
Evaluation of Knowledge Sharing Strategies in a
Parallel QBF Solver!

Paolo Marin1, Matthew Lewis2, Tobias Schubert2, Massimo Narizzano1,
Bernd Becker2, and Enrico Giunchiglia1

1 University of Genova
Genova, Italy

name.surname@unige.it

2 University of Freiburg
Freiburg, Germany

surname@informatik.uni-freiburg.de

Abstract

In this paper we examine the effect that different knowledge sharing
strategies have on the performance of our parallel QBF Solver PaQuBE.
This new Master/Slave MPI based solver leverages the additional compu-
tational power that can be exploited from modern computer and system
architectures, to solve more relevant instances and faster than previous
generation solvers. Knowledge sharing plays a critical role in the per-
formance of PaQuBE. However, due to the overhead associated with
sending and receiving MPI messages, and the restricted communica-
tion/network bandwidth available between solvers, it is essential that
we optimize not only which information is shared, but how it is shared.
In this context, we compare multiple conflict clause and solution cube
sharing strategies, and finally show that an adaptive method works best.
Additionally, compression of solution cubes was explored which reduced
the system time associated with message passing while also reducing
network traffic.

1 Introduction

The current generation of Boolean Satisfiability (SAT) and Quantified
Boolean Formula (QBF) solvers have become quite powerful. Both are
now able to solve many practically relevant problems. QBF however, al-
lows researchers to more naturally and compactly encode a wider range of
problems that for instance are encountered in Black Box or Partial Circuit
Verification [15], Bounded Model Checking [5], and AI planning [19], than in
SAT. Since QBF problems are generally more difficult (PSPACE-Complete

!This work appeared as “Comparison of Knowledge Sharing Strategies in a Parallel
QBF Solver” in Proceedings of The 2009 High Performance Computing & Simulation
(HPCS 2009) Conference.

Proceedings of the 16th International RCRA workshop (RCRA 2009):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Reggio Emilia, Italy, 12 December 2009

vs. NP-Complete), they require dedicated algorithms and increased computa-
tion power to solve relevant instances. In this context, using multiprocessor
systems and parallel algorithms is an interesting solution.

In the domain of parallel solvers, research focuses on subproblem gen-
eration, and knowledge sharing. Here we are concentrating on the latter.
On parallel QBF (or SAT) solvers, using static criteria for selecting what
information should be shared results in many messages being sent, but ac-
tually very little good information being shared. This paper highlights this
problem, and tries to provide some new ideas to improve knowledge sharing
within an Message Passing Interface (MPI) [20] based system.

The next section will describe the QBF problem, and how sequential
and parallel QBF solvers work. Section 3 will talk about the design and
implementation of PaQuBE. The knowledge sharing strategies that were
tested are discussed in Section 4 . Section 5 will cover the performance
results. Finally, Section 6 will conclude this paper.

2 QBF and DPLL Solver Overview

There are many ways to encode a QBF problem, but in our context, they are
defined in Conjunctive Normal Form (CNF). A problem in CNF form starts
with a variable definition. The variable definition quantifies each variable
(either existentially or universally), and assigns each variable to a specific
quantification level. Once the variable definition is complete, a set of clauses
is given that defines the problem. More formally, a QBF is an expression of
the form:

ϕ = Q1z1Q2z2 . . . QnznΦ (n ≥ 0) (1)

Here, every Qi (1 ≤ i ≤ n) is a quantifier, either existential ∃ or universal
∀, z1, . . . , zn are distinct sets of variables, and Φ is a propositional formula.
Q1z1 . . . Qnzn is defined as the prefix, and Φ, the propositional formula,
would contain a set P of clauses. While a variable is defined as an element of
P, an occurrence of that variable or its negation in a clause is referred to as
a literal. In the following, the literal l is defined as the negative occurrence
of the varable |l| in P, and l is the positive occurrence. In the following, we
also use true and false as abbreviations for the empty conjunction and the
empty disjunction, respectively. For example, an entire problem definition
might be as follows:

∃x1∀y∃x2{{x1 ∨ y ∨ x2} ∧ {x1 ∨ y} ∧ . . .} (2)

We say that (1) is in Conjunctive Normal Form (CNF) when Φ is a
conjunction of clauses, where each clause is a disjunction of literals as shown
in (2). And that (1) is in Disjunctive Normal Form (DNF) when Φ is a

2

disjunction of cubes, where each cube is a conjunction of literals (also known
as Solution Term) . We use constraints when we refer to clauses and cubes
indistinctly. We also define (i) the level of a variable zi, to be 1 + the number
of alternations QjzjQj+1zj+1 in the prefix with j ≥ i and Qj '= Qj+1; the
(ii) level of a literal l, to be the level of |l|; and the (iii) level of the formula,
to be the level of z1.

