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Abstract

In this paper, we propose a class of graphs, the tripartite directed acyclic
graphs (tDAGs), to model first-order rule feature spaces forsentence pair
classification. We introduce an algorithm for computing thesimilarity in
first-order rewrite rule feature spaces. Our algorithm is extremely efficient
and, as it computes the similarity of instances that can be represented in
explicit feature spaces, it is a valid kernel function.

1 Introduction

Natural language processing models are generally positivecombinations between
linguistic models and automatically learnt classifiers. Astrees are extremely impor-
tant in many linguistic theories, a large amount of work exploiting machine learn-
ing algorithms for NLP tasks has been developed for this class of data structures
[3, 14]. These works propose efficient algorithms for determining the similarity
between two trees in tree fragment feature spaces.

Yet, some NLP tasks such as textual entailment recognition [5, 6] and some
linguistic theories such as HPSG [16] require more general graphs and, then, more
general algorithms for computing similarity among graphs.Unfortunately, algo-
rithms for computing similarity between two general graphsin term of common
subgraphs are still exponential [18]. In these cases, approximated algorithms have
been proposed. For example, the one proposed in [9] counts the number of sub-
paths in common. The same happens for the one proposed in [19]that is appli-
cable to a particular class of graphs, i.e. the hierarchicaldirected acyclic graphs.
These algorithms do not compute the number of subgraphs in common between
two graphs. Then, these algorithms approximate the featurespaces we need in
these NLP tasks. For computing similarities in these feature spaces, we have to in-
vestigate if we can define a particular class of graphs for theclass of tasks we want
to solve. Once we focused the class of graph, we can explore efficient similarity
algorithms.

A very important class of graphs can be defined for tasks involving sentence
pairs. In these cases, an important class of feature spaces is the one that represents
first-order rewrite rules. For example, in textual entailment recognition [6], we
need to determine whether a textT implies a hypothesisH, e.g., whether or not
“Farmers feed cows animal extracts” entails “Cows eat animal extracts” (T1,H1).

Proceedings of the 16th International RCRA workshop (RCRA 2009):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Reggio Emilia, Italy, 12 December 2009



If we want to learn textual entailment classifiers, we need toexploit first-order rules
hidden in training instances. To positively exploit the training instance “Pediatri-
cians suggest women to feed newborns breast milk” entails “Pediatricians suggest
that newborns eat breast milk” (T2,H2) for classifying the above example, learn-
ing algorithms should learn that the two instances hide the first-order ruleρ =
feedY Z → Y eat Z . The first-order rule feature space, introduced by [22],

gives high performances in term of accuracy for textual entailment recognition with
respect to other features spaces.

In this paper, we propose a class of graphs, the tripartite directed acyclic graphs
(tDAGs), that model first-order rule feature spaces and, using this class of graphs,
we introduce an algorithm for computing the similarity in first-order rewrite rule
feature spaces. The possibility of explicitly representing the first-order feature
space as subgraphs of tDAGs makes the derived similarity function a valid ker-
nel. With respect to the algorithm proposed in [15], our algorithm is more efficient
and it is a valid kernel function.

The paper is organized as follows. In Section 2, we firstly describe tripartite
directed acyclic graphs (tDAGs) to model first-order feature (FOR) spaces. In Sec-
tion 3, we then present the related work. In Section 4, we introduce the similarity
function for these FOR spaces. This can be used as kernel function in kernel-based
machines (e.g., support vector machines [4]). We then introduce our efficient al-
gorithm for computing the similarity among tDAGs. In Section 5, we analyze
the computational efficiency of our algorithm showing that it is extremely more
efficient than the algorithm proposed in [15]. Finally, in Section 6, we draw con-
clusions and plan the future work.

2 Representing first-order rules and sentence pairs as tri-
partite directed acyclic graphs

As first step, we want to define thetripartite directed acyclic graphs(tDAGs).
This is an extremely important class of graphs for the first-order rule feature spaces
we want to model. We want here to intuitively show that, if we model first-order
rules and sentence pairs astDAGs, determining whether or not a sentence pair can
be unified with a first-order rewrite rule is a graph matching problem. This intuitive
idea helps in determining our efficient algorithm for exploiting first-order rules in
learning examples.

