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Abstract

The evaluation of ASP programs is traditionally carried outin two steps.
The first is called instantiation or grounding, and consistson the computation
of a ground program equivalent to the input one that, in turn,is evaluated
by using a backtracking search algorithm in the second phase. Instantia-
tion is important for the efficiency of the whole evaluation,might becomes
a bottleneck in common situations, and is particularly crucial when huge in-
put data has to be dealt with. Notably, performance improvements can be
obtained by developing parallel systems, which exploit modern multi-core
multi-processor machines.

In this paper, we describe a dynamic heuristics for load balancing and
granularity control devised for improving parallel instantiation systems. We
implemented the new technique in the parallel instantiatorbased on the DLV
system, and conducted an experimental analysis that confirms its efficacy.

1 Introduction

In the last few years, entry-level computer systems have started to implement multi-
core/multi-processor SMP (Symmetric MultiProcessing) architectures. In a mod-
ern SMP computer two or more identical processors can connect to a single shared
main memory, and the operating system supports multithreaded programs for ex-
ploiting the available CPUs [1]. However, most of the available software, that was
devised for single-processor machines, is unable to exploit the power of SMP ar-
chitectures. Recently [2, 3, 4, 5, 6, 7, 8], the parallel evaluation technology has
been exploited for implementing faster evaluation systemsin the field of Answer
Set Programming (ASP). ASP [9, 10, 11, 12, 13, 14] is a declarative approach to
programming proposed in the area of nonmonotonic reasoningand logic program-
ming which features a declarative nature combined with a relatively high expres-
sive power [15, 16].

Traditionally, the kernel modules of ASP systems work on a ground instan-
tiation of the input program. Therefore, an input programP first undergoes the
so-called instantiation process, which produces a programP ′ semantically equiv-
alent toP, but not containing any variable. This phase is computationally expen-
sive (see [14, 16]); thus, having an efficient instantiationprocedure is, in general,
crucial for the performance of the entire ASP systems. Moreover, some recent ap-
plications of ASP (see e.g. [17, 18, 19, 20]), have evidencedthe practical need for
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faster instantiators. It is easy to see that the exploitation of SMP systems in the
grounding process can bring significant performance improvements. Indeed, an
effective technique for the parallel instantiation of ASP programs exploiting SMP
systems was proposed in [7].

However, the efficacy of this method was limited to programs with many rules,
since, roughly, it allows for instantiating independent rules in parallel; but, a rewrit-
ing technique has been proposed in [8] that modifies the inputprogram in such a
way that the technique of [7] becomes applicable also in caseof programs with few
rules. The basic idea of [8] is to rewrite input rules at execution time in order to
induce a form of or-parallelism. This can be obtained, givena ruler, by “splitting”
the extension of one single body predicatep of r in several parts. Each part is
associated with a different temporary predicate; and, for each of those predicates,
saypi, a new rule, obtained by replacingp with pi, is produced. The so-created
rules are instantiated in parallel in place ofr by exploiting the parallel algorithm
of [7] (a trivial realign step gets rid of the new names to obtain the intended output).
This rewriting technique can be exploited by any available parallel ASP instantia-
tor [3, 7], and it was successfully implemented [8] in a parallel ASP instantiator
based on DLV [15]. Here the number of splits per rule was set toa global user-
defined value, and the same value is used for each rule in input. Clearly, this simple
strategy does not work well might in several cases. Indeed, if each process receives
a “too small” amount of work, then the costs added by parallelexecution may be-
come larger than the benefits (because of thread creation andscheduling overhead);
on the other hand, if the amount of work assigned to threads is“too large”, then
a resulting bad workload distribution will reduce the advantages of parallel eval-
uation. In this paper, we propose an advanced heuristics that is able to improve
the efficiency of the parallel evaluation by automatically determining, rule by rule,
the amount of work that has to be assigned to each parallel instantiator. Moreover,
we implemented our heuristics in the parallel ASP instantiator of [8], and we re-
port here the results of an experimental analysis that confirms the efficacy of the
proposed method.

2 Answer Set Programming

In this section, we briefly recall syntax and semantics of Answer Set Programming.