So, for example, in equation (2), x2 is existential and is quantified on
level 1, y is universal and is on level 2, x1 is existential and is on level 3.

2.1 Sequential QBF Solver

There are many types of sequential QBF solvers. Most solvers like QMiraXT
[18], QuBE [12], yQuaffle [21], are in principal based on the DPLL algorithm
[4]. Others, like Quantor [2], try to resolve and expand the formula until
no universally quantified variables remain. This allows them to send their
remaining existentially quantified problems to a SAT solver. On the other
hand, solvers like sKizzo [1] do the opposite of Quantor, and use symbolic
skolemization to eliminate the existentially quantified variables.

Now, while there are many ways to solve a QBF problem, this paper
focuses on PaQuBE which is based on the DPLL algorithm [4]. A DPLL
solver would start by preprocessing the input formula (CNF), and then, using
a heuristic, a variable would be selected and assigned a value (true or false).
In QBF, the decision heuristic is restricted to choosing variables on the first
quantification level. Only when all the variables on this level are defined,
can the heuristic move on to the next level. Once a decision is made, a
Boolean Constraint Propagation (BCP) procedure is run to find consequences
or implications of that decision. If the BCP procedure completes and no
conflicts are found, the decision procedure is run again.

However, if a conflict is found, a conflict analysis procedure is run in
order to find the reason for the conflict. This procedure will try to resolve
the conflict by backtracking to a previous decision level. It will then learn a
conflict clause that allows the solver to avoid this part of the search space
in the future. However, if the conflict cannot be resolved, the problem is
unsatisfiable. On the other hand, whenever a solution is found, an initial
reason can be computed in order to run the above conflict analysis procedure
almost symmetrically, thus recording a solution cube. If the solution cannot
be resolved, the problem is satisfiable.

For this paper, the more interesting advancements relate to this. Con-
flict/Solution analysis with non-chronological backtracking [7, 12, 16, 23, 11]
allows a SAT or QBF solver to produce new clauses and/or cubes that can
significantly truncate the search space. In a parallel solver, this information
can be shared between each of the sequential solvers.

3

2.2 Parallel QBF Solver

In our context, a parallel QBF solver consists of multiple copies of a sequential
solver. Each sequential solver (in the total parallel solver) works in the same
manner as described in Section 2.1. However, instead of working on the
entire problem, each individual solver is given a small part of the original
problem. This can be accomplished by selecting a decision variable and
telling each solver to search opposite assignments of that variable. This
method is referred to as the Guiding Path method in SAT and it was first
introduced by PSATO [22]. However, when using this method to produce
subproblems in QBF, a more elaborate mechanism must be in place to keep
track of which parts of the search space are currently being searched, and
which parts have already been proved satisfiable or unsatisfiable. For more
information on this refer to [18].

2.3 Previous Parallel QBF Solver Work

The parallelization of SAT has been well studied, e.g. in [22, 3]. However,
there is only one Message Passing based QBF solver that we are aware of [6]
(PQSOLVE). PQSOLVE was based on the basic DPLL algorithm, without
conflict or solution analysis as these techniques did not exist when it was
published. Recently, the threaded parallel SAT solver MiraXT was modified
so that it could directly handle QBF formulas [18]. Its tight integration of
threads allows significantly more knowledge sharing than an MPI design.
Because of QMiraXT’s shared memory architecture, each solver thread can
select the clauses it wishes to take, based on its current status. This is the
optimal solution, but a thread based design has scalability issues. With larger
MPI solvers no shared memory is available, so each solver must select which
clauses or terms it thinks are the best to share. In most implementations,
each individual solver is unaware of the status of the other solvers. For
example, in the parallel SAT solver GridSAT [3], a predefined maximum
clause length of 3 was used as the static criteria for sharing clauses. Even
newer solvers such as PMSat [8] still do this. In [14] the authors propose a
dynamic approach, but this pertains only to SAT. Furthermore, solution cube
sharing has not yet been explored. The first parallel QBF solver QMiraXT
only performed solution analysis, but recorded and shared no solution cubes.

3 PaQuBE Design Overview

We now present a quick overview of our distributed QBF proving algorithm
PaQuBE. PaQuBE is based on QuBE which is a search based QBF Solver
that uses lazy data structures for both unit clauses propagation and for pure
literals detection [12]. It also features conflict and solution non-chronological

4

backtracking and learning1. This overview is given in order to present the
framework in which PaQuBE uses for message passing and knowledge sharing.
It is necessary to understand the discussion of knowledge sharing in Section 4.
For a more detailed description of PaQuBE refer to [17].

