
Requirements Engineering for Control Systems

Dominik Schmitz1, Hans W. Nissen2, Matthias Jarke1,3, and Thomas Rose1,3

1 RWTH Aachen University, Informatik 5, Ahornstr. 55, 52056 Aachen, Germany
{schmitz,jarke}@dbis.rwth-aachen.de

2 Cologne University of Applied Sciences, Institute of Communications Engineering,
Betzdorferstr. 2, 50679 Köln, Germany hans.nissen@fh-koeln.de

3 Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
thomas.rose@fit.fraunhofer.de

Abstract. In this paper, we report on the application of i* to the com-
bined capture of control system and software requirements in the context
of software-intensive controllers for engines in the automotive domain.
Our work has revealed the need to explicitly represent concrete domain
knowledge. Revolving around the notion of “domain models”, several
contributions have been made: a domain model-based approach to re-
quirements capture to speed up the modeling process, a model-based
similarity search to support reuse, advanced support to cope with the
evolution of domain knowledge (and thus domain models), and the in-
tegration into the further development by establishing a transformation
link toward mathematically-founded tools such as Matlab/Simulink.

1 Introduction

Control system functionality, for example in cars, increases the comfort and
safety of driving a car or reduces the fuel consumption and exhaust gas emis-
sions. Experiences and knowledge in physics, mathematics, and control theory
are required to design a stable controller with good performance. While for many
years the control systems for vehicle engines were designed solely by control en-
gineers, in the last decade it has been recognized that massive reductions in
pollution and gas consumption as well as advanced driver assistance systems
can only be realized if software-based controls are embedded in these systems.
However, control systems development continues to be different from software
systems development. In the following we shortly present some major differences
that had an impact on our work.

In industrial practice, the development process is still mainly driven by con-
trol system engineers. They design the platform and architecture purely driven
by functional considerations. Software engineers are involved only at the imple-
mentation phase to efficiently implement the control algorithms. The software
engineers reject this approach and argue that a system’s structure should fol-
low from the consideration of non-functional requirements (NFRs) in order to
implement safe, reusable, and efficient systems. NFRs are currently to a large
degree ignored by control system engineers.

87



Interestingly both disciplines claim to pursue model-based approaches but
with a quite different understanding of the main concepts. For control system
development, the model of the controlled system, e. g. the engine, is at the center
of interest and a model is always expected to be executable in mathematical
tools such as Matlab/Simulink. In contrast to this, within software engineering
models usually describe the system to be developed. In addition, whereas the
design is entirely model-based, at the level of requirements textual approaches
still prevail in the control systems domain. Software engineers on the other hand
prefer model-based requirement specifications, in particular goal-based, to enable
a better structuring, traceability and a smarter transition from requirements to
subsequent development steps.

Eventually, in the control systems development sector, small- and medium-
sized enterprises (SMEs) play an important role as innovation drivers that per-
form individual engineering tasks for multiple customers. Their development
process is typically initiated by a customer who asks for the development of a
controller for a new engine. The time frame for the supplier to respond with a
competitive offer is very short. After capturing the requirements from a devel-
oper’s point of view, a first system design is needed in order to estimate costs.
To keep the development costs low and to win the contract, the supplier must
reuse as many software artifacts and simulation models as possible from previous
projects. But, if after winning the contract in later design phases it is discovered
that the selected components are in fact not reusable, their new development
may result in a project loss. Thus, a very careful investigation has to take place.

2 Objectives of the Research

The core aim of the ZAMOMO project “Integrating model-based software and
model-based control systems engineering” is to improve the interaction of con-
trol engineers and software engineers. In particular, interdisciplinary issues – the
lack of mutual understanding, colliding uses of terminology, the strict separation
of the development processes – need to be addressed. Furthermore, the model-
based development of controllers needs to be completed in regard to model-based
requirements engineering, while accounting for some particularities of control
systems such as the importance of sensors and actuators. The modeling formal-
ism should include means to cope with non-functional requirements as they have
received insufficient attention during control system development yet. Eventu-
ally, control system development is indeed a very customer- and project-oriented
business. Although similar on an abstract level, engines always differ in detail,
thereby precluding long-term planning of product lines due to the individuality
of the developed solutions. Accordingly, a project-oriented approach supporting
a fast and reliable identification of reusable components must be established.
Furthermore, there is a high frequency of innovations in this field. The knowl-
edge changes and grows quite fast. With each new development project, new
engine components, sensors, actuators, and construction styles may arise. The
according knowledge must fast and easily be made available to the developers.