Syntax. A variable or a constant is aterm. An atom is a(t1, ..., tn), wherea is
a predicateof arity n andt1, ..., tn are terms. Aliteral is either apositive literalp
or anegative literalnot p, wherep is an atom. Adisjunctive rule(rule, for short)
r is a formulaa1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm. where
a1, · · · , an, b1, · · · , bm are atoms andn ≥ 0, m ≥ k ≥ 0. The disjunctiona1 ∨
· · · ∨ an is theheadof r, while the conjunctionb1, ..., bk, not bk+1, ..., not bm

is thebodyof r. A rule without head literals (i.e.n = 0) is usually referred to as
an integrity constraint. If the body is empty (i.e.k = m = 0), it is called afact.
H(r) denotes the set{a1, ..., an} of the head atoms, and byB(r) the set{b1, ..., bk,
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not bk+1, . . . , not bm} of the body literals.B+(r) (resp.,B−(r)) denotes the set
of atoms occurring positively (resp., negatively) inB(r). A rule r is safeif each
variable appearing inr appears also in some positive body literal ofr.

An ASP programP is a finite set of safe rules. An atom, a literal, a rule, or
a program isground if no variables appear in it. Accordingly with the database
terminology, a predicate occurring only infactsis referred to as anEDBpredicate,
all others asIDB predicates; the set of facts ofP is denoted byEDB(P).

Semantics. Let P be a program. TheHerbrand Universeand theHerbrand Base
of P are defined in the standard way and denoted byUP andBP , respectively.

Given a ruler occurring inP, aground instanceof r is a rule obtained fromr
by replacing every variableX in r by σ(X), whereσ is a substitution mapping the
variables occurring inr to constants inUP ; ground(P) denotes the set of all the
ground instances of the rules occurring inP.

An interpretationfor P is a set of ground atoms, that is, an interpretation is a
subsetI of BP . A ground positive literalA is true (resp.,false) w.r.t. I if A ∈ I

(resp.,A 6∈ I). A ground negative literalnot A is true w.r.t. I if A is false w.r.t.
I; otherwisenot A is false w.r.t. I. Let r be a ground rule inground(P). The
head ofr is true w.r.t. I if H(r) ∩ I 6= ∅. The body ofr is true w.r.t. I if all body
literals ofr are true w.r.t.I (i.e.,B+(r) ⊆ I andB−(r)∩ I = ∅) and isfalsew.r.t.
I otherwise. The ruler is satisfied(or true) w.r.t. I if its head is true w.r.t.I or its
body is false w.r.t.I. A modelfor P is an interpretationM for P such that every
rule r ∈ ground(P) is true w.r.t.M . A modelM for P is minimal if no modelN
for P exists such thatN is a proper subset ofM . The set of all minimal models
for P is denoted byMM(P).

Given a ground programP and an interpretationI, thereductof P w.r.t. I is
the subsetPI of P, which is obtained fromP by deleting rules in which a body
literal is false w.r.t.I. Note that the above definition of reduct, proposed in [21],
simplifies the original definition of Gelfond-Lifschitz (GL) transform [9], but is
fully equivalent to the GL transform for the definition of answer sets [21].

Let I be an interpretation for a programP. I is ananswer set(or stable model)
for P if I ∈ MM(PI) (i.e.,I is a minimal model for the programPI ) [22, 9]. The
set of all answer sets forP is denoted byANS(P).

3 Parallel Instantiation of ASP Programs

In this Section we briefly recall some recently proposed techniques ([7, 8]) for the
parallel instantiation of ASP Programs. In particular, we show that according to
such techniques, three levels of parallelism can be exploited during the instantiation
process, namely, components, rules and single rule level. The first level allows for
instantiating in parallel subprograms of the program in input and it is especially
useful when handling programs containing parts which are, somehow, independent.
The second one, the rules level, allows for the parallel evaluation of rules within a
given subprogram and it is thus useful when the number of rules in the subprograms
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is high. The third one, the single rule level, allows for the parallel evaluation of a
single rule and it is thus crucial for the parallelization ofprograms with few rules,
where the first two levels are almost not applicable. A detailed description of these
techniques is out of the scope of this paper. For further details, we refer the reader
to [7, 8].