3.1 General Properties

PaQuBE was implemented using a Master/Slave Model, where one process
is dedicated to be the master, and n− 1 are acting as slaves that actually
perform the solving. n here represents the total number of processes running
on the system. An illustration, using three clients, is given in Figure 1. In
our implementation, the role of the master is to control requests for new
subproblems, ensuring that the entire search space is searched. PaQuBE
uses the the Single Quantification Level Scheduling (SQLS) algorithm from
[18] to do this.

Client 0
PaQuBE

Master

PaQuBE

PaQuBE

Client 1
PaQuBE
Client 2

Solution Cubes
Conflict Clauses

SAT/UNSAT
Guiding Path
Control Signals

Figure 1: PaQuBE Design

In PaQuBE, the master sleeps most of the time, and when working
there is at least one inactive slave. This allows it to be run alongside other
processes without really needing a dedicated CPU. Also, in contrast to many
other parallel MPI based SAT solvers, the knowledge sharing mechanism
does not involve the master. Instead, the clients are total responsible for
sharing knowledge as is shown by Figure 1. Finally, the entire communication
has been realized using MPICH2 [13], an implementation of the Message
Passing Interface standard [20].

3.2 Implementation of Knowledge Sharing

As stated above, PaQuBE slaves can share both learnt clauses and cubes. As
conflict learning made SAT/QBF Solvers able to solve real world problems,
solution learning in QBF can help as well [11]. Moreover, it is well known that
computing initial reasons for backjumping from a solution (terms or cubes)
is far more expensive than the conflict case (see [23] and [9] for more detailed

1QuBE6.5 is a composition of the preprocessor sQueezeBF and the core solver. Our
work focuses on the core solver, but the formula output by the preprocessor has been taken
into account.

5

considerations). As a consequence, sharing small and already computed
solution terms may speed up the search. With future considerations in mind,
and in order to save part of the time (latency and transmission time) needed
to send these large messages in general, clauses are packed into bundles of
a fixed size, and terms are packed and compressed, with the aim of filling
without exceeding the capacity of a TCP packet. This bundles are prepared
and broadcasted after a fixed number of propagated literals. Furthermore, to
reduce network traffic, PaQuBE uses the design shown in Figure 1 in which
the exchange of conflict clauses does not involve the master process.

4 Knowledge Sharing Strategies

We implemented and tested experimentally different strategies for sharing
clauses and cubes between slaves. Some strategies use static criteria such as
size, while others are adaptive. In the case of cubes, further criteria were
tested that are based on quantifier alternations. However, in order to provide
a light efficient implementation of these criteria, a bucket sort system was
used. Instead of searching the clause/cube database for the best choices when
we want to send a message, we add the clauses/cubes to the different buckets
when they are produced, depending on the knowledge sharing criteria used.

For example, PaQuBE uses 3 buckets for conflict clauses and 3 buckets
for solution cubes. If we use clause length as our criteria, a new clause will be
placed in a particular bucket based on its length. In our implementation the
first bucket contains all clauses with a length < 5, the second is for clauses
with a length of 5 − 10, and a third for larger clauses that still meet the
criteria discussed below.

When the time comes to share this information, the clauses are taken
from the first bucket, then the second bucket, and finally the third bucket
until the 20 clause packet is full. This system allows us to not sort and search
the list of new clauses which can be quite large. Finally, once shared, the
buckets are emptied and the process starts again.

4.1 Selecting Information to Take

Now, when receiving clauses or cubes, slaves only add the ones that really aid
their search. These include clauses that are conflicting or directly produce
implications. Furthermore, really short clauses are also added as they may
still be useful in the near future or on new subproblems, and they are easier
to process by the BCP procedure.

This eliminates adding many useless clauses or terms, while providing a
balance between the knowledge sharing and the number of clauses the BCP
procedure must evaluate. This is the main limitation of an MPI based parallel
solver. When a slave selects constraints to be shared, it is not aware of their
usefulness to other slaves. This is because slaves are not aware of other

6

slaves’ current status or subproblems. In order to exchange this information
and keep it up-to-date would imply either too many messages or too great
latency if updated just before sharing. Selecting the constraints in this way
however, would allow us to share even larger ones more effectively, even if
less knowledge in total was shared. There are some interesting tradeoffs here
that we are currently developing.

