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Abstract

The evaluation of ASP programs is traditionally carriedioutvo steps.
The firstis called instantiation or grounding, and consistthe computation
of a ground program equivalent to the input one that, in tigrevaluated
by using a backtracking search algorithm in the second phas&antia-
tion is important for the efficiency of the whole evaluationight becomes
a bottleneck in common situations, and is particularly iuehen huge in-
put data has to be dealt with. Notably, performance impr@mscan be
obtained by developing parallel systems, which exploit eradnulti-core
multi-processor machines.

In this paper, we describe a dynamic heuristics for loadrzate and
granularity control devised for improving parallel instiation systems. We
implemented the new technique in the parallel instantiaé@ed on the DLV
system, and conducted an experimental analysis that canfsrafficacy.

1 Introduction

Inthe last few years, entry-level computer systems haveestéo implement multi-
core/multi-processor SMP (Symmetric MultiProcessinghaectures. In a mod-
ern SMP computer two or more identical processors can cotmecsingle shared
main memory, and the operating system supports multiteeadograms for ex-
ploiting the available CPUs [1]. However, most of the avaasoftware, that was
devised for single-processor machines, is unable to exghleipower of SMP ar-
chitectures. Recently [2, 3, 4, 5, 6, 7, 8], the parallel exbn technology has
been exploited for implementing faster evaluation systamntke field of Answer
Set Programming (ASP). ASP [9, 10, 11, 12, 13, 14] is a detarapproach to
programming proposed in the area of nonmonotonic reas@riddogic program-
ming which features a declarative nature combined with atively high expres-
sive power [15, 16].

Traditionally, the kernel modules of ASP systems work on @ugd instan-
tiation of the input program. Therefore, an input progr&idirst undergoes the
so-called instantiation process, which produces a progPasemantically equiv-
alent toP, but not containing any variable. This phase is computatiprexpen-
sive (see [14, 16]); thus, having an efficient instantiafioocedure is, in general,
crucial for the performance of the entire ASP systems. M@gesome recent ap-
plications of ASP (see e.g. [17, 18, 19, 20]), have eviderthegractical need for
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faster instantiators. It is easy to see that the exploitatibSMP systems in the
grounding process can bring significant performance imgr@nts. Indeed, an
effective technique for the parallel instantiation of AS®Bgrams exploiting SMP
systems was proposed in [7].

However, the efficacy of this method was limited to prograntk wany rules,
since, roughly, it allows for instantiating independeneslin parallel; but, a rewrit-
ing technique has been proposed in [8] that modifies the ipmgram in such a
way that the technique of [7] becomes applicable also in cigegrams with few
rules. The basic idea of [8] is to rewrite input rules at exiscutime in order to
induce a form of or-parallelism. This can be obtained, gizeuler, by “splitting”
the extension of one single body predicatef r in several parts. Each part is
associated with a different temporary predicate; and, dohef those predicates,
sayp;, a hew rule, obtained by replacingwith p;, is produced. The so-created
rules are instantiated in parallel in placeroby exploiting the parallel algorithm
of [7] (atrivial realign step gets rid of the new names to obthe intended output).
This rewriting technique can be exploited by any availaldeafel ASP instantia-
tor [3, 7], and it was successfully implemented [8] in a paiadASP instantiator
based on DLV [15]. Here the number of splits per rule was set gtobal user-
defined value, and the same value is used for each rule in iGpearly, this simple
strategy does not work well might in several cases. Indéedch process receives
a “too small” amount of work, then the costs added by paralelcution may be-
come larger than the benefits (because of thread creatioschaeduling overhead);
on the other hand, if the amount of work assigned to threatt®aslarge”, then
a resulting bad workload distribution will reduce the adeges of parallel eval-
uation. In this paper, we propose an advanced heuristi¢dstiable to improve
the efficiency of the parallel evaluation by automaticaketmining, rule by rule,
the amount of work that has to be assigned to each paraltehitistor. Moreover,
we implemented our heuristics in the parallel ASP instémtiaf [8], and we re-
port here the results of an experimental analysis that cogfthe efficacy of the
proposed method.

2 Answer Set Programming

In this section, we briefly recall syntax and semantics ofwersSet Programming.

