
From i* to OO-Method: Problems and Solutions

Fernanda Alencar
1
, Beatriz Marín

2
, Giovanni Giachetti

2
, Emanuel Santos

1
,

Oscar Pastor
2
, Jaelson Castro

1
, Xavier Franch

3

1Universidade Federal de Pernambuco, Av. Prof. Luiz Freire s/n, 50740-540, Recife, Brazil

fernanda.ralencar@ufpe.br, {ebs, jbc}@cin.ufpe.br
2Universidad Politécnica de Valencia, Camino de Vera s/n, CP:46022, Valencia, Spain

{bmarin, ggiachetti, opastor}@dsic.upv.es,
3
Universitat Politècnica de Catalunya, Omega-122, CP: 08034, Barcelona, Spain

franch@lsi.upc.edu

Abstract. Nowadays, the successful development of software products depends

on a good understanding of the system requirements. The i* framework offers

expressive models to capture social and intentional characteristics in an organi-

zational context. However, there is a well-known gap between intentional i*

models and other conceptual models used for software development. In order to

reduce this gap, we have developed a transformation process to obtain from i*

models an appropriate input for the OO-Method Model Driven approach. In this

paper, we present the problems detected from the application of this transforma-

tion process and the possible solutions, which are oriented to improve the

alignment of i* and OO-Method conceptual models.

Keywords: Goal-Oriented Requirement Engineering, i*, Requirement trans-

formations, OO-Method, Model-Driven Development.

1 Introduction

Currently, an appropriate requirement specification is a key aspect for the correct

development of software systems [9]. Requirements specification should include not

only software specifications, but also multiple complementary views: intentional,

structural, behavioral, functional, presentational, etc.

Goal-Oriented Requirements Engineering (GORE) stood out because it is mainly

concerned with the stakeholder intentions and their rationales. Among the several

GORE works, we have chosen the i* framework [17] because it is a consolidated

modeling technique with good tool support [7], and an abstract syntax formalized by a

metamodel specification [10].

Nonetheless, it is still an open question the relationship between the intentional

models described in terms of i* and the remaining conceptual models (e.g. structural,

behavioral, functional, presentational views) used in other well-known model driven

approaches.

9

 In this paper we report on lessons learnt with a collaborative project1, which aims

at relating i* and the OO-Method approaches. The OO-Method is used as a reference

MDD technology because it has been successfully applied to industrial software de-

velopment [14] by means of the OlivaNova suite [3].

This rest of this paper is organized as follows: Section 2 presents our approach.

Section 3 presents some problems that have arisen in the application of this approach

and the solutions proposed for these issues. Finally, section 4 presents our conclusions

and further work.

2 Relating i* and OO-Method Approaches

We propose a transformation process presented with the Business Process Modeling

Notation (BPMN [13]) and composed by two sub-process, i* Models Analysis and

Transformation Guidelines (further details in [1] and [2]), to obtain an OO-Method

class model from an i* model (see Fig. 1).

Identification of

processes to

be automated

T
ra

n
s
fo

rm
a

ti
o

n
 G

u
id

e
lin

e
s

Classes

Identification

Attributes

Identification

i*
 M

o
d

e
l
A

n
a

ly
s
is

Services

Identification

Relationships

Identification

The highlighted

elements in the i* model

Guidelines 1.1

and 1.2

Guidelines 2.1

and 2.2

The conceptual

 classes

The classes’

attributes

Guidelines 3.1

and 3.2

Guidelines 4.1,

4.2 and 4.3

The classes’

services

The initial

class model

Is there any

process to

automatize?

List of processes

to be automated

Elements

highlighted in

the i* model

NO

YES

The i* SR model without

 the system actor

Highlight the

elements to

be stored by

the system

T
ra

n
s
fo

rm
a

ti
o

n
 P

ro
c
e

s
s

1 CAPES-DGU: Integration of Organizational Modelling Techniques to Software Automatic

Generation: OO-Method Case (in Portuguese). 2nd partial report. Ministério da Educação,

Coordenação Geral de Cooperação Internacional Programa Brasil-Espanha da CAPES/DGU.

Processo Nº 167/08, Brazil, 2010

Fig. 1. The transformation process modeled with BPMN [13]

Initially, we analyze the goals defined in the Early SR model (see Fig.1, first ac-

tivity: Identification of processes to be automated) to capture the organizational

processes that we want to automate. Then, if there is any process to be automated, we

highlight the intentional elements that are related to these processes (goals and tasks

in the i* model). Those elements will be related to the information and/or entities to

be implemented by the intended system. From the list of identified intentional ele-

ments we obtain an initial skeleton of OO-Method conceptual model through the

application of a set of transformation guidelines (second sub-process, see Fig.1).