To illustrate the above idea we will use an example based on the above ruleρ=
feedY Z → Y eat Z and the above sentence pair(T1,H1). The ruleρ en-

codes the entailment relation of the verbto feedand the verbto eat. If represented
over a syntactic interpretation, the rule has the followingaspect:
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Figure 1:A simple rule and a simple pair as a graph
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As in the case of feature structures [2], we can observe this rule as a graph. As we
are not interested in the variable names but we need to know the relation between
the right hand side and the left hand side of the rule, we can substitute each variable
with an unlabelled node. We then connect tree nodes having variables with the
corresponding unlabelled node. The result is a graph as the one in Figure 1(a). The
variablesY and Z are represented by the unlabelled nodes between the trees.

In the same way we can represent the sentence pair(T1,H1) using graph with
explicit links between related words and nodes (see Figure 1(b)). We can link
words using anchoring methods as in [17]. These links can then be propagated
in the syntactic tree using semantic heads of the constituents [16]. The ruleρ1

matches over the pair(T1,H1) if the graphρ1 is among the subgraphs of the graph
in Figure 1(b).

Both rules and sentence pairs are graphs of the same type. These graphs are
basically two trees connected through an intermediate set of nodes representing
variables in the rules and relations between nodes in the sentence pairs. We will
hereafter call these graphstripartite directed acyclic graphs(tDAGs). The formal
definition follows.

Definition tDAG: A tripartite directed acyclic graphis a graphG = (N,E) where

• the set of nodesN is partitioned in three setsNt, Ng, andA

• the set of edges is partitioned in four setsEt, Eg, EAt , andEAg

such thatt = (Nt, Et) andg = (Ng, Eg) are two trees andEAt = {(x, y)|x ∈
Nt andy ∈ A} andEAg = {(x, y)|x ∈ Ng andy ∈ A} are the edges connecting
the two trees.
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Figure 2: Two tripartite DAGs

A tDAG is a partially labeled graph. The labeling functionL only applies to
the subsets of nodes related to the two trees, i.e.,L : Nt ∪ Ng → L. Nodes in the
setA are not labeled.

The explicit representation of the tDAG in Figure 1(b) has been useful to show
that the unification of a rule and a sentence pair is a graph matching problem. Yet,
it is complex to follow. We will then describe a tDAG with an alternative and more
convenient representation. A tDAGG = (N,E) can be seen as pairG = (τ, γ) of
extended treesτ andγ whereτ = (Nt∪A,Et∪EAt) andγ = (Ng∪A,Eg∪EAg).
These are extended trees as each tree contains the relationswith the other tree.

As for the feature structures, we will graphically represent a (x, y) ∈ EAt and
a (z, y) ∈ EAg as boxesy respectively on the nodex and on the nodez. These
nodes will then appear asL(x) y andL(z)y , e.g., NP1. The namey is not a label
but a placeholder representing an unlabelled node. This representation is used for
rules and for sentence pairs. The sentence pair in Figure 1(b) is then represented
as reported in Figure 2.

3 Related work

Automatically learning classifiers for sentence pairs is extremely important for ap-
plications like textual entailment recognition, questionanswering, and machine
translation.

In textual entailment recognition, it is not hard to see graphs similar to tripar-
tite directed acyclic graphs as ways of extracting featuresfrom examples to feed

4



automatic classifiers. Yet, these graphs are generally not tripartite in the sense de-
scribed in the previous section and they are not used to extract features representing
first-order rewrite rules. In [17, 10, 11], two connected graphs representing the two
sentencess1 ands2 are used to compute distance features, i.e., features represent-
ing the distance betweens1 ands2. The underlying idea is that lexical, syntactic,
and semantic similarities between sentences in a pair are relevant features to clas-
sify sentence pairs in classes such asentail andnot-entail.

In [7], first-order rewrite rule feature spaces have been explored. Yet, these
spaces are extremely small. Only some features representing first-order rules have
been explored. Pairs of graphs are used here to determine if afeature is active
or not, i.e., the rule fires or not. A larger feature space of rewrite rules has been
implicitly explored in [21] but this work considers only ground rewrite rules.