Syntax. A variable or a constant ist@rm An atomis a(t4, ..., t,,), wherea is
apredicateof arity n andtq, ..., t,, are terms. Aiteral is either apositive literalp
or anegative literalmot p, wherep is an atom. Adisjunctive rule(rule, for short)
risaformulaa; vV --- V a, — by, -+ ,bg, not bgiq,---, not by,. where
ai, -+ ,anp, b1, -, by are atoms and > 0, m > k > 0. The disjunctiora; V
.-+ \V ay is theheadof r, while the conjunctiorb, ..., b;, not bgi1,..., not by,
is thebodyof r. A rule without head literals (i.ex = 0) is usually referred to as
anintegrity constraint If the body is empty (i.ek = m = 0), it is called afact
H(r) denotes the sdtuy, ..., a, } of the head atoms, and (r) the set{b,, ..., by,



not bg.1,...,not b, } of the body literals.B*(r) (resp.,B~(r)) denotes the set
of atoms occurring positively (resp., negatively)@tr). A rule r is safeif each
variable appearing in appears also in some positive body literal-of

An ASP programP is a finite set of safe rules. An atom, a literal, a rule, or
a program isggroundif no variables appear in it. Accordingly with the database
terminology, a predicate occurring onlyfiactsis referred to as aBDB predicate,
all others adDB predicates; the set of facts Bfis denoted by= D B(P).

Semantics. Let P be a program. Thelerbrand Universeand theHerbrand Base
of P are defined in the standard way and denoted’pyand Bp, respectively.

Given a ruler occurring inP, aground instancef r is a rule obtained from
by replacing every variabl& in r by o(X), whereo is a substitution mapping the
variables occurring im to constants irU/p; ground(P) denotes the set of all the
ground instances of the rules occurringAn

An interpretationfor P is a set of ground atoms, that is, an interpretation is a
subset/ of Bp. A ground positive literalA is true (resp.,fals@ w.r.t. 7'if A € [
(resp.,A ¢ I). A ground negative literahot A is truew.r.t. I if A is false w.r.t.
I; otherwisenot A is false w.r.t. I. Letr be a ground rule iground(P). The
head ofr istruew.r.t. I if H(r) NI # 0. The body ofr is true w.r.t. I if all body
literals ofr are true w.r.tz (i.e., B (r) C I andB~ (r) NI = () and isfalsew.r.t.

I otherwise. The rule is satisfied(or true) w.r.t. I if its head is true w.r.t1 or its
body is false w.r.t.Z. A modelfor P is an interpretatiorV/ for P such that every
ruler € ground(P) is true w.r.t. M. A model M for P is minimalif no model N
for P exists such thalV is a proper subset off. The set of all minimal models
for P is denoted byMM(P).

Given a ground prograr® and an interpretatior, thereductof P w.r.t. I is
the subsef’ of P, which is obtained fronP by deleting rules in which a body
literal is false w.r.t.I. Note that the above definition of reduct, proposed in [21],
simplifies the original definition of Gelfond-Lifschitz (Gltransform [9], but is
fully equivalent to the GL transform for the definition of arer sets [21].

Let I be an interpretation for a prografh I is ananswer sefor stable model)
for P if I € MM(P?) (i.e., I is a minimal model for the program’) [22, 9]. The
set of all answer sets fd? is denoted byAN S(P).

3 Paralld Instantiation of ASP Programs

In this Section we briefly recall some recently proposedngples ([7, 8]) for the
parallel instantiation of ASP Programs. In particular, wew that according to
such techniques, three levels of parallelism can be exlaitiring the instantiation
process, namely, components, rules and single rule lewe fifst level allows for
instantiating in parallel subprograms of the program irutngnd it is especially
useful when handling programs containing parts which amaehow, independent.
The second one, the rules level, allows for the paralleluatadn of rules within a
given subprogram and it is thus useful when the number of inlthe subprograms



is high. The third one, the single rule level, allows for ttegllel evaluation of a
single rule and it is thus crucial for the parallelizationppbgrams with few rules,
where the first two levels are almost not applicable. A dethilescription of these
techniques is out of the scope of this paper. For furtherildetae refer the reader
to [7, 8].

