: Option<int> opt =

2: from n in ReadInt()

3: from m in ReadInt()

4: let res = m + n

5: select res;

The implementation of library that allows this kind
of syntax is relatively easy and is described for exam-
ple in [11]. This syntax is very restricted. In it allows
non-standard value bindings corresponding to the bind
operation using the from keyword (lines 2 and 3), stan-
dard value bindings using the let construct (line 4) and
returning of the result using select keyword (line 5).
However, there are no high-level imperative constructs
such as loops which were essential for the asynchro-
nous example in section 4. With some care, it is pos-
sible to define several mutually recursive queries, but
that still makes it hard to write complex computations
such as the one in section 4.

On the other hand, query syntax is suitable for
some monadic computations where we’re using only
a limited language. Parser combinators as described
for example in [6] can be defined using the query syn-
tax [4]. In general, C# queries are a bit closer to writ-
ing monads using the Haskell’s list comprehension no-
tation, while using iterators as described in this article
is closer to the Haskell’s do-notation.

6.2 Related work

The principle of using a main-stream language for en-
coding constructs from the research world has been
used with many interesting features including for ex-
ample Joins [14]. FC++ [8] is a library that brings

many functional features to C++, including monads,
which means it should be possible to use it for re-
implementing some examples from this paper.

There are also several libraries that use C# itera-
tors for encoding asynchronous computations. CCR [7]
is a more sophisticated library that combines join pat-
terns with concurrent and asynchronous program-
ming, which makes it more powerful than our encod-
ing. On the other hand it is somewhat harder to use for
simple scenarios such as those presented in this paper.

Richter’s library [13] is also focused primarily on
asynchronous execution. It uses yield return primitive
slightly differently - to specify the number of opera-
tions that should be completed before continuing the
execution of the iterator. The user can then pop the
results from a stack.

7 Conclusions

In this paper, we have presented a way for encoding
monadic computations in the C# language using iter-
ators. We’ve demonstrated the encoding with two ex-
amples - computations that work with option values
and computations that allow writing of non-blocking
asynchronous code.

The asynchronous library we presented is useful
in practice and would alone be an interesting result.
However, we described a general mechanism that can
be useful for other computations as well. We believe
that using it to implement for example a prototype
of software transactional memory support for C# can
bring many other interesting results.

References

1. G.M. Bierman, E. Meijer, M. Torgersen: Lost in trans-
lation: formalizing proposed extensions to C#. In Pro-
ceedings of OOPSLA 2007.

2. ECMA International.: C# Language Specification.
3. T. Harris, S. Marlow, S. Peyton-Jones, M. Herlihy:

Composable memory transactions. In Proceedings of
PPoPP 2005.

4. L. Hoban: Monadic parser combinators us-
ing C# 3.0. Retrieved May 2009, from
http://blogs.msdn.com/lukeh/archive/2007/08/19/

monadic-parser-combinators-using-c-3-0.aspx

5. P. Hudak, P. Wadler, A. Brian, B.J. Fairbairn, J. Fasel,
K. Hammond et al.: Report on the programming lan-
guage Haskell: A non-strict, purely functional lan-
guage. ACM SIGPLAN Notices.

6. G. Hutton, E. Meijer: Monadic parser combinators.
Technical Report. Department of Computer Science,
University of Nottingham.

7. G. Chrysanthakopoulos, S. Singh: An asynchronous
messaging library for C#. In proceedings of SCOOL
Workshop, OOPSLA, 2005.



Encoding monadic computations in C# 69

8. B. McNamara, Y. Smaragdakis: Syntax sugar for
FC++: lambda, infix, monads, and more. In Proceed-
ings of DPCOOL 2003.

9. E. Meijer: There is no impedance mismatch (Language
integrated query in Visual Basic 9). In Dynamic Lan-
guages Symposium, Companion to OOPSLA 2006.

10. A. Moors, F. Piessens, M. Odersky: Generics of
a higher kind. In Proceedings of OOPSLA 2008.

11. T. Petricek, J. Skeet: Functional Programming for the
Real World. Manning, 2009.

12. T. Petricek: Encoding monadic computations us-
ing iterators in C# 2.0 (Supplementary mate-
rial). Available at http://tomasp.net/academic/

monads-iterators.aspx

13. J. Richter: Power threading library. Retrieved
May 2009, from http://www.wintellect.com/

PowerThreading.aspx

14. C.V. Russo: The Joins concurrency library. In Pro-
ceedings of PADL 2007.

15. M. Schinz, M. Odersky: Tail call elimination on the
Java Virtual Machine. In Proceedings of BABEL 2001
Workshop on Multi-Language Infrastructure and In-
teroperability.

16. D. Syme, A. Granicz, A. Cisternino: Expert F#,
Apress, 2007.

17. D. Tarditi, A. Acharya, P. Lee: No assembly required:
Compiling standard ML to C. School of Computer Sci-
ence, Carnegie Mellon University.

18. P. Wadler: Comprehending monads. In Proceedings of
ACM Symposium on Lisp and Functional Program-
ming, 1990.