3.1 Components Level

The first level of parallelism, calledComponents Level, has been described in [7]
and, essentially, it consists in dividing the input programP into subprograms, ac-
cording to the dependencies among the IDB predicates ofP, and by identifying
which of them can be evaluated in parallel. More in detail, each programP is
associated with a graph, called theDependency Graphof P, which, intuitively,
describes how IDB predicates ofP depend on each other. For a programP, the
Dependency Graphof P is a directed graphGP = 〈N,E〉, whereN is a set of
nodes andE is a set of arcs.N contains a node for each IDB predicate ofP, and
E contains an arce = (p, q) if there is a ruler in p such thatq occurs in the head
of r andp occurs in a positive literal of the body ofr.

The graphGP induces a subdivision ofP into subprograms (also calledmod-
ules) allowing for a modular evaluation. We say that a ruler ∈ P definesa predi-
catep if p appears in the head ofr. For each strongly connected component (SCC)
1C of GP , the set of rules defining all the predicates inC is calledmoduleof C. A
rule r occurring in amoduleof a componentC (i.e., defining some predicate∈ C)
is said to berecursiveif there is a predicatep ∈ C occurring in the positive body
of r; otherwise,r is said to be anexit rule. Moreover, a partial ordering among
the SCCs is induced byGP , defined as follows: for any pair of SCCsA, B of GP ,
we say thatB directly depends onA if there is an arc from a predicate ofA to a
predicate ofB; and,B depends onA if there is a path inGP from A to B.

According to such definitions, the instantiation of the input programP can
be carried out by separately evaluating its modules; if the evaluation order of the
modules respects the above mentioned partial ordering thena small ground pro-
gram is produced. Indeed, this gives the possibility to compute ground instances of
rules containing only atoms which can possibly be derived fromP (thus, avoiding
the combinatorial explosion which can be obtained by naively considering all the
atoms in the Herbrand Base).

Intuitively, this partial ordering guarantees that a componentA precedes a com-
ponentB if the program module corresponding toA has to be evaluated before the
one of B (because the evaluation of A produces data which are needed for the
instantiation of B). Moreover, the partial ordering allowsfor determining which
modules can be evaluated in parallel. Indeed, if two componentsA andB, do not
depend on each other, then the instantiation of the corresponding program modules
can be performed simultaneously, because the instantiation of A does not require

1A strongly connected component of a directed graph is a maximal subset of the vertices, such
that every vertex is reachable from every other vertex.
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the data produced by the instantiation ofB and vice versa. The dependency among
components is thus the principle underlying the first level of parallelism. At this
level subprograms can be evaluated in parallel, but still the evaluation of each sub-
program is sequential. Note that, for the sake of clarity, a simplified version of the
technique presented in [7] has been described. The originalone is quite more in-
volved and takes into account also negative dependencies among predicates. Many
details have been omitted since they do not give additional insight for the compre-
hension of the idea underlying the technique.

3.2 Rules Level

Concerning the second level of parallelism, theRules Level, in [7] a technique has
been presented allowing for concurrently evaluating the rules within each module.
According to this technique, rules are evaluated followinga semi-naı̈ve schema [23]
and the parallelism is exploited for the evaluation of both exit and recursive rules.
More in detail, for the instantiation of a moduleM , first all exit rules are processed
in parallel by exploiting the data (ground atoms) computed during the instantiation
of the modules whichM depends on (according to the partial ordering induced by
the dependency graph). Only afterward, recursive rules areprocessed in parallel
several times by applying a semi-naı̈ve evaluation technique. At each iterationn,
the instantiation of all the recursive rules is performed concurrently and by exploit-
ing only the significant information derived during iteration n − 1. This is done
by partitioning significant atoms into three sets:∆S, S and NS. NS is filled
with atoms computed during current iteration (sayn); ∆S contains atoms com-
puted during previous iteration (sayn − 1); and,S contains the ones previously
computed (up to iterationn − 2).