4.2 Conflict Clause Sharing Strategies

Conflict clauses are shared depending on their length. The threshold is
calculated as a percentage of the number of variables occurring in the
formula. The three strategies CS1, CS2, and CS3 compute a fixed upper
bound, while CSADP uses an initial upper bound (equal to CS2) that can
be dynamically turned up or down depending on the amount of clauses that
have been produced. The four different strategies are as follows:

1. CS1 - Shared if clause length ≤ 6%, taken if clause length ≤ 2% or
conflicting or unit.

2. CS2 - Shared if clause length ≤ 11%, taken if length ≤ 3% or conflicting
or unit.

3. CS3 - Shared if clause length ≤ 15%, taken if length ≤ 5% or conflicting
or unit.

4. CSADP - Shared with an adaptive clause length from 0 to 40%, taken
if length ≤ 3% or conflicting or unit. The initial threshold is set to be
the same of CS2.

For all these strategies, the bucket sort discussed above is used. This
means that really short clauses still have a high priority and will always be
chosen over longer clauses. Only when the third bucket is needed, which is
often the case as small clauses are quite rare and we try to send packets of
20 clauses at time, do the criteria for CSx and CSADP play a large role.

As for the adaptive clause length criteria (CSADP), this starts using
the same threshold values as CS2. When we start to share clauses, the
buckets are checked as discussed before. If the 3rd bucket does not contain
enough clauses that meet the current criteria to fill the packet (20 clauses),
the threshold is increased by 10%. On the other hand, if the third bucket
contains more than enough clauses to fill a packet by itself (≥ 20), the
threshold is decreased by 10%. In all the other cases, the threshold does not
change.

4.3 Solution Cube Sharing Strategies

Solution cubes are shared following 4 distinctly different strategies. The first
group, SS1 and SS2, work in the same manner as CS1 and CS2 but using
different (larger) values. Also, in QuBE, cubes are minimized by removing

7

all variables quantified by the innermost quantifier. This means the selection
strategies for cubes are based on the number of variables quantified from
the 2nd to the highest quantification level. The next strategies for cubes
are labeled SSQA and SSFU. They compute a stricter cube length bound
with respect to SS1 or SS2, but they allow for larger cubes (up to a limit
calculated in a similar fashion for SSx) to be sent if the cubes contain only
universally quantified variables from the first universal quantification levels
(SSQA), or contain no more than a fixed number of universally quantified
variables (SSFU). Finally, SSADP is similar to CSADP, but for cubes.

1. SS1 - Shared if cube length ≤ 15%, taken if length ≤ 6% or conflicting
or unit.

2. SS2 - Shared if cube length ≤ 18%, taken if length ≤ 8% or conflicting
or unit.

3. SSQA - Shared if cube length ≤ 9%, taken if length ≤ 8% or conflicting
or unit. Also shared if length is ≤ 35% and its literals are bound at
the first two universal quantification levels.

4. SSFU - Shared if cube length ≤ 9%, taken if length ≤ 8% or conflicting
or unit. Also shared if length is ≤ 35% and it contains no more than 2
universal variables.

5. SSADP - Shared with adaptive cube length from 0 to ≤ 50%, taken if
length ≤ 8% or conflicting or unit. The initial threshold is set to be
the same of SS2.

For all these strategies, the bucket system was used again, however, the
length of the cubes for the first two buckets was doubled. Instead of using a
clause length of 5 and 10 for each bucket, a cube length of 10 and 20 were
used for the first two buckets. The third bucket again contains the remaining
cubes that meet the maximum criteria allowed.

For SSQA and SSFU, the selection mechanism is a bit more complicated.
Long cubes that meet these criteria are put into the second bucket (instead of
third) to give them a higher priority. This means that while really short cubes
still have the highest priority, long cubes with few universally quantified
variables or that only contain universally quantified variables bound to the
first two levels, are shared over shorter but more general cubes. Lastly,
SSADP works in the same manner as CSADP, with the exact same rules,
but with respect to the buckets used for cube sharing.

4.4 Solution Cube Compression

The algorithm used for compressing terms works on the assumption that
these terms share many literals, in particular those quantified at the highest
levels. Therefore, if the literals occurring in these terms are sorted according
to the prefix order, in every block of terms we can effectively detect and

8

avoid sending the common part of each. Moreover, each literal is encoded
using only two bits. This encoding allows us to communicate that a literal
(i) occurs with a positive polarity (01), (ii) occurs with negative polarity
(11), or (iii) does not occur in this term (00). The remaining allowable value
is used as a marker for the end of the term. Finally, after converting all the
selected terms, we put the complete first term into the packet. Then, for
the following terms, we only include the term’s differing tail, and an offset
pointing to where this term starts to differ from the first one. For example,
consider the following formula: ϕ = ∀y1y2∃x1x2∀y3∃x3ϕ. Excluding the
innermost existential variables (those bounded at the lowest quantification
level) 5 atoms may occur in a term (because of minimization). Now, let’s
say a solver learns: {y1,¬y2, x1, y3}, {y1,¬y2, x1,¬x2,¬y3}. Their 2−bit
encodings are, respectively: {01|11|01|00|01}, {01|11|01|11|11}. Only the
last 2 literals (highlighted in italic) differ. We say: “the difference begins at
the 4th position”. Then, the sent message will be: {01|11|01|00|01|4|11|11}.
Finally, the comparison here between terms has been done literal by literal
(pairs of bits), but for the sake of efficiency in PaQuBE this is done between
sets of 16 literals (32 bit blocks).