In [22], tripartite directed acyclic graphs are implicitlyintroduced and ex-
ploited to build first-order rule feature spaces. Yet, both in [22] and in [15], the
model proposed has two major limitations: it can represent rules with less than 7
variables and the proposed kernel is not a completely valid kernel as it uses the
max function.

In machine translation, some methods such as [8] learn graphbased rewrite
rules for generative purposes. Yet, the method presented in[8] can model first-
order rewrite rules only with a very small amount of variables, i.e., two or three
variables.

4 An efficient algorithm for computing the first-order rule
space kernel

In this section, we present our idea for an efficient algorithm for exploiting first-
order rule feature spaces. In Section 4.1, we firstly define the similarity function,
i.e., the kernelK(G1, G2), that we need to determine for correctly using first-order
rules feature spaces. This kernel is strongly based on the isomorphism between
graphs. A relevant idea of this paper is the observation thatwe can define an
efficient way to detect the isomorphism between the tDAGs (Section 4.2). This
algorithm exploits the efficient algorithms of tree isomorphism as the one implicitly
used in [3]. After describing the isomorphism between tDAGs, We can present
the idea of our efficient algorithm for computingK(G1, G2) (Section 4.3). We
introduce the algorithms to make it a viable solution (Section 4.4). Finally, in
Section 4.5, we report the kernel computation presented by [22, 15]. This latter is
our baseline method.

4.1 Kernel functions over first-order rule feature spaces

The first-order rule feature space we want to model is huge. Ifwe use kernel-based
machine learning models such as SVM [4], we can implicitly define the space by
defining its similarity functions, i.e., its kernel functions. We firstly introduce the
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first-order rule feature space and we then define the prototypical kernel function
over this space.

The first-order rule feature space (FOR) is in general the space of all the pos-
sible first-order rules defined as tDAGs. Within this space itis possible to define
the functionS(G) that determines all the possible active features of the tDAGG in
FOR. The functionS(G) determines all the possible and meaningful subgraphs
of G. We want that these subgraphs represent first-order rules that can be matched
with the pairG. Then, meaningful subgraphs ofG = (τ, γ) are graphs(t, g) where
t andg are subtrees ofτ andγ, respectively. For example, the subgraphs ofP1 and
P2 in Figure 2 are hereafter partially represented:
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In the FOR space, the kernel functionK should then compute the number of
subgraphs in common. The trivial way to describe the former kernel function is
using the intersection operator, i.e., the kernelK(G1, G2) is the following:

K(G1, G2) = |S(G1) ∩ S(G2)| (1)

This is very simple to write and it is in principle correct. A graphg in the intersec-
tion S(G1) ∩ S(G2) is a graph that belongs to bothS(G1) andS(G2). Yet, this
hides a very important fact: determining whether two graphs, g1 andg2, are the
samegraphg1 = g2 is not trivial. For example, it is not sufficient to superficially
compare graphs to determine thatρ1 belongs both toS1 andS2. We need to use
the correct property forg1 = g2, i.e., theisomorphismbetween two graphs. We
can call the operatorIso(g1, g2). When two graphs verify the propertyIso(g1, g2),
bothg1 andg2 can be taken as the graphg representing the two graphs. Detecting
Iso(g1, g2) has an exponential complexity [13].

This complexity of the intersection operator between sets of graphs deserves a
different way to represent the operation. We will use the same symbol but we will
use the prefix notation. The operator is hereafter re-defined:

∩(S(G1),S(G2)) = {g1|g1 ∈ S(G1),∃g2 ∈ S(G2), Iso(g1, g2)}
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4.2 Isomorphism between tDAGs

As isomorphism between graphs is an essential activity for learning from structured
data, we here review its definition and we adapt it to tDAGs. Wethen observe that
isomorphism between two tDAGs can be divided in two sub-problems:

• finding the isomorphism between two pairs ofextended trees

• checking whether the partial isomorphism found between thetwo pairs of
extended treesare compatible.

