
Improving the Modularity of i* Models

Fernanda Alencar1, Márcia Lucena2,, Carla Silva3,
Emanuel Santos4, Jaelson Castro4

1Universidade Federal de Pernambuco - UFPE, Departamento de Eletrônica e Sistemas,

Recife, Brazil,
fernandaalenc@gmail.com

2Universidade Federal do Rio Grande do Norte - UFRN, Departamento de Informática e
Matemática Aplicada Natal, Brazil,

marciaj@dimap.ufrn.br
3Universidade Federal da Paraíba - UFPB, Centro de Ciências Aplicadas e Educação, Rio

Tinto, Brazil
carla@dce.ufpb.br

4 Universidade Federal de Pernambuco - UFPE, Centro de Informática, Recife, Brazil
{ebs,jbc}@cin.ufpe.br

Abstract. i* offers expressive models to capture social and intentional
characteristics of a system organizational context, and explicitly captures
stakeholders’ motivations and rationale in a requirements model. Thus, the
more detailed i* models are, the more complex they become. Hence, i* models
can become unnecessarily hard to read, understand, maintain and reuse. In the
past years we have been investigating how to tame the complexity of the
models, with a view to improve their modularity. This paper presents two of our
strategies. The first one relies on aspect-orientation principles whereas the
second one is based on model transformations.

Keywords: i*, modularization, Aspects, Model Transformations.

1 Introduction

Modularity measures the degree to which the modeling language offers well-defined
building blocks for building model. Although i* incorporates a decomposition
mechanism based on strategic actors, which could be used to improve modularization
of i* models, the way in which this mechanism is used is often not suitable to produce
models that are easy to maintain and reuse. Current modeling methods represent the
rationale of an actor in a monolithic way [3],[6]. Besides, sometimes several
refinements are described in a scattered and tangled form (also known as
crosscutting), making it hard to visualize the boundaries of sub-graphs related to
specific domains. This poor modularity compromise the management of the
complexity of the models, an important pre-requisite for the adoption of i* in
industrial settings [4]. In order to reduce the complexity of i* models and increase
their modularity we proposed two strategies; the use of aspect oriented principles [1]
or the adoption of a model transformation strategy [8]. The paper is organised as
follows. Section 2 describes a strategy to improve the modularity of i* models using

3

aspect oriented principles. Section 3 presents an approach which relies on the
definition of transformation rules to re-structure the models. Section 4 discusses
results obtained and Section 5 points out ongoing and future research.

2 Modularizing i* with Aspects

The modularity of i* models can be improved by removing tangled and scattered
information into aspectual actors together with some weaving mechanisms [1]. Our
aspectual approach consists of (i) a set of guidelines to identify crosscutting concerns
in i* models; and (ii) an extension of the i* modeling language [11] by adding
aspectual constructors to modularize crosscutting concerns and to allow its graphical
composition with other system modules (Fig 1).

Fig. 1 – The modular i* with aspects strategy.

In this approach the crosscutting concerns are extracted into modules, called aspects,
which are later composed back to the base model. Hence, we claim that Aspect-
Oriented Software Development (AOSD) mechanisms [5] can contribute to increase
the modularity of i* models. Four guidelines were proposed to deal with the
identification, separation and modularity of the crosscutting concerns. Once
identified, the crosscutting concerns are removed from the original actors, and placed
in a new type of model element, the so called Aspectual Element. This element will
have a specific graphical representation. Later it will be composed (weaved) with an
actor or another aspectual element using a Crosscut Relationship. This relationship
specifies how an i* element, located inside an aspectual element, is related to another
i* element located inside an actor or another aspectual element. The composition step
can be performed by graphical transformations. The evaluation of the resulting i*
models is based on a suite of metrics adapted from the literature. Finally, a trade-off
analysis will be performed and if the results are not appropriate (modularity is still
poor) a new interaction may be executed.

Modulariy is
satisfactory

Evaluation
Results

Identification and
Modularization

Crosscutting concerns and
Their dependencies

Composition

Composition
Rules

i* Model

Guidelines

D
D

D

D

D
D Elements related

to crosscutting

Evaluation

No

Representation Trade-off
Analysis

D
D

D

D

D

D

Aspectual
i* model

Modularity
metrics

Trade-off
Results

[New Iteration]

D
D

D

D
D

DTask

Decision

Control Flow

Artifact Flow

Start

End

i*
Model Document

Guidance

Legend:

D
D

D

D

D

D
Aspectual
i* Model

Proceedings of the 4th International i* Workshop - iStar10

4

3 Modularizing i* by means of Model Transformations

Another approach to improve the modularity of i* models is to restructure the models
in order to extract the information that are not fully related to the application domain.
To balance the responsibilities of the system actor, this information could be
delegated to new system actors. Hence, we could transform the original model into a
more modularized one.