5 Experimental Results

To evaluate the performance of PaQuBE and the effectiveness of our ideas, we
ran multiple experiments on a selected pool of fixed-structure instances from
qbflib [10]. All instances from qbflib for which QuBE (the sequential solver)
required between 10 and 600 seconds were used, plus some incrementally
harder instances. In total, 283 benchmarks problems, from over 20 families,
were used.

The benchmarking machine used in this section contains two Dualcore
AMD Opteron 280 processors. Each processor runs at 2.4 GHz, and is
connected to 2 GB of local memory (4 GB in total). This machine runs
a 64 bit version of the Linux 2.6.24 kernel, and supports the MPICH 2-
1.0.8 library. This AMD system provides significantly more performance
for message passing than other distributed systems. On a larger cluster,
PaQuBE’s knowledge sharing would have to be scaled down accordingly
with the available bandwidth. Finally, it should be noted that PaQuBE’s
average CPU utilization when run with all 4 processors was over 97% on
these benchmarks. This means that all solvers were normally active solving
the problem and sharing information.

In Table 1 we first compare the different knowledge sharing strategies
as described in Section 4. Because the exact solve time of a parallel solver
is non-deterministic, each of the parallel solvers were run twice, and the
averages of those two runs are shown. The columns labeled #CCS/s and
#CCT/s are for conflict clauses shared per second, and clauses taken per

9

second per client. #SCS/s and #SCT/s are the same for solution cubes.
If knowledge sharing was perfect, the clauses/cubes shared would equal the
number taken. In brackets, the average size of the clause/cube that were
shared and taken is also shown. T ime is the wall clock time used by the
solver, and #PS is the number of problems solved by either run of the solver.

First, we show the performance difference between the sequential solver
QuBE and PaQuBE 4P-NOS which is our parallel solver with sharing
disabled. Here we still get good speedup (with respect to the number of
problems solved, #PS, and T ime) without knowledge sharing. Next, with
conflict clause sharing enabled, the three static strategies CS1-3 provide
roughly no added benefit. Only when the adaptive method is used, does
conflict clause sharing actually help. The same is true with solution cube
sharing. This is interesting as most current state-of-the-art solvers use
static criteria for sharing clauses. As for SSQA and SSFU, which depend
on quantifier alternations, these types of strategies do not seem to help,
although from a logical standpoint they seem resonable.

The fully adaptive cube and clause sharing strategy provides the best
performance. This is shown in PaQuBE 4P-CSSSADP. The 4P-CSSSADP
version does not only reduce the total solving time by 2000s, but also
solves 7 more instances compared to PaQuBE 4P-NOS. Furthermore, 4P-
CSSSADP performs better than the optimized static approach originally
used in PaQuBE (PaQuBE 4P-ver-[17]).

As for a general pattern, it is interesting to note that in all cases when
sharing conflict clauses (and to a similar extent solution cubes), the amount
shared is significantly more than the amount taken. This means much of
the information shared by each solver does not really help the other solvers.
This is shown in more detail in Table 2.

In Table 2 we now show the results of our best solver PaQuBE 4P-
CSSSADP on each family. It can be seen that different families of benchmarks
perform better than others in the parallel sense, providing variable speedup
(4P×). With respect to benchmarks like katz, in which we achieve super
linear speedup, this is basically attributed to the fact that one of the 4 clients
received a subproblem that produced a conflict that showed that the entire
problem was unsatisfiable. This again is an advantage of a parallel solver.
Decision heuristics are not perfect, and by adding more clients, we have
a better chance of sending the solver to a more fruitful part of the search
space. One reason for the poor performance on certain benchmarks is how
the subproblems are produced. For instance, if we use existentially quantified
variables to produce subproblems, but all subproblems are satisfiable, this
results in each PaQuBE client needlessly searching a satisfiable subproblem,
when only one satisfiable subproblem needs to be searched. Thankfully, with
intelligent conflict clause and solution cube sharing, each PaQuBE client
can still learn from one another, thus minimising this redundant work. As a
side note, if we focus on splitting variables and speedup, universal splitting

10

variables tend to do better (2.45x for ∀ versus 1.62 for ∃).
Now, with respect to knowledge sharing, we show how many clauses