In general, two tDAGs,G1 = (N1, E1) andG2 = (N2, E2) areisomorphic(or
match) if |N1| = |N2|, |E1| = |E2|, and a bijective functionf : N1 → N2 exists
such that these properties hold:

• for each noden ∈ N1, L(f(n)) = L(n)

• for each edge(n1, n2) ∈ E1 an edge(f(n1), f(n2)) is in E2

The bijective functionf is a member of the combinatorial setF of all the possible
bijective functions between the two setsN1 andN2.

The trivial algorithm for detecting if two graphs are isomorphic is exponential
[13]. It explores all the setF . It is still undetermined if the general graph iso-
morphism problem is NP-complete. Yet, we can use the fact that tDAGs are two
extended trees for building a better algorithm. There is an efficient algorithm for
computing isomorphism between trees (as the one implicitlyused in [3]).

Given two tDAGsG1 = (τ1, γ1) andG2 = (τ2, γ2) the isomorphism can be
reduced to the problem of detecting two properties:

1. Partial isomorphism. Two tDAGsG1 andG2 arepartially isomorphic, The
partial isomorphism produces two bijective functionsfτ andfγ .

2. Constraint compatibility. Two bijective functionsfτ andfγ are compatible
on the sets of nodesA1 andA2, if for eachn ∈ A1, it happens thatfτ (n) =
fγ(n).

We can rephrase the second property, i.e., the constraint compatibility, as follows.
We define two constraintsc(τ1, τ2) and c(γ1, γ2) representing the functionsfτ

and fγ on the setsA1 and A2. The two constraints are defined asc(τ1, τ2) =
{(n, fτ (n))|n ∈ A1} andc(γ1, γ2) = {(n, fγ(n))|n ∈ A1}. Two partially isomor-
phic tDAGs are isomorphic if the constraints match, i.e.,c(τ1, τ2) = c(γ1, γ2).

For example, the fourth pair ofS(P1) and the third pair ofS(P2) are isomor-
phic as: (1) these are partially isomorphic, i.e., the righthand sidesτ and the left
hand sidesγ are isomorphic; (2) both pairs of extended trees generate the constraint
c1 = {(1 , 3), (3 , 4)}. In the same way, the second pair ofS(P1) and the second
pair ofS(P2) generatec2 = {(1 , 1)}
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Figure 3: Intuitive idea for the kernel computation
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Figure 4: Simple non-linguistic tDAGs

4.3 General idea for an efficient kernel function

As discussed above, two tDAGs are isomorphic if the two properties, thepar-
tial isomorphismand theconstraint compatibility, hold. To compute the kernel
functionK(G1, G2) defined in Section 4.1, we can exploit these properties in the
reverse order. Given a constraintc, we can select all the graphs that meet the
constraintc (constraint compatibility). Having the set of all the tDAGs meeting the
constraint, we can detect thepartial isomorphism. We split each pair of tDAGs into
the four extended trees and we determine if these extended trees are compatible.

We introduce this method to compute the kernelK(G1, G2) in the FOR space
in two steps. Firstly, we give an intuitive explanation and,secondly, we formally
define the kernel.

4.3.1 Intuitive explanation

To give an intuition of the kernel computation, without lossof generality and for
sake of simplicity, we use two non-linguistic tDAGs,Pa andPb (see Figure 4), and
the subgraph functioñS(θ). This latter is an approximated version ofS(θ) that
generates tDAGs with subtrees rooted in the root of the initial trees ofθ.

To exploit theconstraint compatibilityproperty, we defineC as the set of all
the relevant alternative constraints, i.e., the constraintsc that are likely to be gen-
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erated when detecting thepartial isomorphism. For Pa andPb, this set isC =
{c1, c2} =

{
{(1 , 1), (2 , 2)}, {(1 , 1), (2 , 3)}

}
. We can then determine the

kernelK(Pa, Pb) as:

K(Pa,Pb)=|∩(S̃(Pa),S̃(Pb))|=|∩(S̃(Pa),S̃(Pb))|c1
⋃

∩(S̃(Pa),S̃(Pb))|c2 |

where∩(S̃(Pa), S̃(Pb))|c are the common subgraphs that meet the constraintc. A
tDAG g′ = (τ ′, γ′) in S̃(Pa) is in ∩(S̃(Pa), S̃(Pb))|c if g′′ = (τ ′′, γ′′) in S̃(Pb)
exists,g′ is partially isomorphic tog′′, andc′ = c(τ ′, τ ′′) = c(γ′, γ′′) is covered
by andcompatiblewith the constraintc, i.e., c′ ⊆ c. For example in Figure 3,
the first tDAG of the set∩(S̃(Pa), S̃(Pb))|c1 belongs to the set as its constraint
c′ = {(1 , 1)} is a subset ofc1.