Initially, ∆S andNS are empty; whileS contains all the information previ-
ously derived in the instantiation process. At the beginning of each new iteration,
NS is assigned to∆S, i.e. the new information derived during iterationn is con-
sidered as significant information for iterationn + 1. Then, the recursive rules are
processed simultaneously and each of them uses the information contained in the
set∆S; at the end of the iteration, when the evaluation of all rulesis terminated, the
set∆S is added to the setS (since it has already been exploited). The evaluation
stops whenever no new information has been derived (i.e.NS = ∅).

3.3 Single Rule Level

The techniques described above, concerning the first two levels of parallelism, are
very effective when handling with long programs, as confirmed also by the experi-
mental analysis conducted in [7]. However, when the input program consists of few
rules, their efficacy is drastically reduced, and there are cases where components
and rules parallelism is not exploitable at all.

Consider for instance the following programP encoding the well-known 3-
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colorability problem:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node(X).
(c) :– edge(X,Y ), col(X, C), col(Y, C).

The two levels of parallelism described above have no effects on the evaluation of
P. Indeed, this encoding consists of only two rules which haveto be evaluated
sequentially, since, intuitively, the instantiation of(r) produces the ground atoms
with predicatecol which are necessary for the evaluation of(c).

For the instantiation of this kind of programs a third level is necessary for the
parallel evaluation of each single rule, which is thereforecalledSingle Rule Level.
To this aim, a strategy has been presented in [8] which allowsfor parallelizing the
evaluation of a rule on the base of a dynamic rewriting of the program. Oversim-
plifying, the basic idea of [8] consists in rewriting the program rules into a number
of new rules whose evaluation can be performed simultaneously by applying the
techniques described above.

For instance, rule(c) in the previous example can be rewritten as follows [8]:

(c1) :– edge1(X, Y ), col(X, C), col(Y, C).
(c2) :– edge2(X, Y ), col(X, C), col(Y, C).
. . .
(cn) :– edgen(X, Y ), col(X, C), col(Y, C).

by splitting the set of ground atoms with predicateedge (also called theextension
of edge), into a number of subsets. The obtained rules can be evaluated in parallel
and the instantiation produced is equivalent (modulo renaming) to the original one.
However, in general, many ways for rewriting a program may exist (for instance,
in the case of(c), col can be split up instead ofedge) and the choice of the literal
to split has to be carefully made, since it may strongly affect the cost of the in-
stantiation of rules. Indeed, a “bad” split might reduce or neutralize the benefits of
parallelism, thus making the overall time consumed by the parallel evaluation not
optimal (and, in some corner case, even worse than the time required to instantiate
the original encoding). Moreover, if the predicate to splitis an IDB predicate (as
in the casecol) a static rewriting would lead to quite complex encodings possibly
requiring a slower instantiation; in this case a rewriting performed at running time
is more suitable, since it can be applied when the extension of the IDB predicate
has already been computed.

The technique in [8] solves both these issues, indeed, rulesare rewritten at ex-
ecution time, thus dynamically distributing the workload among processing units,
and an heuristics is used for determining the literal to split. More in detail, the
strategy works as follows: a ruler is rewritten at execution time by splitting the
extension of one single body predicatep of r (chosen according to an heuristics) in
several parts. Each part is associated with a different temporary predicate; and, for
each of those predicates, saypi, a new rule calledsplit rule, obtained by replacing
p with pi, is produced. The so-created rules will be instantiated in parallel in place
of r; when their evaluation is completed, a realign step gets ridof the new names
in order to obtain the same output of the original algorithm.Hereafter, we refer to
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the number of split rules assplit number, and to the size of the extensions of each
split predicate assplit size.

4 Heuristics for Load Balancing and Granularity Control

An advanced implementation of a parallel system has to deal with two important
issues that strongly affect the performance: load balancing and granularity control.
Indeed, if the workload is not uniformly distributed to the available processors then
the benefits of parallelization are not fully obtained; moreover, if the amount of
work assigned to each parallel processing unit is too small then the (unavoidable)
overheads due to creation and scheduling of parallel tasks might overcome the
advantages of parallel evaluation (in a corner case, adopting a sequential evaluation
might be preferable).