(#CCS & #CCT) or cubes (#SCS & #SCT) are shared and taken in
total (rather than per second), and how many actually produced implications
(#Impl.) or conflicts (#Confl.) on average per client. It is easy to see that
only a small fraction of clauses and cubes seem to be directly useful. This
information highlights the need for better heuristics. Again, solution cube
sharing seems to perform better than conflict clause sharing with respect
to how many clauses are shared/taken, but again this is benchmark family
dependant. However, as can be seen from Table 1, conflict clause sharing
seems to reduce the total run time more. Also, certain benchmarks share
only conflict clauses, while other only share cubes. This is because certain
problems consist of mostly solution space searches, while other are conflict
based searches. The main reason the adaptive algorithms perform so well, is
due to this. Basically, there is a huge difference between the structures of
each benchmark family.

Lastly, the performance of our compression algorithm for solution cubes
is shown (Comp.). Here we see that on average our solution cubes are
compressed by over 15×. This reduces the size of the packets we need to
send, and therefore the total network congestion. This should help in the
future as we scale to larger systems.

6 Conclusion and Future Work

In this paper we introduced the parallel QBF solver PaQuBE. It is based
on the state-of-the-art QBF solver QuBE, which according to the last QBF
competition is significantly faster than other sequential solvers. We then
highlighted some of the problems associated with static knowledge sharing
criteria, and proposed some better adaptive methods. We also introduced
a new compression algorithm that quickly compresses cubes by over 15×
on average. Finally, as with many research endevors, we introduced new
questions. For example, while our adaptive knowledge sharing strategy
performs well, it’s still not optimal.

Lastly, we plan to test PaQuBE on a larger cluster, currently being
installed at the University of Genova. This cluster will contain multiple,
multicore IBM servers connected by an Infiniband network (20Gb/s) with
over 40 processors in total when installed later this year.

Acknowledgments

The authors would like to thank the German DAAD and the Italian AIT for
their support (Vigoni). Furthermore, this work was partly supported by the
German Research Council (DFG) as part of the Transregional Collaborative

11

Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS). See www.avacs.org for more information.

References

[1] M. Benedetti. skizzo: A suite to evaluate and certify qbfs. In Proc.
CADE, pages 369–376, 2005.

[2] A. Biere. Resolve and expand. In Proc. SAT, pages 59–70, 2004.

[3] W. Chrabakh and R. Wolski. Gridsat: A chaff-based distributed sat
solver for the grid. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 37, Washington, DC, USA, 2003.
IEEE Computer Society.

[4] M. Davis, G. Logemann, and D. W. Loveland. A machine program for
theorem proving. Communication of ACM, 5(7):394–397, 1962.

[5] N. Dershowitz, Z. Hanna, and J. Katz. Bounded model checking with
qbf. In SAT, pages 408–414, 2005.

[6] R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm
to evaluate Quantified Boolean Formulae. In Proc. AAAI, 2000.

[7] I. P. Gent and A. G. Rowley. Solution learning and solution di-
rected backjumping revisited. Technical Report APES-80-2004, APES
Research Group, February 2004. Available from http://www.dcs.st-
and.ac.uk/˜apes/apesreports.html.

[8] L. Gil, P. Flores, and L. Silveira. Pmsat: a parallel version of minisat.
Journal on Satisfiability, Boolean Modeling and Computation, 6:71–98,
2008.

[9] E. Giunchiglia, P. Marin, and M. Narizzano. Reasoning with Quantified
Boolean Formulas, volume 185 of Frontiers in Artificial Intelligence and
Applications, chapter 24, pages 761–780. IOS Press, February 2009.

[10] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean
Formulas satisfiability library (QBFLIB), 2001. www.qbflib.org.

[11] E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE++: An efficient
QBF solver. In 5th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2004, pages 201–213, 2004.

[12] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/term resolution
and learning in the evaluation of quantified Boolean formulas. Journal
of Artificial Intelligence Research (JAIR), 26:371–416, 2006.

12

http://www.qbflib.org

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, Sept. 1996.

[14] Y. Hamadi, S. Jabbour, and L. Sais. Control-based clause sharing in
parallel sat solving. In C. Boutilier, editor, IJCAI, pages 499–504, 2009.

[15] M. Herbstritt and B. Becker. On Combining 01X-Logic and QBF.
In Proceedings of 11th International Conference on Computer Aided
Systems Theory (EuroCAST), pages 531–538, Las Palmas de Gran
Canaria, Canary Islands, Spain, 2007. Springer Verlag.

[16] H. Kleine-Büning, M. Karpinski, and A. Flögel. Resolution for quantified
Boolean formulas. Information and Computation, 117(1):12–18, 1995.