3.1 Components Level

The first level of parallelism, calleBomponents Levehas been described in [7]
and, essentially, it consists in dividing the input progr&nnto subprograms, ac-
cording to the dependencies among the IDB predicateB, and by identifying
which of them can be evaluated in parallel. More in detaiGheprogramP is
associated with a graph, called tBependency Grapbf P, which, intuitively,
describes how IDB predicates #f depend on each other. For a progrémthe
Dependency Grapbf P is a directed graplirp = (N, E), whereN is a set of
nodes and” is a set of arcsN contains a node for each IDB predicatefafand
E contains an are = (p, q) if there is a ruler in p such thaig occurs in the head
of r andp occurs in a positive literal of the body of

The graphG» induces a subdivision dP into subprograms (also calledod-
ules allowing for a modular evaluation. We say that a rule P definesa predi-
catep if p appears in the head of For each strongly connected component (SCC)
1C of Gp, the set of rules defining all the predicatesiis calledmoduleof C. A
rule r occurring in anoduleof a component (i.e., defining some predicate C)
is said to beecursiveif there is a predicatp € C occurring in the positive body
of r; otherwise,r is said to be arexit rule Moreover, a partial ordering among
the SCCs is induced b§p, defined as follows: for any pair of SCCs B of Gp,
we say thatB directly depends ol if there is an arc from a predicate dfto a
predicate ofB; and, B depends o if there is a path irGp from A to B.

According to such definitions, the instantiation of the inpuogram’® can
be carried out by separately evaluating its modules; if traduation order of the
modules respects the above mentioned partial orderingatsmall ground pro-
gram is produced. Indeed, this gives the possibility to asteaground instances of
rules containing only atoms which can possibly be derivethfP (thus, avoiding
the combinatorial explosion which can be obtained by ngigehsidering all the
atoms in the Herbrand Base).

Intuitively, this partial ordering guarantees that a compu A precedes a com-
ponentB if the program module corresponding fohas to be evaluated before the
one of B (because the evaluation of A produces data which are needetie€
instantiation of B). Moreover, the partial ordering allofes determining which
modules can be evaluated in parallel. Indeed, if two compiené and B, do not
depend on each other, then the instantiation of the comelspg program modules
can be performed simultaneously, because the instamtiafial does not require

LA strongly connected component of a directed graph is a mabénbset of the vertices, such
that every vertex is reachable from every other vertex.
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the data produced by the instantiation/®&nd vice versa. The dependency among
components is thus the principle underlying the first leigbarallelism. At this
level subprograms can be evaluated in parallel, but séletraluation of each sub-
program is sequential. Note that, for the sake of claritypebfied version of the
technique presented in [7] has been described. The origimais quite more in-
volved and takes into account also negative dependenciesgpredicates. Many
details have been omitted since they do not give additiorsadht for the compre-
hension of the idea underlying the technique.

3.2 RulesLevd

Concerning the second level of parallelism, Biges Levelin [7] a technique has
been presented allowing for concurrently evaluating thesrwithin each module.
According to this technique, rules are evaluated follovarsgmi-naive schema [23]
and the parallelism is exploited for the evaluation of both &nd recursive rules.
More in detail, for the instantiation of a modulé, first all exit rules are processed
in parallel by exploiting the data (ground atoms) computadnd) the instantiation
of the modules whictl/ depends on (according to the partial ordering induced by
the dependency graph). Only afterward, recursive rulepareessed in parallel
several times by applying a semi-naive evaluation tealmidit each iteratiom,
the instantiation of all the recursive rules is performedaorently and by exploit-
ing only the significant information derived during itematin — 1. This is done
by partitioning significant atoms into three setd:S, S and NS. NS is filled
with atoms computed during current iteration (sgy AS contains atoms com-
puted during previous iteration (say— 1); and, S contains the ones previously
computed (up to iteration — 2).

Initially, AS and NS are empty; whileS contains all the information previ-
ously derived in the instantiation process. At the begigroheach new iteration,
NS is assigned ta\.S, i.e. the new information derived during iteratieris con-
sidered as significant information for iteratiart- 1. Then, the recursive rules are
processed simultaneously and each of them uses the infomwintained in the
setAS; at the end of the iteration, when the evaluation of all risgégsrminated, the
setAS is added to the seéf (since it has already been exploited). The evaluation
stops whenever no new information has been derivedi.g.— ().