Our model transformation approach consists of three activities (Fig 2): (i) Analyze
Internal Elements, where Internal Elements can be factored out from software actor
are identified; (ii) Apply Transformation Rules, which relies on model transformation
rules to systematically move (delegate) the identified internal elements from software
actor to new actors; (iii) Evaluate i* Models, used to evaluate the modularization of
the models. The process is semi-automatic since the activities (ii) and (iii) can be
automated, while the analysis of internal elements activity (i) depends on
requirements engineers and domain experts. In this case, it is necessary to use: (i)
heuristics to guide the decomposition of the software actor; (ii) a set of rules to
transform i* models in modular i* models; (iii) metrics to evaluate the degree of
modularity of both initial and final models. Further details can be found in [8].

Some measurement is required to check the improvement of the modularity. If the
modularization still is inappropriate, new iterations may be necessary. These modular
i* models are used as the starting point to generate architectural descriptions from
requirements models [9].

Fig. 2 – The modular i* with model transformation.

In order to illustrate the techniques used in this work, we review the Media Shop
example [3]. Media Shop is a store that sells and ships different kinds of media items.
To increase market share, Media Shop has decided to use the Medi@ system, a
business to customer retail sales front-end on the Internet.

Often i* models are overloaded with information capturing features of both the
system organizational environment and the software system itself. However, the more
detailed i* models are, the more complex they become (Fig. 3). This rich ontology
aligned with the common misuse of the decomposition mechanisms provided by the
i*, can head to models unnecessarily hard to read, understand, maintain and reuse.

Modulariy is
satisfactory

Yes

Results of
Modularity Metrics

Analyse Internal
Elements

Selected Internal
Elements

Apply
Transformation Rules

Transformation
Rules

i* Models

Heuristics to Identify
Elements

D
D

D

D

D
D

D
D

D

D

D

D

Modular i*
Models

Evaluate
i* Models

Modularity
Metrics

No

D
D

D

D
D

D

Work
Definition

Decision

Control Flow

Artifact Flow

Start

End

Requirements
Model

Architecture
Model

Document

Guidance

Legend:

Improving the Modularity of i* Models

5

The proposed approach allows delegation of different issues of a problem, initially
concentrated into a single system actor, to new actors, which allows dealing with each
actor separately. Details on an earlier version of this activity can be found in [8]. We
have added a new rule, to deal with a special situation that may arise when
independent sub-graphs, i.e., sub-graphs from different domains, have the same root
goal. These sub-graphs are alternatives to satisfy this root goal. In this case, an actor
is created for each alternative. Later, each of them will be considered as a different
architectural solution.

Medi@
Media
Shop

Process
Internet
Orders

Adaptability

Adaptability

Internet
Shop

Managed

DD

DD

Availability

Adaptation

Help

Make

Produce
Statistics

Attract New
Customers

...

...
Internet
Orders

Handled

Item
Searching
Handled

Catalog
Consulting

He
lp

Query
Database

Security

Shopping
Cart

Item to be
Selected

Add Item

Check
Out

Identification
Details

Collected

Set Item
Detail

Keyword
Search

Catalogue

Choose
Available

Item
Choose Non-
Available Item

Use
Standard

Form Use Form
with

EncryptionHelp

Hurt

Fig. 3 – SR model for Medi@ system.

After carrying out the Prepare Requirements Models activity, the resulting model
is decomposed into more modularized software actors (see Fig. 4). In our example
there are two alternatives to achieve the Identification Details Collected goal (see Fig.
3). One relies on the use of standard forms, while a second alternative is to use
encrypted forms. If we apply horizontal rules (those that transform an initial i* model
into a more modular one [8]) each alternative previously identified is moved to a
different actor (see A1 and A2 dependencies in Fig. 4). Thus, in our Medi@ example,
we will have two SR i* models representing different configurations of system and to
be considered in the next activity. For the sake of space, here we present both

Proceedings of the 4th International i* Workshop - iStar10

6

alternatives in the same model. In fact, different SR models should have been used to
represent each alternative. But an interested reader can easily extract them.

Medi@
AdaptabilityInternet

Shop
Managed

Availability

Adaptation

Produce
Statistics

Attract New
Customers

Internet
Orders

Handled

Item
Searching
Handled

Catalog
Consulting

Query
Database

Security

Shopping
Cart

Item to be
Selected

Add Item

Check
OutGet Item

Detail

Keyword
Search

Catalogue

Choose
Availabl
e Item Choose Non-

Available
Item

D

Statistics
Producer

D

Profile
Manager

Help

D D

D D

DD

Query
Database

Database

D

D

Get Item
DetailD

Details
Identifier

Use Form
with

Encryption

Use
Standard

Form

Security

SecuritySecurity

Security

Identification
Details

Collected

Identification
Details

Collected

Identification
Details

Collected

Identification
Details

Collected

D

D
DD

D

D

D

D

H
ur

t

Help

Details
Identifier

A1

A2

D

Fig. 4 – Modular i* model after model transformations.