[17] M. Lewis, P. Marin, T. Schubert, M. Narizzano, B. Becker, and
E. Giunchiglia. Paqube: Distributed qbf solving with advanced knowl-
edge sharing. In Proceedings of SAT, International Conference on Theory
and Applications of Satisfiability Testing. Springer Verlag, 2009. LNCS.

[18] M. Lewis, T. Schubert, and B. Becker. QMiraXT – A Multithreaded
QBF Solver. In Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen, January 2009.

[19] J. Rintanen. Constructing conditional plans by a theorem prover. Journal
of Artificial Intelligence Research, 10:323–352, 1999.

[20] M. Snir, S. Otto, D. Walker, J. Dongarra, and S. Huss-Lederman. MPI:
The Complete Reference. MIT Press, 1995.

[21] Y. Yu and S. Malik. Validating the result of a quantified boolean formula
(qbf) solver: theory and practice. In T.-A. Tang, editor, ASP-DAC,
pages 1047–1051. ACM Press, 2005.

[22] H. Zhang, M. P. Bonacina, and J. Hsiang. Psato: a distributed propo-
sitional prover and its application to quasigroup problems. J. Symb.
Comput., 21(4-6):543–560, 1996.

[23] L. Zhang and S. Malik. Towards a symmetric treatment of satisfaction
and conflicts in quantified Boolean formula evaluation. In Proceedings
of the Eighth International Conference on Principles and Practice of
Constraint Programming, pages 200–215, 2002.

13

S
ol

ve
r

#
C

C
S
/s

(s
iz

e)
#

C
C

T
/s

(s
iz

e)
#

S
C

S
/s

(s
iz

e)
#

S
C

T
/s

(s
iz

e)
#

P
S

T
im

e
T

im
e

R
ed

.

Q
u
B

E
1P

–
(–

)
–

(–
)

–
(–

)
–

(–
)

23
1

59
,3

98
.2

3
1.

00
P
aQ

u
B

E
4P

-N
O

S
–

(–
)

–
(–

)
–

(–
)

–
(–

)
26

3
36

,2
63

.5
5

1.
64

P
aQ

u
B

E
4P

-C
S
1

21
.1

3
(1

7.
85

)
0.

83
(1

6.
44

)
–

(–
)

–
(–

)
26

5
36

,6
51

.7
0

1.
62

P
aQ

u
B

E
4P

-C
S
2

25
.0

5
(2

7.
15

)
1.

08
(2

7.
66

–
(–

)
–

(–
)

26
4

36
,1

12
.5

1
1.

64
P
aQ

u
B

E
4P

-C
S
3

23
.0

5
(3

5.
33

)
1.

03
(3

3.
33

–
(–

)
–

(–
)

26
7

36
,4

14
.3

5
1.

63
P
aQ

u
B

E
4P

-C
S
A

D
P

23
.6

4
(3

3.
57

)
1.

03
(3

3.
45

)
–

(–
)

–
(–

)
26

8
35

,6
71

.9
7

1.
67

P
aQ

u
B

E
4P

-S
S
1

–
(–

)
–

(–
)

13
.8

1
(1

4.
88

)
2.

71
(9

.2
7)

26
4

36
,6

38
.8

3
1.

62
P
aQ

u
B

E
4P

-S
S
2

–
(–

)
–

(–
)

13
.9

1
(1

8.
07

)
3.

12
(8

.6
70

26
4

36
,8

44
.0

3
1.

61
P
aQ

u
B

E
4P

-S
S
Q

A
–

(–
)

–
(–

)
10

7.
01

(1
01

.0
9)

4.
58

(2
0.

11
)

26
5

36
,9

97
.5

5
1.

61
P
aQ

u
B

E
4P

-S
S
F
U

–
(–

)
–

(–
)

6.
46

(7
2.

23
)

3.
39

(6
.5

1)
26

6
36

,8
50

.6
4

1.
61

P
aQ

u
B

E
4P

-S
S
A

D
P

–
(–

)
–

(–
)

12
4.

06
(1

42
.1

9)
5.

36
(2

9.
68

)
26

7
35

,5
50

.7
2

1.
67

P
aQ

u
B

E
4P

-v
er

-[
17

]
27

.0
0

(3
7.

02
)

1.
19

(1
7.

96
)

22
.7

7
(2

7.
43

)
4.

29
(8

.5
6)

26
8

34
,9

16
.8

2
1.

70
P
aQ

u
B

E
4P

-C
S
S
S
A

D
P

24
.4

4
(3

6.
08

)
1.

02
(5

4.
17

)
12

6.
87

(1
42

.4
)

5.
48

(3
0.

92
)

27
0

34
,2

87
.8

6
1.