3.3 SingleRuleLeve

The techniques described above, concerning the first tveddef parallelism, are
very effective when handling with long programs, as confitralso by the experi-
mental analysis conducted in [7]. However, when the inpoij@m consists of few
rules, their efficacy is drastically reduced, and there ases where components

and rules parallelism is not exploitable at all.
Consider for instance the following prograf encoding the well-known 3-



colorability problem:

(r) col(X,red) V col(X,yellow) V col(X, green) :— node(X).
(¢) —edge(X,Y),col(X,C), col(Y,C).

The two levels of parallelism described above have no effentthe evaluation of
P. Indeed, this encoding consists of only two rules which havee evaluated
sequentially, since, intuitively, the instantiation (@f) produces the ground atoms
with predicatecol which are necessary for the evaluationof.

For the instantiation of this kind of programs a third leveehiecessary for the
parallel evaluation of each single rule, which is thereftatled Single Rule Level
To this aim, a strategy has been presented in [8] which alfowparallelizing the
evaluation of a rule on the base of a dynamic rewriting of ttagmm. Oversim-
plifying, the basic idea of [8] consists in rewriting the gram rules into a number
of new rules whose evaluation can be performed simultamgdnysapplying the
techniques described above.

For instance, ruléc) in the previous example can be rewritten as follows [8]:

(c1) = edgei(X,Y),col(X,C), col(Y,C).
(c2) = edgea(X,Y),col(X,C), col(Y,C).

(en) = edgen(X,Y),col(X,C), col(Y,C).

by splitting the set of ground atoms with predicatéye (also called thextension
of edge), into a number of subsets. The obtained rules can be eedliraparallel

and the instantiation produced is equivalent (modulo réng)mo the original one.
However, in general, many ways for rewriting a program masgtefor instance,
in the case ofc), col can be split up instead efige) and the choice of the literal
to split has to be carefully made, since it may strongly aftee cost of the in-
stantiation of rules. Indeed, a “bad” split might reduce eutnalize the benefits of
parallelism, thus making the overall time consumed by thallg evaluation not
optimal (and, in some corner case, even worse than the tiguéregl to instantiate
the original encoding). Moreover, if the predicate to sigian IDB predicate (as
in the case-ol) a static rewriting would lead to quite complex encodingssilaly
requiring a slower instantiation; in this case a rewritirgfprmed at running time
is more suitable, since it can be applied when the extendidmed DB predicate
has already been computed.

The technique in [8] solves both these issues, indeed, anéesewritten at ex-
ecution time, thus dynamically distributing the workloadang processing units,
and an heuristics is used for determining the literal totspMore in detail, the
strategy works as follows: a ruleis rewritten at execution time by splitting the
extension of one single body predicatef » (chosen according to an heuristics) in
several parts. Each part is associated with a different deanp predicate; and, for
each of those predicates, say a new rule calledplit rule, obtained by replacing
p with p;, is produced. The so-created rules will be instantiatecaialtel in place
of r; when their evaluation is completed, a realign step getsfritie new names
in order to obtain the same output of the original algoritithereafter, we refer to



the number of split rules aplit number and to the size of the extensions of each
split predicate asplit size

4 Heuristicsfor Load Balancing and Granularity Control

An advanced implementation of a parallel system has to dihltwo important
issues that strongly affect the performance: load balgraid granularity control.
Indeed, if the workload is not uniformly distributed to theadable processors then
the benefits of parallelization are not fully obtained; nower, if the amount of
work assigned to each parallel processing unit is too sthait the (unavoidable)
overheads due to creation and scheduling of parallel tasghtmvercome the
advantages of parallel evaluation (in a corner case, atpptsequential evaluation
might be preferable).