4 Discussion

The aspectual approach contributes to increase modularity of i* models and, as
demonstrated by the application of the metrics in [1], the number of concerns in a
single module was reduced. Also, the models’ visual complexity decreased, which
may improve model understandability. This approach was applied to two case studies:
the meeting scheduler problem [2] and a web-based information system [1].

However, the approach relies on aspect oriented principles. The big disadvantages
of this strategy is the need to introduce new elements (namely aspects) in the original
i* semantics. If the reader is familiarized with the aspect oriented principles this is not
a cognitive burden. Otherwise some learning curve is required.

The second modularization approach relies on model transformations. The
evaluation results demonstrated that it also promotes reduction of complexity in i*
models. Besides, the proper definition of rules (for example in OCL, QVT or ATL)
enables the semi-automatic derivation of modular i* specifications as well as can
contribute to keep traceability among software artifacts. Note that since it does not
introduce new elements to the i* syntax/semantics it is of easier adoption. This
approach was applied to two case studies: a web-based recommendation system [10]
and a web-based information system [9].

Both approaches can be used in a complementary way. The second approach could
be used to decompose a system actor overloaded of responsibilities into several new

Improving the Modularity of i* Models

7

system actors, whereas the first approach could be used to identify the crosscutting
concerns present in the i* models and separate them into aspectual elements.

5 Ongoing and Future Work

Currently we are evolving the Istar Tool [7] to support our modularity approaches. As
future work, we intend to unify our approaches to decrease complexity, and to
increase modularity and separation of concerns in i* models.

The identification of suitable metrics for goal modeling is also advancing, as other
case studies are performed in an experimental setting. We also need to validate the
metrics. We plan to define a trade-off analysis method to complement the aspectual i*
process and to investigate the use of modularized i* models to support early
architectural design. We aim at the decrease of coupling and improvement of
separation of concerns, issues which are critical when dealing with large and complex
projects. We also plan to evaluate and improve the quality of i* models [10].

References

1. Alencar, F., Castro, J., Lucena, M., Santos, E., Silva, C., Araújo, J., Moreira, A.: Towards
Modular i* Models. Requirement Engineering Track at 25th ACM symposium on Applied
Computing, SAC 2010. pp. 292-297 , Sierre, Switzerland (2010).

2. Alencar, F., Moreira, A., Araújo, J., Castro, J., Silva, C., Mylopoulos, J.: Towards an
Approach to Integrate i* with Aspects. 8th Intl. Bi-Conference Ws. on Agent-Oriented
Information Systems, AOIS’06 at CAISE’06. pp. 183-201, Luxembourg, June (2006).

3. Castro, J., Kolp, M. and Mylopoulos, J.: Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Information Systems Journal, Elsevier, Vol 27:
365--89 (2002).

4. Estrada, H., Rebollar, A., Pastor, O. and Mylopoulos, J.: An Empirical Evaluation of the i*
Framework in a Model-Based Software Generation Environment. In: CAiSE’06, LNCS
4001, Springer, pp. 513--527 (2006).

5. Filman, R., et al..: Aspect- Oriented Software Development. Addison-Wesley (2005)
6. Grau, G., Franch, X., Maiden, N. A. M.: PRiM: An i*-based process reengineering method

for information systems specification. In: Information and Software Technology, v. 50, pp.
76-100 (2008).

7. IstarTool Project: A Model Driven Tool for Modeling i* models. Available at
http://portal.cin.ufpe.br/ler/Projects/IstarTool.aspx, Mar (2010) .

8. Lucena, M., Silva, C., Santos, E., Alencar, F., Castro, J.: Applying Transformation Rules to
Improve i* Models. In Software Engineering and Knowledge Engineering (SEKE 2009).
pp. 43-48 , Boston, USA (2009).

9. Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., and Pimentel, J.: A Model
Transformation Approach to Derive Architectural Models from Goal-Oriented
Requirements Models. 8th Int. Ws. On System/Software Architectures (IWSSA'09) LNCS.
Berlin, Heidelberg: Springer, vol. 5872, pp. 370--380 (2009).

10. Ramos, R., et al.: AIRDoc-Approach to Improve Requirement Documents. In: XXII
Brazilian Symposium on Software Engineering (SBES’08), pp. 1--16 (2008) .

11. Yu, E.: Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis.
Department of Computer Science, University of Toronto, Canada (1995).

Proceedings of the 4th International i* Workshop - iStar10

8

