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ABSTRACT

We introduce a simple approach for using Gaussian processes to
model human motion involving contact. It comprises a low dimen-
sion latent space with dynamics augmented by switching variable.
A Gaussian process models the time relationship of a motion while
the switching variable helps model the discontinuities created by
interaction with the environment.

1 INTRODUCTION

Generating realistic and lifelike animated characters from captured
motion sequences is a hard and time-consuming task. The task is
challenging due to the high dimensionality of human pose data and
the complexity of the motion. Gaussian processes (GP) are useful
for modeling the dynamics of human movement when combined
with a latent variable model to approximate the lower dimensional
manifold of human motion. These models alleviate the difficult
problem of explicitly modeling physics and control, while provid-
ing a means of predicting behaviour, with applications in tracking
and motion capture reuse.

The GP model will give good predictions if the latent trajecto-
ries are smooth. However, in many cases, the latent trajectories are
not smooth because they include abrupt changes when the actor’s
body motion suddenly changes. It occurs often when a knee or an
elbow joint reaches its full extent and locks or again when the actor
interacts with the environment. These interactions can be as simple
as stepping on the floor, pushing or pulling an object. Our solution
borrows ideas from Switching Gaussian Process Dynamical Model
(SGPDM) [1]. However, instead of using the switching variable
to separate different motions, say walking and running, we use the
switching variable to separate the nonsmooth dynamics acting on
the motion into distinct sets. This separation further permits the use
of simpler techniques such as principal component analysis (PCA)
to reduce the dimension of the original problem.

2 APPROACH

We represent 3D human motion as a sequence of joints angles to
describe how the pose changes over time, thus, a pose can be pack-
aged in a vector, and a motion in a matrix. Assuming a first order
Markov dynamic, modeling human motion is the task of computing

p(qt+1|qt),

where qt+1 denotes the next pose following the current pose, qt .
However, due to the high dimensionality of a pose, over 60 dimen-
sions, most modeling techniques yield poor results. It is preferred
to reduce the size of the input space.

We reduce the dimension of the space with a linear mapping

zt = f (qt),

where q is the pose and z its low dimensional latent coordinates.
Since f is a linear transformation, we can chose f such that its
inverse f−1 exists and use it to transform latent coordinate back to
poses

q′t = f−1(zt).
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Figure 1: Effect of PCA Reduction on foot location over a walking
sequence of 125 poses. The blue curve depicts the cumulative en-
ergy for a specific dimension. The red curve shows the mean error
on the foot location of the reconstructed sequence in comparison to
the original sequence. The error bars show 2 standard deviations.

The result, q′t , is not equal to the original pose because f is a pro-
jection and the inverse does not reconstruct the original full space.

Figure 1 illustrates the trade off between the latent space dimen-
sion and the resulting reconstruction error at an end effectors of the
body. Because of the hierarchical description of joints and angles
of a pose, the error is accumulated as a body part is deeper in the
hierarchy. Consequently, the error is greater at the feet and hands.
As such, we use discrepancies of the foot location in qt and q′t as
an indicator of the overall quality of the mapping. We choose to
use the three first principal component of the observed pose data as
transformation f because this captures 90% of the variation in the
original motion (see Figure 1).

With dimension reduction, the model simplifies to

p(zt+1|zt).

We will model the time dependence between two consecutive poses
with a GP. This is a non-parametric approach for solving regression
problem.

Given a training motion sequence Q ∈ RNxD, and its latent se-
quence f (Q) = Z ∈ RNxd , we can model the dynamics with

p(Z+|Z−,θ) =
exp
(
− 1

2 trace(ZT
−K−1Z−)

)√
(2π)(N−1)d |K|d

,

where K is the process kernel (covariance of the inputs), θ the ker-
nel’s hyper parameters, and Z+ = [z2, ...,zN ]

T is the vector of states
that follow Z− = [z1, ...,zN−1]

T . The GP is maximized via

θ = argmax
θ

p(Z+|Z−,θ)

by optimizing the log likelihood of p(Z+|Z−,θ) using scaled con-
jugate gradient methods. Once trained we obtain

p(zt+1|zt) = N(µ(zt),σ
2(zt)),

µ(z) = ZT
+K−1k(z,Z−),

σ
2(z) = k(z,z) − k(z,Z−)T K−1k(z,Z−).
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Figure 2: Walk. from left to right: a pose, the trajectory in latent space, inference of the model with no switching, inference with switching. The
sequence consists of one and half cycles of walking for a total of 125 poses. The sequence is separated in 2 states S:contact with left foot (blue)
and contact with the right foot(yellow).

Figure 3: Rowing machine. from left to right: a pose, the trajectory in latent space, inference of the model with no switching, inference with
switching. The sequence consists of two and half cycles of paddling for a total of more than 200 poses. The sequence is divided into 3 states S:
pushing on the oars (yellow), pulling on the oars (blue) and pause between pushing and pulling (red).

where k(z,Z−) is the covariance function applied to the input z and
the training set inputs Z−. Details of each step are found in [2, 3].

The linear transformation and the Gaussian Process described so
far are sufficient to model some motions. Given an initial pose q0,
we seek qt the tth pose following q0. We start with z0 = f (q0) and
iteratively use the mean of the Gaussian process to obtain qt by

qt = f−1(zt),

zt = µ(zt−1).

2.1 Switching Models at Contact

The problem with the usual formulation of the GP model is that
it tends to smooth sharp turns in the trajectory. These discontinu-
ities are characteristic to the contact forces acting on the human in
motion, and those contacts should also be correctly modeled.

To cope with this predicament, we will add to the model a
switching variable s ∈ S to divide the motion into smaller subsets.
Each variable should describe a situation where specific contact
forces are in action. For example, in the walking situation we could
have 4 values, S = {no contact, left foot, right foot, both}.

The switching variable permits the decomposition of p(zt+1|zt)
along the values of S, and the training of |S| individual GP mod-
els [1]. Besides, a mapping from latent space coordinates to switch-
ing values can be expressed as a GP classification problem as ex-
plained in [2].

We can infer in this model the same way we did with the previous
formulation. The main difference being the use of more than one
Gaussian process. When stepping in the latent space zt = µ(zt−1),
we should only use the mean function of the GP trained along the
switching value of zt−1.

3 RESULTS

Figures 2 and 3 show two examples where model switching is of
benefit (a walking motion, and paddling motion on a rowing ma-
chine). The figures show the inference of 1000 poses using a model
without the switching variable, and 1000 poses using the switch-
ing variable. The differences of both models reside in the ability to
model the discontinuities of the trajectory. The main consequence
of smoothing the discontinuities for the walking sequence is the
accentuation of foot skating. For the paddling sequence, this con-
sequence is reflected in the elimination of the pause (red) between
the pushing and pulling movements.

4 CONCLUSION

We presented a way to model human motion and contact using
Gaussian processes and a switching variable. The models we pro-
duce are useful for generating arbitrary length sequences of cyclic
motion that can be adjusted to fit specific situations, and we have
the added benefit that the switching variable helps model discon-
tinuities due to contacts. One limitation is that we must label the
switches in the training data. As future work, it would be interest-
ing to use an unsupervised framework to choose labels that optimize
the fit of the model.
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