In this respect, the parallel grounder described in [8] Bnpénts a naive strat-
egy: each rule is rewritten in a globally fixed (specified bg tiser) number of
splits. The number of splits allowed for each rule is (usgathe main source of
concurrently running threads (roughly, the number of rogrthreads is bounded
by the number of generated split rules) and it directly daiees the split size and,
thus the “amount of work” assigned to threads. It is easy otbat this choice
might be not the best one in several cases. As an exampleideorise case in
which we are running on a two processor machine the instantiaf a ruler and
that, by applying dynamic rewriting;,is rewritten into two split rules. Assume also
that the extension of the split predicate-a$ divided into two subsets with, approx-
imatively, the same size. Then, each split rule will be pssed by a thread; and
the two threads will possibly run separately on the two aldé processors. For
limiting the inactivity time of the processors, it would besirable that the threads
terminate their execution almost at the same time. Unfatly, this is not always
the case, because subdividing the extension of the splitiqgate in equal parts
does not ensure that the workload is equally spread betvieeads. However, if
we consider a larger number of split, a further subdivisibthe workload will be
implied, and, the inactivity time would be more likely lirad. Moreover, it is not
possible nor desirable, to let the user assessing a possiblef the split in order
to obtain a balanced workload distribution, especiallysidering that it strictly
depends by the rule at hand (and different rules in the sabgggms may require
different split sizes); rather, a better policy for loaddrading and granularity con-
trol is necessary. Despite being crucial in distributedajpalrarchitectures (like, e.
g. , clusters), in our setting (i.e., shared memory proegsdeveloping a sophis-
ticated granularity-control strategy is not essentiaklas observed in [24]; rather
it is sufficient to set the split size to an adequate value &mheule. Clearly, the
size of the split should be sufficiently large to avoid threasahagement overhead
(granularity control); and sufficiently small to exploitetipreemptive multitasking
scheduler of the operating system for obtaining a good warkUdistribution (load
balancing). Importantly, the number of running threadstbdse controlled in or-



der to save resources. In order to satisfy both requireméitsve modified the
implementation of [8] so that the user can set the number néwoently running
threads; and(i:) we devised and tuned an heuristics that allows for seleeting
optimal split size for each rule. Note that, the second tastot trivial, since the
time needed for evaluating each rule is not known a prioridétail, our method
computes an heuristic valo#’(r) that acts as a litmus paper indicating the amount
of work required for evaluating each ruteof the program, and so, its “hardness”,
just before its instantiation; then, it exploi(r) to select the more appropriate
split size among six settings: small, medium, large, ektrge, equally-sized split
(i.e. the old technique), and no split (i.e. sequential watdn). The choice is
made by comparinyV(r) with five empirically-determined threshold® {,, wes,

wel, Wi, Wyy,). Basically, the criterion is to evaluate “very easy” rugegjuentially

(if W(r) < wseq), since the overhead introduced by threads is higher their e
pected evaluation time (granularity control); “easy rlleghose computation can
still exploit some parallelism, are evaluated using an Hypsized split (that is,
the technique on [8]) for minimizing the overheadsWif(r) < w.s); whereas, for
harder and harder rules, smaller and smaller split sizesraptoyed for obtaining

a finer distribution of work. W(r) is obtained by combining (actually summing)
two estimations.7 (r) andC(r). First, note that computing all the possible instan-
tiations of a rule is equivalent to calculate all the answdra conjunctive query.
Thus, we considered (r) that is an estimation of the size of the join correspond-
ing to the evaluation of the body of Moreover, since in the instantiation of rules
with several join variables the running time is mostly duevamiable matching,
we considered’(r) that is an estimation of the number of comparisons made by
the instantiation algorithm (roughly, we considex&a) because even producing
a small output might require a considerable amount of timeetdunany matching
failures). We now detail how the two components/fr) have been estimated.

Size of thejoin. The size of the join between two relatiofsand S with one or
more common variables can be estimated, according to [2fo]law/s:

T(R)-T(S)
HXGvar(R)ﬂvar(S) max {V (X7 R) vV (Xa S)}

whereT (R) is the number of tuples i, andV (X, R) (called selectivity) is
the number of distinct values assumed by the varidble R. For joins with more
relations one can repeatedly apply this formula to pair dffjaredicates according
to a given evaluation order for computigg(r). The interested reader can find a
more detailed discussion on this estimation in [25].