Proceedings of the 4th International i* Workshop - iStar10

88



3 Scientific Contributions

Combined Investigation of Control and Software Requirements We propose i*
as a common notation for control system and software requirements [4]. The few
and simple modeling constructs, in particular “goals” and “agents”, address in-
terdisciplinarity. The model-based approach fills the gap in the otherwise already
entirely model-based development of control systems. Softgoals allow to consider
non-functional requirements explicitly. And also the important concepts “sensor”
and “actuator” can be represented suitably (via resource dependencies).

Requirements Specification Based on i* Domain Models To address the need for
fast requirements capture, we propose to establish a specific domain i* model
reflecting the knowledge and experiences in a particular field the SME is special-
ized in. Certainly, it is up to the SME to introduce separate models for different
(sub)fields it is active in. A domain model serves as a suitable starting point for
the creation of a problem-specific requirement model [5]: the engineer eliminates
the parts from the model that do not apply for the current project and adds new
elements that are specific to the project at hands. This way rapidly a require-
ments model of the new control problem can be established. It is composed of
reused parts from the domain model and project-specific extensions.

Similarity Search To support a competitive and reliable cost calculation a simi-
larity search is provided that helps identifying similar projects and hence reusable
components [5]. Unfortunately, a fully automated identification of reusable soft-
ware artifacts is not possible due to the complexity and variance in details. But
our domain model-based search algorithm reduces significantly the number of
finalized projects the engineer has to inspect in detail. The domain model forms
a necessary premise for the search since it ensures consistency of models across
several projects. For the technical realization, we refer to the formalization of i*
in Telos and the corresponding tool support ConceptBase [1]. This allows to de-
fine comparison queries referring to standard domain features as well as project-
specific model extensions. The comparison of the outcome of these queries for
the current project with the outcome for finalized earlier projects results in a
ranking of the finalized projects based on the number of similar features. The
engineer can then focus the higher ranked projects and investigate them in detail
to decide about reusability.

Support for Evolving Domain Models The usefulness of a domain model depends
heavily on its adequacy for the day-to-day work of the engineers [3]. Neither
overly large nor too small domain models are helpful. In the first case, the need
to delete large portions of the modeling jeopardizes the advantages in regard to
a fast requirements capture. Similarly, a too small model slows down the pro-
cess by requiring to model similar details over and over again. The latter also
adds to avoidable inhomogeneity of the modeling. Instead, a domain model must
suitably and continuously be tailored to the particular needs of the SME. Ad-
vances in technology can easily be adopted by simply reflecting the findings via
modifications of the domain model. But the more interesting changes result from

Requirements Engineering for Control Systems

89



the SME’s individual experiences within customer projects. If a certain project-
specific extension has been added several times or if parts of the domain model
have always been deleted within the recent past, these are obviously good can-
didates for extensions and reductions of the domain model, respectively. While
reductions can be identified quite easily, the detection of similar project-specific
extensions is more complicated. A first heuristic compares the “anchor objects”
of a project-specific extension in the domain model for different projects [2].
Anchor objects are the modeling objects of the domain model to which the
project-specific extension is connected. After adopting such a project-specific
extension into a domain model, we provide measures to reestablish the accuracy
of the similarity search.

Transformation of Requirements Models to Later Development Phases By again
building on the formalization in Telos, partially automated support for the trans-
formation to Matlab/Simulink is provided [6]. After manually resolving design
alternatives, a Matlab/Simulink skeleton model is generated from the i* model.
Since the conceptual model behind Simulink models is rather simple (block dia-
grams), the matching of concepts is straight forward. Most importantly, various
i* relationships are mapped on the nesting of corresponding “system” blocks.
The mapping can interactively be improved by incorporating existing hardware
and platform components from SME specific Matlab libraries.