In this respect, the parallel grounder described in [8] implements a naive strat-
egy: each rule is rewritten in a globally fixed (specified by the user) number of
splits. The number of splits allowed for each rule is (usually) the main source of
concurrently running threads (roughly, the number of running threads is bounded
by the number of generated split rules) and it directly determines the split size and,
thus the “amount of work” assigned to threads. It is easy to see that this choice
might be not the best one in several cases. As an example, consider the case in
which we are running on a two processor machine the instantiation of a ruler and
that, by applying dynamic rewriting,r is rewritten into two split rules. Assume also
that the extension of the split predicate ofr is divided into two subsets with, approx-
imatively, the same size. Then, each split rule will be processed by a thread; and
the two threads will possibly run separately on the two available processors. For
limiting the inactivity time of the processors, it would be desirable that the threads
terminate their execution almost at the same time. Unfortunately, this is not always
the case, because subdividing the extension of the split predicate in equal parts
does not ensure that the workload is equally spread between threads. However, if
we consider a larger number of split, a further subdivision of the workload will be
implied, and, the inactivity time would be more likely limited. Moreover, it is not
possible nor desirable, to let the user assessing a possiblesize of the split in order
to obtain a balanced workload distribution, especially considering that it strictly
depends by the rule at hand (and different rules in the same programs may require
different split sizes); rather, a better policy for load balancing and granularity con-
trol is necessary. Despite being crucial in distributed parallel architectures (like, e.
g. , clusters), in our setting (i.e., shared memory processor), developing a sophis-
ticated granularity-control strategy is not essential, asalso observed in [24]; rather
it is sufficient to set the split size to an adequate value for each rule. Clearly, the
size of the split should be sufficiently large to avoid threadmanagement overhead
(granularity control); and sufficiently small to exploit the preemptive multitasking
scheduler of the operating system for obtaining a good workload distribution (load
balancing). Importantly, the number of running threads hasto be controlled in or-
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der to save resources. In order to satisfy both requirements, (i) we modified the
implementation of [8] so that the user can set the number of concurrently running
threads; and,(ii) we devised and tuned an heuristics that allows for selectingan
optimal split size for each rule. Note that, the second task is not trivial, since the
time needed for evaluating each rule is not known a priori. Indetail, our method
computes an heuristic valueW(r) that acts as a litmus paper indicating the amount
of work required for evaluating each ruler of the program, and so, its “hardness”,
just before its instantiation; then, it exploitsW(r) to select the more appropriate
split size among six settings: small, medium, large, extra-large, equally-sized split
(i.e. the old technique), and no split (i.e. sequential evaluation). The choice is
made by comparingW(r) with five empirically-determined thresholds (wseq, wes,
wel, wl, wm). Basically, the criterion is to evaluate “very easy” rulessequentially
(if W(r) < wseq), since the overhead introduced by threads is higher their ex-
pected evaluation time (granularity control); “easy rules”, whose computation can
still exploit some parallelism, are evaluated using an equally-sized split (that is,
the technique on [8]) for minimizing the overheads (ifW(r) < wes); whereas, for
harder and harder rules, smaller and smaller split sizes areemployed for obtaining
a finer distribution of work.W(r) is obtained by combining (actually summing)
two estimations:J (r) andC(r). First, note that computing all the possible instan-
tiations of a rule is equivalent to calculate all the answersof a conjunctive query.
Thus, we consideredJ (r) that is an estimation of the size of the join correspond-
ing to the evaluation of the body ofr. Moreover, since in the instantiation of rules
with several join variables the running time is mostly due tovariable matching,
we consideredC(r) that is an estimation of the number of comparisons made by
the instantiation algorithm (roughly, we consideredC(r) because even producing
a small output might require a considerable amount of time due to many matching
failures). We now detail how the two components ofW(r) have been estimated.

Size of the join. The size of the join between two relationsR andS with one or
more common variables can be estimated, according to [25] asfollows:

T (R 1 S) =
T (R) ·T (S)∏

X∈var(R)∩var(S) max {V (X, R) , V (X, S)}

whereT (R) is the number of tuples inR, andV (X,R) (called selectivity) is
the number of distinct values assumed by the variableX in R. For joins with more
relations one can repeatedly apply this formula to pair of body predicates according
to a given evaluation order for computingJ (r). The interested reader can find a
more detailed discussion on this estimation in [25].