T(R™MS) =

Number of comparisons. An approximation of the number of comparisons done
for instantiating a rule- is:

cn=> I vixp
XeX(r) LEL(r,X)

whereX (r) is the set of variables that appear in at least two literakthénbody
of r, L(R, X) is the set of body literals in whiclX' occurs; and/ (X, L) is the
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selectivity of X in the extension ofL. Roughly, the number of comparisons is
approximated by the sum of the product of the number of distinlues assumed
by each join variable in the body of

5 Experiments

In order to assess the impact of the proposed heuristicsywlemented it in the
system of [8], and carried out an experimental activity.

The machine used for the experiments is a two-processdrietan “Wood-
crest” (quad core) 3GHz machine with 4MB of L2 Cache and 4GHERéiM,
running Debian GNU Linux 4.0. Experiments were performedaocollection
of benchmark programs already used for assessing ASP tiastarperformance
([15, 26]). In particular, we considered the following wkitown problems: Ram-
sey Numbers, 3-Colorability, Hamiltonian Path and Reattityab

In the following, we briefly describe both benchmark probdéeamd data. In
order to meet space constraints, encodings are not prddauttéhey are available,
together with the employed instances, and the binarielst tip: / / www. mat .
uni cal .it/riccal downl oads/ heur 09. zi p. Rather, to help the under-
standing of the results, some information is given on the bemof rules of each
program.

5.1 Benchmark Problemsand Data

For the experiments, we considered encodings belongingaoteularly difficult-

to-parallelize class i.e. ASP encodings with few rdflégote that, such kind of pro-
grams are quite common given the declarative nature of the laBguage which
allows to compactly encode even very hard problems. Abota, dee considered
for each problem five instances of increasing size; and, ftaining more signifi-
cant results, we considered instances where the insianti&he is non negligible.

Ramsey Numbers. The Ramsey numberamsey(k,m) is the least integen
such that, no matter how the edges of the complete undirgecigrh (clique) with
n nodes are colored using two colors, say red and blue, theread clique with
k nodes (a red:-clique) or a blue cliqgue withm nodes (a bluen-clique).The
encoding of this problem consists of one rule and two comtgraFor the exper-
iments, the problem was considered of deciding whetherk fer 7, m = 7, and
n € {31,32,33, 34,35}, nis the Ramsey numbeumsey(k, m).

3-Colorability.  This well-known problem asks for an assignment of threersolo
to the nodes of a graph, in such a way that adjacent nodes alase different
colors. The encoding of this problem consists of one rulearedconstraint. Three
simplex graphs were generated with the Stanford GraphBasey [27], by using
the functionsimplex(n,n, —2,0, 0,0,0), (n € {150,170, 190, 210, 230}).

2The good behavior of the system on easy-to-parallelizamsts (where superlinear speedups
have to be expected) and program with many rules has alresatyfeported in [7].



Problem Serial | Old Technique Heuristics Gain | Speedup| Efficiency
ramsey: 380.33(0.93)] 85.96 (6.36)| 54.05(0.51)| 261,21%| 704% 0.88
ramseys 491.18 (1.94)| 113.36 (2.39)| 67.69 (0.53)| 292,34% 726% 0.90
ramseys 624.43 (2.05)| 148.04 (7.26)| 85.92(0.53)| 304,96% | 727% 0.91
ramseys 794.30 (1.76)| 181.36 (0.99)| 108.72 (0.22)| 292,62%| 731% 0.91
ramseys 951.61 (1.50)| 213.19 (4.10)| 131.79 (0.98)| 275.7% | 722% 0.90
3cols 96.37 (2.01)] 12.90(0.12)] 11.56(0.21)| 86,6% | 834% 1.04
3cols 156.13 (4.27)| 21.64(0.95)| 19.13(0.19)| 94.66% | 816% 1.02
3cols 257.32 (1.85)] 33.90 (0.48)| 29.97 (0.28)| 99,54% | 859% 1.07
3coly 391.06 (3.44)| 53.59 (1.12)| 46.76 (0.34)| 106,59% | 836% 1.05
3cols 595.58 (7.56)| 77.37 (0.42)| 67.48(0.61)| 112.82%| 852% 1.10
hampath, 209.56 (1.54)] 30.48(0.66)| 29.03(0.27)| 34,34%| 722% 0.90
hampaths 266.35(2.32)| 37.38(0.66)| 35.47(0.15)| 38.37% 751% 0.94
hampaths 328.54 (3.76)] 45.51 (0.46)| 43.13(0.48)| 39.84% | 762% 0.95
hampathy 406.55 (2,89)| 56.97 (2.45)| 53.90(0.16)| 40,65% | 754% 0.94
hampaths 501.4 (2.11)| 69.14 (1.86)| 65.44(0.17)| 41.00% 766% 0.96
reachy 64.73 (1.05) 8.62 (0.10)| 853(0.04)] 7.92%| 759% 0.95
reachs 191.52 (1.50)| 24.61(0.26)| 24.68 (0.17)| 2,53% 779% 0.97
reachs 281.82 (1.98)] 36.06 (0.29)| 36.01(0.25)| 1.09% | 783% 0.98
reachy 613.94 (3.95)| 79.25(0.39)| 78.97(0.18)| 2,26% | 783% 0.97
reachs 1216.62 (12.55)| 151.79 (0.31)| 151.49 (0.22)| 1.59% 803% 1.00