Observing the kernel computation in this way is important. Elements in∩(S̃(Pa), S̃(Pb))|c
already satisfy the property ofconstraint compatibility. We only need to deter-
mine if thepartially isomorphicproperties hold for elements in∩(S̃(Pa), S̃(Pb))|c.
Then, we can write the following equivalence:

∩(S̃(Pa),S̃(Pb))|c=∩(S̃(τa),S̃(τb))|c×∩(S̃(γa),S̃(γb))|c (2)

Figure 3 reports this equivalence for the two sets derived using the constraints
c1 andc2. Note that this equivalence is not valid if a constraint is not applied, i.e.,
∩(S̃(Pa), S̃(Pb)) 6=∩(S̃(τa), S̃(τb))×∩(S̃(γa), S̃(γb)). The pairPa itself does not
belong to∩(S̃(Pa), S̃(Pb)) but it does belong to∩(S̃(τa), S̃(τb))×∩(S̃(γa), S̃(γb)).

The equivalence (2) allows to compute the cardinality of∩(S̃(Pa), S̃(Pb))|c
using the cardinalities of∩(S̃(τa), S̃(τb))|c and∩(S̃(γa), S̃(γb))|c. These latter
sets contain only extended trees where the equivalences between unlabelled nodes
are given byc. We can then compute the cardinalities of these two sets using
methods developed for trees (e.g., the kernel functionKS(θ1, θ2) introduced in
[3]).

4.3.2 Formal definition

Given the idea of the previous section, it is easy to demonstrate that the kernel
K(G1, G2) can be written as follows:

K(G1,G2)=|
⋃

c∈C ∩(S(τ1),S(τ2))|c×∩(S(γ1),S(γ2))|c|

whereC is set of alternative constraints and∩(S(θ1),S(θ2))|c are all the common
extended trees compatible with the constraintc.

We can compute the above kernel using the inclusion-exclusion property, i.e.,

|A1 ∪ · · · ∪ An| =
∑

J∈2{1,...,n}

(−1)|J |−1|AJ | (3)

where2{1,...,n} is the set of all the subsets of{1, . . . , n} andAJ =
⋂

i∈J Ai.
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To describe the application of the inclusion-exclusion model in our case, let
firstly define:

KS(θ1, θ2, c) = |∩(S(θ1),S(θ2))|c| (4)

whereθ1 can be bothτ1 andγ1 andθ2 can be bothτ2 andγ2. Trivially, we can
demonstrate that:

K(G1, G2) = =
∑

J∈2{1,...,|C|}(−1)|J|−1KS(τ1,τ2,c(J))KS(γ1,γ2,c(J)) (5)

wherec(J) =
⋂

i∈J ci.
Given the nature of the constraint setC, we can compute efficiently the previ-

ous equation as it often happens that two differentJ1 andJ2 in 2{1,...,|C|} generate
the samec, i.e.

c =
⋂

i∈J1

ci =
⋂

i∈J2

ci (6)

Then, we can defineC∗ as the set of all intersections of constraints inC, i.e. C∗ =
{c(J)|J ∈ 2{1,...,|C|}}. We can rewrite the equation as:

K(G1, G2) =
∑

c∈C∗

KS(τ1, τ2, c)KS(γ1, γ2, c)N(c) (7)

where
N(c) =

∑

J∈2{1,...,|C|}

c=c(J)

(−1)|J |−1 (8)

The complexity of the above kernel strongly depends on the cardinality of C

and the related cardinality ofC∗. The worst-case computational complexity is still
exponential with respect to the size ofA1 andA2. Yet, the average case complexity
[20] is promising.