Table 1 depicts a summary of the transformation guidelines that are used to explain

the problems presented in this paper, which is a subset of the guidelines presented in

[2]. This table shows the i* constructs involved in the transformation, the additional

Proceedings of the 4th International i* Workshop - iStar10

10

information that must be considered to perform the transformation, and the target

constructs of the OO-Method class model.

Table 1. Guidelines for the transformation of i* models into OO-Method class models.

i* Construct Additional Information Class Model Construct

Actor Class

Resource

Physical entity Class

Informational entity related to a physical
resource or an actor

An attribute that represents information of the
class generated from the actor or physical resource

Resource in a decomposition tree
Input arguments for the service generated from the

related task

Dependum resource Input argument of the depender task

Physical entity inside of an actor boun-

dary

An association between the classes generated from

the physical resource and the owner actor

Task

Participating in a resource dependency
as depender or dependee

A service of the class generated from the depen-
dum resource

If generates a resource
A creation service of the class generated from the

resource

Dependency

link

Where the dependum resource and the
depender and dependee actors are trans-

formed in classes

Associations are automatically defined among the

generated classes

In order to illustrate, we present a brief example i* model (see Fig. 2) that is de-

fined from the OO-Method case study presented in [11], which is related to the opera-

tion of a Photography Agency. This case study is also used in [1, 2]. In particular, the

presented i* model shows the reception of work requests (i.e. job applications) from

photographers that want to be hired. Due to space constraints, only a simplified ver-

sion of the complete case study is presented. It is important to mention that, in the

complete i* model, not all the i* elements are involved in the transformation process.

Only those elements that are related to the intended system are considered (i.e. the

involved actors).

Fig. 2. A illustrate example

From i* to OO-Method: Problems and Solutions

11

3 Some Problems and Solutions

In this section, we show some of the most relevant problems identified to perform an

automatic transformation of i* models into OO-Method Class Diagram, as suggested

by the previously guidelines. For each issue a particular solution is proposed.

Problem 1. It is not possible to automatically infer if a resource corresponds to a

physical or an informational entity. Since a physical entity is transformed into a class

and an informational entity is transformed into an attribute, this distinction must be

established. As a solution, we propose to extend resources with an attribute which

defines the its type because we pretend.

Problem 2. Differences in the Abstraction levels of i* and OO-Method. The i* re-

quirements technique is oriented to capture aspects of the strategies and intentions

involved in the relationships among actors (stakeholders), while the OO-Method is

concerned with the representation of the functionality of the intended software sys-

tem. Note that there is some abstraction gap. Furthermore, the transformation guide-

lines should only consider the subset of i* elements that are required for the genera-

tion of an initial OO-Method class model. However, it is very important to keep the

traceability information between i* and OO-Method models. One possibility is to

define an auxiliary model to record the traceability data. This intermediate model

could be used specially for those i* elements that do have direct representation in the

OO-Method class model, e.g. goals.

Problem 3. Two or more kind of elements of the i* model can be transformed into the

same kind of element of the OO-Method class model. As Table 1 shows that both

actors and resources may be transformed into classes. Therefore, if we examine only

the Class Diagram it is not possible to determine if it has been generated from an i*

actor or resource. In other words, the traceability between the conceptual representa-

tion of the system and the corresponding requirement element is lost. This problem

could also be solved by the intermediate model introduced as solution for the problem

2.

Problem 4. Some relevant information of the i* model may be lost in the transforma-

tion process. After the application of the transformation guidelines, it is not possible

to identify from the generated Class Models: (i) which elements are related to the

depender, dependeee, and dependum in the dependency links; (ii) the involved tasks

decompositions; (iii) the services that are representing a means at the i* models to

preserve the means-end-links. The intermediate model presented as solution for prob-

lems 2 and 3 can also store the mapping required to identify these elements from the

generated class model.

Problem 5. It is not possible to directly specify which elements of the i* model must

be automated. According to the proposed transformation process (see Section 2), the

transformation guidelines are only applied to those i* elements that must be auto-

mated into the software system. Thus, to capture this information, we propose to use a

metamodel extension mechanism to label the corresponding i* model, for instance,

such a UML profile [5]. In addition, the metamodel extension mechanism can also be

Proceedings of the 4th International i* Workshop - iStar10

12

used to add the additional properties that are required to automate the transformation

guidelines, such as the additional property that is required to solve Problem 1.

Problem 6. The cardinalities of the associations between classes cannot be automati-

cally inferred. This problem is due to the difference in the abstraction level of i* and

OO-Method models. As a solution, we propose the introduction of a new property in

the i* model that allows the cardinality of the association among the generated classes

to be automatically inferred. In fact in the context of Software Product Line develop-

ment we have already proposed an i* extension that deals with cardinality (the so

called i*-c) [16].

4 Conclusions and Further Work

In this paper we outline our attempt to relate intentional information described in

terms of i* models and OO-Method conceptual models. Moreover, we highlight some

shortfalls and discuss possible solutions for some of the identified problems.