Table 1. Benchmark Results: average instantiation timeg@onds (standard de-
viation), percentage gain w.r.t the old instantiator, sioeand relative efficiency.

Reachability.  Given a finite directed grapy = (V, A), we want to compute
all pairs of nodeqa,b) € V x V (i) such thatb is reachable fromu through a
nonempty sequence of arcsAn The encoding of this problem consists of one exit
rule and a recursive one. Tree trees were generated [28)da@eair (number of
levels, number of siblings): (9,3),(7,5),(14,2),(10,80415,2), respectively.

Hamiltonian Path. A classical NP-complete problem in graph theory, which can
be expressed as follows: given a directed grépk- (V, FE) and a node:r € V

of this graph, does there exist a path(nstarting ata and passing through each
node inV exactly once. The encoding of this problem consists of sg¢veles, one

of these is recursive. Instances were generated, by usiogl &y Patrik Simons
(cf. [29]), having 5800, 6500, 7200, 8000 and 8800 nodegpgctively.

5.2 Impact of The New Heuristics

In order to prove the efficacy of the method that is the sulpéchis work, we

compared the performance of the instantiator equipped thighheuristics with
the previous version implementing a simple dynamic rengiti The results of
the experiments are summarized in Table 1, where Columnsepatt the times
obtained by the serial instantiator, the previous paraithntiator, and the parallel
instantiator enhanced with the heuristics, respectivelgddition, Column 5 shows
the percentage gain obtained by the version with heurigticsthe previous one
(the speedup of the version with the heuristics w.r.t. sesacution minus the
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speedup of the plain parallel version w.r.t. serial exet)ti and Columns 6-7
show the speedup and the relative efficiency, respectively.

First of all, we notice that the version with the heuristisdbasically the best
performer and always overcomes the results obtained byrtéhwopis one with a
percentage gain ranging from 1% in Reachability up to 300%Ramsey. Such
good results are mainly due to the selection of differentt sies for different
rules in the same program.

More in details, in the case of the Reachability problempweparallel instan-
tiators show very similar behaviors. Indeed the heuristiggests for this problem
to use the biggest split size (equally-split size) for mdsthe rules, which cor-
responds to the fixed setting imposed by the previous impi¢atien and which
already allowed very good results with a speed up of abou¥BQ@ind, thus, an
efficiency of about 1). However, the heuristics still givekittie benefit thanks to
the effects of the granularity control, which allows to cartgpsequentially very
easy rules, thus avoiding some overhead for threads cnestich scheduling.

Similar considerations hold for the Hamiltonian Path peoio] even if, here, the
effects of the heuristics are more evident. In this casesytbem benefits of the fact
that the heuristics may dynamically assign to the same se®urule different split
sizes in different iterations. In particular, the heudstsuggests splits sizes mainly
varying between large and equally-split size, and, shih, granularity control has
some positive effect when the iteration of recursive rulgs o compute very little
domains.