The setC is generally very small with respect to the worst case. IfF(A1,A2)

are all the possible correspondences between the nodesA1 and A2, it happens
that |C| << |F(A1,A2)| where|F(A1,A2)| is the worst case. For example, in the
case ofP1 andP2, the cardinality ofC =

{
{(1 , 1)}, {(1 , 3), (3 , 4), (2 , 5)}

}

is extremely smaller than the one ofF(A1,A2) = {{( 1,1), (2,2), (3,3)}, {( 1,2),
( 2,1), (3,3)}, {( 1,2), (2,3),(3,1)}, ...,{( 1,3),(2,4),(3,5)}}. In Section 4.5
we argue that the algorithm presented in [15] has the worst-case complexity.

Moreover, the setC∗ is extremely smaller than2{1,...,|C|} due to the above
property (6).

We will analyze the average-case complexity with respect tothe worst-case
complexity in Section 5.

4.4 Enabling the efficient kernel function

The above idea for computing the kernel function is extremely interesting. Yet,
we need to make it viable by describing the way we can determine efficiently
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the three main parts of the equation (7): 1) the set of alternative constraintsC
(Section 4.4.1); 2) the setC∗ of all the possible intersections of constraints inC

(Section 4.4.2); and, finally, 3) the numbersN(c) (Section 4.4.3).

4.4.1 Determining the set of alternative constraints

The first step of equation (7) is to determine the alternativeconstraintsC. We
can here strongly use the possibility of dividing tDAGs in two trees. We buildC
asCτ ∪ Cγ where: 1)Cτ are the constraints obtained from pairs of isomorphic
extended treest1 ∈ S(τ1) andt2 ∈ S(τ2); 2) Cγ are the constraints obtained from
pairs of isomorphic extended treest1 ∈ S(γ1) andt2 ∈ S(γ2).

The idea for an efficient algorithm is that we can compute theC without ex-
plicitly looking at all the subgraphs involved. We instead use and combine the
constraints derived comparing the productions of the extended trees. We can com-
pute thenCτ with the productions ofτ1 and τ2 andCγ with the productions of
γ1 andγ2. For example (see Figure 2), focusing on theτ , the rule NP 3 →

NN 2NNS 3 of G1 and NP 4 → NN 5NNS 4 of G2 generates the
constraintc = {(3 , 4), (2 , 5)}.

Using the above intuition it is possible to define an algorithm that builds an
alternative constraint setC with the following two properties:

1. for each common subtree according to a set of constraintsc, ∃c′ ∈ C such
thatc ⊆ c′;

2. @c′, c′′ ∈ C such thatc′ ⊂ c′′ andc′ 6= ∅.

4.4.2 Determining the setC∗

The setC∗ is defined as the set of all possible intersections of alternative con-
straints inC. Due to the property (6) discussed in Section 4.3, we can empirically
demonstrate that the average complexity of the algorithm for computingC∗ is not
bigger thanO(|C|2). Yet, again, the worst case complexity is exponential.

4.4.3 Determining the values ofN(c)

The multiplierN(c) (Eq. 8) represents the number of times the constraintc is con-
sidered in the sum of equation 5, keeping into account the sign of the corresponding
addend. It is possible to demonstrate that:

N(c) = 1 −
∑

c′∈C∗

c′⊃c

Nc′ (9)

This recursive formulation of the equation allows us to easily determine the value
of N(c) for everyc belonging toC∗. It is possible to prove this property using set
properties and the binomial theorem. The proof is omitted for lack of space.
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4.5 Reviewing the strictly related work

To understand if ours is an efficient algorithm, we compare itwith the algorithm
presented by [15]. We will hereafter call this algorithmKmax. TheKmax algo-
rithm and kernel is an approximation of what is a kernel needed for a FOR space
as it is not difficult to demonstrate thatKmax(G1, G2) ≤ K(G1, G2). TheKmax

approximation is based on maximization over the set of possible correspondences
of the placeholders. Following our formulation, this kernel appears as:

Kmax(G1, G2) = max
c∈F(A1,A2)

KS(τ1, τ2, c)KS(γ1, γ2, c) (10)

whereF(A1,A2) are all the possible correspondences between the nodesA1 and
A2 of the two tDAGs as the one presented in Section 4.3. This formulation of the
kernel has the worst case complexity of our formulation, i.e., Eq. 7.