Number of comparisons. An approximation of the number of comparisons done
for instantiating a ruler is:

C(r) =
∑

X∈X (r)

∏

L∈L(r,X)

V (X, L)

whereX (r) is the set of variables that appear in at least two literals inthe body
of r, L(R,X) is the set of body literals in whichX occurs; andV (X,L) is the
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selectivity ofX in the extension ofL. Roughly, the number of comparisons is
approximated by the sum of the product of the number of distinct values assumed
by each join variable in the body ofr.

5 Experiments

In order to assess the impact of the proposed heuristics, we implemented it in the
system of [8], and carried out an experimental activity.

The machine used for the experiments is a two-processor Intel Xeon “Wood-
crest” (quad core) 3GHz machine with 4MB of L2 Cache and 4GB ofRAM,
running Debian GNU Linux 4.0. Experiments were performed ona collection
of benchmark programs already used for assessing ASP instantiator performance
([15, 26]). In particular, we considered the following well-known problems: Ram-
sey Numbers, 3-Colorability, Hamiltonian Path and Reachability.

In the following, we briefly describe both benchmark problems and data. In
order to meet space constraints, encodings are not presented but they are available,
together with the employed instances, and the binaries, athttp://www.mat.
unical.it/ricca/downloads/heur09.zip. Rather, to help the under-
standing of the results, some information is given on the number of rules of each
program.

5.1 Benchmark Problems and Data

For the experiments, we considered encodings belonging to aparticularly difficult-
to-parallelize class i.e. ASP encodings with few rules.2 Note that, such kind of pro-
grams are quite common given the declarative nature of the ASP language which
allows to compactly encode even very hard problems. About data, we considered
for each problem five instances of increasing size; and, for obtaining more signifi-
cant results, we considered instances where the instantiation time is non negligible.

Ramsey Numbers. The Ramsey numberramsey(k,m) is the least integern
such that, no matter how the edges of the complete undirectedgraph (clique) with
n nodes are colored using two colors, say red and blue, there isa red clique with
k nodes (a redk-clique) or a blue clique withm nodes (a bluem-clique).The
encoding of this problem consists of one rule and two constraints. For the exper-
iments, the problem was considered of deciding whether, fork = 7, m = 7, and
n ∈ {31, 32, 33, 34, 35}, n is the Ramsey numberramsey(k,m).

3-Colorability. This well-known problem asks for an assignment of three colors
to the nodes of a graph, in such a way that adjacent nodes always have different
colors. The encoding of this problem consists of one rule andone constraint. Three
simplex graphs were generated with the Stanford GraphBase library [27], by using
the functionsimplex(n, n,−2, 0, 0, 0, 0), (n ∈ {150, 170, 190, 210, 230}).

2The good behavior of the system on easy-to-parallelize instances (where superlinear speedups
have to be expected) and program with many rules has already been reported in [7].
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Problem Serial Old Technique Heuristics Gain Speedup Efficiency
ramsey1 380.33 (0.93) 85.96 (6.36) 54.05 (0.51) 261,21% 704% 0.88
ramsey2 491.18 (1.94) 113.36 (2.39) 67.69 (0.53) 292,34% 726% 0.90
ramsey3 624.43 (2.05) 148.04 (7.26) 85.92 (0.53) 304,96% 727% 0.91
ramsey4 794.30 (1.76) 181.36 (0.99) 108.72 (0.22) 292,62% 731% 0.91
ramsey5 951.61 (1.50) 213.19 (4.10) 131.79 (0.98) 275.7% 722% 0.90
3col1 96.37 (2.01) 12.90 (0.12) 11.56 (0.21) 86,6% 834% 1.04
3col2 156.13 (4.27) 21.64 (0.95) 19.13 (0.19) 94.66% 816% 1.02
3col3 257.32 (1.85) 33.90 (0.48) 29.97 (0.28) 99,54% 859% 1.07
3col4 391.06 (3.44) 53.59 (1.12) 46.76 (0.34) 106,59% 836% 1.05
3col5 595.58 (7.56) 77.37 (0.42) 67.48 (0.61) 112.82% 852% 1.10
hampath1 209.56 (1.54) 30.48 (0.66) 29.03 (0.27) 34,34% 722% 0.90
hampath2 266.35 (2.32) 37.38 (0.66) 35.47 (0.15) 38.37% 751% 0.94
hampath3 328.54 (3.76) 45.51 (0.46) 43.13 (0.48) 39.84% 762% 0.95
hampath4 406.55 (2,89) 56.97 (2.45) 53.90 (0.16) 40,65% 754% 0.94
hampath5 501.4 (2.11) 69.14 (1.86) 65.44 (0.17) 41.00% 766% 0.96
reach1 64.73 (1.05) 8.62 (0.10) 8.53 (0.04) 7.92% 759% 0.95
reach2 191.52 (1.50) 24.61 (0.26) 24.68 (0.17) 2,53% 779% 0.97
reach3 281.82 (1.98) 36.06 (0.29) 36.01 (0.25) 1.09% 783% 0.98
reach4 613.94 (3.95) 79.25 (0.39) 78.97 (0.18) 2,26% 783% 0.97
reach5 1216.62 (12.55) 151.79 (0.31) 151.49 (0.22) 1.59% 803% 1.00