The positive impact of the heuristics becomes very eviderhé case of the
Ramsey Number problem. In fact, since the encoding is coetpos$ few “very
easy” rules and two “very hard” constraints, the heuristiggcts a sequential eval-
uation for the rules, and the smallest split size possibiaife constraints. As a
result, the system produces a well-balanced work subdivighat allows for im-
proving its overall performance, reaching a speedup of 7B0#te best case, thus
resulting in a percentage gain w.r.t the previous systenbofia300%.

Similar considerations hold for 3-Colorability. As for Raay Number, the
encoding is composed of few “easy” rules, and an “hard” cairgt the heuristics
selects equally-split size for the rules and a small sgdi §or the constraint, which
leads to a percentage gain of about 100% w.r.t. the previgstaritiator and a
speedup of more than 800%.

6 Related Work

Several works about parallel techniques for the evaluaifoASP programs have
been proposed, focusing on both the propositional (modetbg phase [5, 6, 4, 2],

3We did not report here the size of the ground programs pratiogehe compared implementa-
tions because we verified that they are basically the samédfb parallel and serial version); thus,
the good behavior (see [15]) of the grounding module of DLhA({tis able to produce an output that
is sensibly smaller than the theoretical ground instaptiqis preserved on its parallel version.
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and the instantiation phase [3, 7]. Model generation is tindisphase of ASP
computation, carried out after the instantiation, and ttie first group of pro-
posals is not directly related to our setting. Concernirggghrallelization of the
instantiation phase, some preliminary studies were choig in [3], as one of the
aspects of the attempt to introduce parallelism in non-rt@mo reasoning sys-
tems. However, there are crucial differences with our systegarding both the
employed technology and the supported parallelizaticateqyly. Indeed, our sys-
tem is implemented by using POSIX threads APIs, and workssimsaed memory
architecture [1, 30], while the one described in [3] is altyua Beowulf [31] clus-
ter working in local memory. Moreover, the parallel instatibn strategy of [3]
is applicable only to a subset of the program rules (thosedefining domain
predicates), and is, in general, unable to fruitfully expfarallelism in case of
programs with a small number of rules. Importantly, the peiaation strategy of
[3] statically assigns a rule per processing unit; whereas, in our apprbatithe
extension of predicates and “split sizes” are dynamicatignputed (and updated
at different iterations of the semi-naive) while the imi@ion process is running.
Note also that our parallelization techniques and heasistould be also adapted
for improving the Lparse instantiator.

Concerning other related works, it is worth remembering, tiiee dynamic
rewriting technique employed in our system is related todbgy and constrain
technique for parallelizing the evaluation of deductiveatiases [32, 33, 34, 35, 36]
(for a detailed comparison between the two approaches Ped&using on the
heuristicsemployed on parallel databases, we mention [36] and [37]36his
described an heuristics for balancing the distributioroafllin the parallel evalua-
tion of PARULEL, a language similar to Datalog. Here, loathbaing is done by
a manager server that records the execution times at eaclasit exploits this in-
formation for distributing the load. In [37] the proposeditistics were devised for
both minimizing communication costs and choosing an opparsite for process-
ing sub-queries among various network-connected datalyasems. In both cases,
the proposed heuristics were devised and tuned for dealithgdata distributed in
several sites and their application to similar architezgumight be neither viable
nor straightforward.

7 Conclusions

In this paper, an advanced heuristics for load balancinggaadularity control in

the parallel instantiation of ASP programs has been prabo$ke heuristics has
been implemented in the parallel instantiator of [7, 8] blage the DLV system,
and an experimental analysis has been conducted on hpatdbelize problem

instances which confirms the efficacy of the method for impgthe performance
of the system. In particular, the parallel instantiatoripged with the new heuris-
tics always improves the results obtained by the old versiod compared with the
previous parallel method offers a very relevant gain eslgdn case of programs
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with hard-to-instantiate rules/constraints.

As far as future work is concerned, we are experimenting fibaiaing a finer
tuning of the heuristics; and we are working on a procedurettfe automatic
calibration of the heuristics thresholds. Moreover, weasgsessing the impact of
the heuristics on a larger set of benchmarks.
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