Our proposal defines guidelines which be automated as well as some procedures

which are semi-automatic or even manual, i.e. require human intervention [2]. The

solutions presented in this paper are oriented towards the fully automation of the

process. Thus, we want to minimize the dependency on highly experienced analysts

and designers to manually transform the requirements models into appropriate OO-

Method models.

Initial results of our approach are presented in [6]. However, it is important to note

that the quality of the GORE (i*) models directly affects the quality of OO-Method

conceptual models. In our proposal, we assume that the i* models are of high stan-

dard, i.e. do not present defects (omissions, inconsistency, erroneous facts, ambi-

guous, etc.). However, this assumption may be unrealistic. Thus, we are also working

in proposal to evaluate the quality of requirements models [4, 15].

As future work, we plan to apply the transformation guidelines to different case

studies in order to evaluate the correctness and completeness of our proposal. In addi-

tion, we plan to formalize and automate the guidelines using metamodeling standards

(such as MOF [12]) and model-to-model transformations technologies (such as ATL

[8]). Finally, we also consider the definition of metamodel extensions for the i*

framework in order to improve the modeling facilities for MDD environments and to

completely automate the transformation of GORE models since we intend to preserve

the automate trace between rationales and the data design.

References

1. Alencar, F., Pastor, O., Marín, B., Giachetti, G., Castro, J.: Aligning Goal-Oriented Re-

quirements Engineering and Model-Driven Development. Poster in the 11th International

Conference on Enterprise Information Systems (ICEIS´09), May, Milan, Italy (2009)

2. Alencar, F., Pastor, O., Marín, B., Giachetti, G., Castro, J., Pimentel, J.: From i* Require-

ments Models to Conceptual Models of a Model Driven Development Process. 2nd W.

Conf. on the Practice of Enterprise Modeling (POEM´09), Stockholm, Sweden (2009)

3. Care Technologies Company. Available at www.care-t.com. Last access: March (2010).

From i* to OO-Method: Problems and Solutions

13

http://www.care-t.com/

4. Franch, X.: A Method for the Definition of Metrics over i* Models. In: 21st Int. Conf. on

Advanced Information Systems (CAiSE 2009), pp. 201--215a. Springer-Verlag LNCS

(2009)

5. Giachetti, G., Marin, B., Pastor, O.: Integration of Domain-Specific Modeling Languages

and UML through UML Profile Extension Mechanism International Journal of Computer

Science and Applications, vol. 6 nº 5, 145--174 (2009)

6. Giachetti ,G., Alencar, F., Marín, B., Pastor, O., Castro J.: Beyond Requirements: An Ap-

proach to Integrate i* and Model-Driven Development. In: XIII Ibero-American Confe-

rence on Software Engineering (CIbSE2010), April, Cuenca, Ecuador (2010)

7. Grau, G., Franch, X., Ávila, S.: J-PRiM: A Java Tool for a Process Reengineering i* Me-

thodology. In: RE 2006: p.352--353 (2006)

8. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science

of Computer Programming, vol. 72 nº 1-2, 31--39 (2008)

9. Lamsweerde, A.v.: Systematic Requirements Engineering - From System Goals to UML

Models to Software Specifications. Wiley, (2008).

10. Lucena, M., Santos, E.,Silva, M. J. , Silva, C., Alencar, F. , Castro, J.: Towards a Unified

Metamodel for i*. In: 2nd IEEE Int. Conference on Research Challenges in Information

Science (RCIS'08), Marrakech. Proceedings of the RCIS'08, pp. 237--246 (2008)

11. Marín, B., Giachetti, G., Pastor, O.: The Photography Agency: A case study of the OO-

Method Approach. Technical Report DSIC-II/13/08, Universidad Politécnica de Valencia,

Valencia, España (2008)

12. OMG: MOF 2.0 Core Specification (2006)

13. OMG: Business Process Modeling Notation version 1.1 (2008)

14. Pastor, O. and Molina, J. C.: Model-Driven Architecture in Practice: A Software Produc-

tion Environment Based on Conceptual Modeling, Springer-Verlag 1st ed., Springer, New

York, New York (2007)

15. Ramos, R.A.: AIRDoc - An Approach to Improve the Quality of Requirements Documents:

Dealing with Use Case Models. PhD Thesis. Federal University of Pernambuco, (2009)

16. Silva, C., Borba, C., Castro, J.: G2SPL: A Goal Oriented Requirements Engineering

Process for Software Product Line (In Portuguese: G2SPL: Um Processo de Engenharia de

Requisitos Orientada a Objetivos para Linhas de Produtos de Software). In: Proceedings of

13th Workshop on Requirements Engineering (WER’10) (2010)

17. Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD Thesis, Univer-

sity of Toronto, Toronto, Canada (1995).

Proceedings of the 4th International i* Workshop - iStar10

14

http://www.informatik.uni-trier.de/~ley/db/conf/re/re2006.html#GrauFA06