Table 1: Benchmark Results: average instantiation times inseconds (standard de-
viation), percentage gain w.r.t the old instantiator, speedup and relative efficiency.

Reachability. Given a finite directed graphG = (V,A), we want to compute
all pairs of nodes(a, b) ∈ V × V (i) such thatb is reachable froma through a
nonempty sequence of arcs inA. The encoding of this problem consists of one exit
rule and a recursive one. Tree trees were generated [28] having pair (number of
levels, number of siblings): (9,3),(7,5),(14,2),(10,3) and (15,2), respectively.

Hamiltonian Path. A classical NP-complete problem in graph theory, which can
be expressed as follows: given a directed graphG = (V,E) and a nodea ∈ V

of this graph, does there exist a path inG starting ata and passing through each
node inV exactly once. The encoding of this problem consists of several rules, one
of these is recursive. Instances were generated, by using a tool by Patrik Simons
(cf. [29]), having 5800, 6500, 7200, 8000 and 8800 nodes, respectively.

5.2 Impact of The New Heuristics

In order to prove the efficacy of the method that is the subjectof this work, we
compared the performance of the instantiator equipped withthe heuristics with
the previous version implementing a simple dynamic rewriting. The results of
the experiments are summarized in Table 1, where Columns 2-4report the times
obtained by the serial instantiator, the previous parallelinstantiator, and the parallel
instantiator enhanced with the heuristics, respectively;in addition, Column 5 shows
the percentage gain obtained by the version with heuristicsw.r.t the previous one
(the speedup of the version with the heuristics w.r.t. serial execution minus the
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speedup of the plain parallel version w.r.t. serial execution), and Columns 6-7
show the speedup and the relative efficiency, respectively.3

First of all, we notice that the version with the heuristics is basically the best
performer and always overcomes the results obtained by the previous one with a
percentage gain ranging from 1% in Reachability up to 300% inRamsey. Such
good results are mainly due to the selection of different split sizes for different
rules in the same program.

More in details, in the case of the Reachability problem, thetwo parallel instan-
tiators show very similar behaviors. Indeed the heuristicssuggests for this problem
to use the biggest split size (equally-split size) for most of the rules, which cor-
responds to the fixed setting imposed by the previous implementation and which
already allowed very good results with a speed up of about 800% (and, thus, an
efficiency of about 1). However, the heuristics still gives alittle benefit thanks to
the effects of the granularity control, which allows to compute sequentially very
easy rules, thus avoiding some overhead for threads creation and scheduling.

Similar considerations hold for the Hamiltonian Path problem, even if, here, the
effects of the heuristics are more evident. In this case, thesystem benefits of the fact
that the heuristics may dynamically assign to the same recursive rule different split
sizes in different iterations. In particular, the heuristics suggests splits sizes mainly
varying between large and equally-split size, and, still, the granularity control has
some positive effect when the iteration of recursive rules has to compute very little
domains.