4 Conclusions

The feedback from control engineers both from academia as well as industry
within the project context has been very encouraging. The control engineers got
rather fast familiar with the requirements representation and saw advantages
due to the broader span of issues that is representable in i* compared to their
specific formalisms, e. g. block diagrams. The industrial partner pointed out the
unsatisfactory maturity of the tool support. In particular, they miss a clear
guideline when to apply which modeling construct and how to cope with really
large i* models. The domain model related support facilities have been very
much embraced, maybe in particular since they provide a kind of such guidance.
Furthermore a domain model allows an SME to capture consolidated and specific
engineering knowledge originating in former customer projects. Together with
the similarity search this provides a means to support reuse and to cope with
variability while still remaining flexible, innovative, and in particular customer-
and project-oriented at the core.

5 Ongoing and Future Work

The ideas on how to support the evolution of domain models have just been
started in [2]. From our current experiences we expect that the proposed heuristic
to detect similar project-specific extensions (based on anchor objects) needs to be
combined with several other heuristics to provide for sensible suggestions. Text

Proceedings of the 4th International i* Workshop - iStar10

90



related issues as well as heuristics that take i* structural modeling information
into account are conceivable.

Furthermore, to match with the importance of simulation during the later
control system development, simulation means at requirements level have to be
established. Also the characteristics and features of i* in particular in regard
to the sociality of actors needs to be closer investigated in the context of this
more technical setting where most actors do not represent humans but artificial
components.

Eventually, the application of the domain model based requirements engineer-
ing approach has been exemplified here for the field of control systems. While a
concrete domain model is as a matter of course domain specific, we assume that
in many other engineering disciplines with similar characteristics as control sys-
tems development – customer-oriented development projects, high enforcement
of reuse, high frequency of innovations – the basic ideas behind our approach
are applicable as well. Targeted examples are access control and burglary warn-
ing systems for buildings or the construction and set-up of flexible automated
manufacturing systems. The claim for a broader applicability of the proposed
domain-model based approach needs to be confirmed in additional case studies,
for example, in the above mentioned fields.

Acknowledgment. This research was in part funded by the German Ministry of

Education and Research (BMBF) on the project ZAMOMO, grant 01 IS E04. Thanks

to our project partners Dirk Abel, Peter Drews, Frank J. Heßeler, Stefan Kowalewski,

Jacob Palczynski, Andreas Polzer, and Michael Reke.

References

1. M. A. Jeusfeld, M. Jarke, and J. Mylopoulous, editors. Metamodeling for Method
Engineering. MIT Press, 2009.

2. H. W. Nissen, D. Schmitz, M. Jarke, and T. Rose. How to keep domain require-
ments models reasonably sized. In 2nd Int. Workshop on Managing Requirements
Knowledge (MaRK), pages 50–59, Atlanta, USA, 2009. IEEE.

3. H. W. Nissen, D. Schmitz, M. Jarke, T. Rose, P. Drews, F. J. Hesseler, and M. Reke.
Evolution in domain model-based requirements engineering for control systems de-
velopment. In 17th Int. Requirements Engineering Conference, pages 323–328, At-
lanta, USA, 2009. IEEE.

4. D. Schmitz, P. Drews, F. Hesseler, M. Jarke, S. Kowalewski, J. Palczynski, A. Polzer,
M. Reke, and T. Rose. Model-based requirements capture for software-based control
systems (in German). In Software Engineering, Feb. 18-22, LNI P-121, pages 257–
271, Munich, Germany, 2008.

5. D. Schmitz, H. W. Nissen, M. Jarke, T. Rose, P. Drews, F. J. Hesseler, and M. Reke.
Requirements engineering for control systems development in small and medium-
sized enterprises. In 16th Int. Requirements Engineering Conference, pages 229–234,
Barcelona, Spain, 2008. IEEE.

6. D. Schmitz, M. Zhang, T. Rose, M. Jarke, A. Polzer, J. Palczynski, S. Kowalewski,
and M. Reke. Mapping requirement models to mathematical models in control
system development. In 5th Europ. Conf. Model Driven Architecture (ECMDA-
FA), LNCS 5562, pages 253–264, Enschede, The Netherlands, 2009. Springer.

Requirements Engineering for Control Systems

91