73

Ta
bl

e
1:

P
aQ

uB
E

:C
om

pa
ri

so
n

O
fK

no
w

le
dg

e
Sh

ar
in

g
St

ra
te

gi
es

14

F
am

il
y

In
st

s.
4P
×

C
on

fl
ic

t
C

la
u
se

s
S
ol

u
ti
on

C
u
b
es

#
C

C
S

#
C

C
T

#
Im

p
l.

#
C

on
fl
.

#
S
C

S
#

S
C

T
#

Im
p
l.

#
C

on
fl
.

C
om

p
.

A
b
d
u
ct

io
n

13
2.

19
26

,2
80

62
1.

50
0.

17
0.

83
18

7,
67

0
1,

86
9.

00
0.

00
0.

00
10

.3
1

B
M

C
12

0.
91

46
7,

06
0

19
,8

16
.6

7
29

0.
00

19
8.

33
43

,4
20

12
,3

71
.5

0
0.

00
0.

17
5.

55
C

on
d
.

P
l.

2
1.

70
6,

61
0

30
0.

83
0.

33
0.

50
0

0.
00

0.
00

0.
00

N
A

co
u
n
te

r
1

1.
50

6,
01

0
19

8.
33

0.
17

0.
50

3,
87

0
49

1.
00

0.
00

0.
00

14
.8

6
E

v
-P

r-
*-

lg
7

11
.9

7
1,

61
0

55
.8

3
0.

00
0.

33
2,

28
0

76
9.

33
0.

00
0.

00
61

.0
3

F
P

G
A

P
F
S

1
8.

53
2,

51
0

65
.5

0
0.

00
0.

00
0

0.
00

0.
00

0.
00

N
A

ir
q
lk

ea
p
ci

te
1

4.
00

0
0.

00
0.

00
0.

00
2,

13
0

3.
67

0.
00

0.
00

4.
33

k
*

n
16

1.
25

5,
25

0
20

8.
33

3.
00

13
.1

7
21

,3
70

1,
66

3.
83

0.
00

8.
00

12
.1

3
k

*
p

18
1.

17
16

,5
00

68
3.

00
0.

00
0.

33
17

,0
00

5,
92

6.
17

0.
33

76
.6

7
9.

67
ka

tz
2

15
.9

8
8,

30
0

66
.0

0
0.

00
0.

00
1,

33
0

41
4.

50
3.

83
0.

00
1.

86
lo

gn
1

1.
45

68
0

27
.3

3
1.

00
1.

33
0

0.
00

0.
00

0.
00

N
A

sa
ka

ll
ah

43
1.

35
4,

50
0

15
6.

50
0.

00
0.

00
1,

58
3,

01
0

25
,2

93
.0

0
20

7.
83

57
.6

7
26

.0
8

S
ch

ol
l-
B

ec
ke

r
7

1.
39

64
,2

60
2,

01
8.

00
0.

00
0.

00
23

,4
40

3,
37

2.
00

0.
00

0.
00

4.
15

S
or

ti
n
g

N
et

w
or

k
s

15
2.

50
80

,9
20

3,
79

7.
00

0.
00

0.
00

10
6,

65
0

86
,1

37
.0

0
73

.1
7

82
.3

3
2.

73
S
zy

m
an

sk
i

4
1.

28
0

0.
00

0.
00

0.
00

2,
38

0
1,

77
3.

33
0.

00
0.

00
0.

97
te

rm
in

at
or

21
2.

50
20

1.
00

0.
00

0.
00

34
6,

75
0

11
,5

94
.3

3
0.

83
11

.5
0

3.
31

ti
p
fi
x
d
ia

m
et

er
32

2.
46

88
,3

20
4,

24
7.

00
0.

17
7.

33
40

6,
40

0
22

,8
27

.8
3

3.
83

60
2.

50
9.

64
ti
p
fi
x
p
oi

n
t

79
1.

46
56

,2
20

2,
63

3.
00

0.
50

2.
33

1,
58

1,
04

0
13

,3
57

.6
7

0.
33

43
.3

3
7.

34
T

O
IL

E
T

5
9.

02
2,

97
0

70
.3

3
0.

00
0.

00
0

0.
00

0.
00

0.
00

N
A

w
m

if
or

w
ar

d
3

4.
43

0
0.

00
0.

00
0.

00
21

,5
30

99
.0

0
0.

00
0.

33
3.

69
T
ot

al
28

3
1.

73
83

8,
02

0
34

,9
66

.1
7

29
5.

33
22

5.
00

4,
35

0,
27

0
18

7,
96

3.
17

29
0.

17
88

2.
50

15
.3

3

Ta
bl

e
2:

P
aQ

uB
E

:B
en

ch
m

ar
k

Fa
m

ily
P
er

fo
rm

an
ce

15