The positive impact of the heuristics becomes very evident in the case of the
Ramsey Number problem. In fact, since the encoding is composed of few “very
easy” rules and two “very hard” constraints, the heuristicsselects a sequential eval-
uation for the rules, and the smallest split size possible for the constraints. As a
result, the system produces a well-balanced work subdivision, that allows for im-
proving its overall performance, reaching a speedup of 730%in the best case, thus
resulting in a percentage gain w.r.t the previous system of about 300%.

Similar considerations hold for 3-Colorability. As for Ramsey Number, the
encoding is composed of few “easy” rules, and an “hard” constraint; the heuristics
selects equally-split size for the rules and a small split size for the constraint, which
leads to a percentage gain of about 100% w.r.t. the previous instantiator and a
speedup of more than 800%.

6 Related Work

Several works about parallel techniques for the evaluationof ASP programs have
been proposed, focusing on both the propositional (model search) phase [5, 6, 4, 2],

3We did not report here the size of the ground programs produced by the compared implementa-
tions because we verified that they are basically the same (for both parallel and serial version); thus,
the good behavior (see [15]) of the grounding module of DLV (that is able to produce an output that
is sensibly smaller than the theoretical ground instantiation) is preserved on its parallel version.
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and the instantiation phase [3, 7]. Model generation is a distinct phase of ASP
computation, carried out after the instantiation, and thus, the first group of pro-
posals is not directly related to our setting. Concerning the parallelization of the
instantiation phase, some preliminary studies were carried out in [3], as one of the
aspects of the attempt to introduce parallelism in non-monotonic reasoning sys-
tems. However, there are crucial differences with our system regarding both the
employed technology and the supported parallelization strategy. Indeed, our sys-
tem is implemented by using POSIX threads APIs, and works in ashared memory
architecture [1, 30], while the one described in [3] is actually a Beowulf [31] clus-
ter working in local memory. Moreover, the parallel instantiation strategy of [3]
is applicable only to a subset of the program rules (those notdefining domain
predicates), and is, in general, unable to fruitfully exploit parallelism in case of
programs with a small number of rules. Importantly, the parallelization strategy of
[3] staticallyassigns a rule per processing unit; whereas, in our approach, both the
extension of predicates and “split sizes” are dynamically computed (and updated
at different iterations of the semi-naı̈ve) while the instantiation process is running.
Note also that our parallelization techniques and heuristics could be also adapted
for improving the Lparse instantiator.

Concerning other related works, it is worth remembering that, the dynamic
rewriting technique employed in our system is related to thecopy and constrain
technique for parallelizing the evaluation of deductive databases [32, 33, 34, 35, 36]
(for a detailed comparison between the two approaches see [8]). Focusing on the
heuristicsemployed on parallel databases, we mention [36] and [37]. In[36] is
described an heuristics for balancing the distribution of load in the parallel evalua-
tion of PARULEL, a language similar to Datalog. Here, load balancing is done by
a manager server that records the execution times at each site, and exploits this in-
formation for distributing the load. In [37] the proposed heuristics were devised for
both minimizing communication costs and choosing an opportune site for process-
ing sub-queries among various network-connected databasesystems. In both cases,
the proposed heuristics were devised and tuned for dealing with data distributed in
several sites and their application to similar architectures might be neither viable
nor straightforward.

7 Conclusions

In this paper, an advanced heuristics for load balancing andgranularity control in
the parallel instantiation of ASP programs has been proposed. The heuristics has
been implemented in the parallel instantiator of [7, 8] based on the DLV system,
and an experimental analysis has been conducted on hard-to-parallelize problem
instances which confirms the efficacy of the method for improving the performance
of the system. In particular, the parallel instantiator equipped with the new heuris-
tics always improves the results obtained by the old version; and compared with the
previous parallel method offers a very relevant gain especially in case of programs
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with hard-to-instantiate rules/constraints.
As far as future work is concerned, we are experimenting for obtaining a finer

tuning of the heuristics; and we are working on a procedure for the automatic
calibration of the heuristics thresholds. Moreover, we areassessing the impact of
the heuristics on a larger set of benchmarks.
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