For computing the basic kernel for the extended trees, i.e.KS(θ1, θ2, c) we use
the model algorithm presented by [22] and refined by [15] based on the algorithm
for tree fragment feature spaces [3]. As we are using the samebasic kernel, we can
empirically compare the two methods.

5 Experimental evaluation

In this section we want to empirically estimate the benefits in terms of the computa-
tional cost of our algorithm with respect to the algorithm proposed by [15]. Our al-
gorithm is in principle exponential with respect to the set of alternative constraints
C. Yet, given the ideas in Section 4.4 and as the setC∗ is usually very small, the
average complexity is extremely low. Following the theory on the average-cost
computational complexity [20], we estimated the behavior of the algorithms on a
large distribution of cases. We then compared the computingtimes of the two al-
gorithms. Finally, asK andKmax compute slightly different kernels, we compare
the accuracy of the two methods. We implemented both algorithms K(G1, G2)
andKmax(G1, G2) in support vector machine classifier [12] and we experimented
with both implementations on the same machine. We hereafteranalyze the results
in term of execution time (Section 5.1) and in term of accuracy (Section 5.2).

5.1 Average computing time analysis

For the first set of experiments, the source of examples is theone of the recognizing
textual entailment challenge, i.e., RTE2 [1]. The dataset of the challenge has 1,600
sentence pairs.

The computational cost of bothK(G1, G2) and Kmax(G1, G2) depends on
the number of placeholdersn = |A1| of G1 and onm = |A2| the number of
placeholders ofG2. Then, in the first experiment we want to determine the relation
between the computational time and the factorn × m. Results are reported in
Figure 5(a) where the computation times are plotted with respect ton × m. Each
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Figure 5: Comparison of the execution times

point in the curve represents the average execution time forthe pairs of instances
havingn×m placeholders. As expected, the computation of the functionK is more
efficient than the computationKmax. The difference between the two execution
times increases withn × m.

We then performed a second experiment that determines the relation of the to-
tal execution with the maximum number of placeholders in theexamples. This is
useful to estimate the behavior of the algorithm with respect to its application in
learning models. Using the RTE2 data, we artificially build different versions with
increasing number of placeholders. We then have RTE2 with one placeholder at
most in each pair, RTE2 with two placeholders, etc. The number of pairs in each
set is the same. What changes is the maximal number of placeholders. Results are
reported in Figure 5(b) where the execution time of the training phase in seconds
(s) is plotted for each different set. We see that the computation of Kmax is expo-
nential with respect to the number of placeholders and it becomes intractable after
7 placeholders. The computation ofK is instead more flat. This can be explained
as the computation ofK is related to the real alternative constraints that appearsin
the dataset. The computation of the kernelK then outperforms the computation of
the kernelKmax.

5.2 Accuracy analysis

As Kmax that has been demonstrated very effective in term of accuracy for RTE
andK compute a slightly different similarity function, we want to show that the
performance of our more computationally efficientK is comparable, and even bet-
ter, to the performances ofKmax. We then performed an experiment taking as
training all the data derived from RTE1, RTE2, and RTE3, (i.e., 4567 training ex-
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Kernel Accuracy Used training Support
examples Vectors

Kmax 59.32 4223 4206
K 60.04 4567 4544

Table 1:Comparative performances ofKmax andK

amples) and taking as testing RTE-4 (i.e., 1000 testing examples). The results are
reported in Table 1. As the table shows, the accuracy ofK is higher than the
accuracy ofKmax. There are two main reasons. The first is thatKmax is an ap-
proximation ofK. The second is that we can now consider sentence pairs with
more than 7 placeholders. Then, we can use the complete training set as the third
column of the table shows.

6 Conclusions and future work

We presented an interpretation of first order rule feature spaces astripartite directed
acyclic graphs(tDAGs). This view on the problem gave us the possibility of
defining a novel and efficient algorithm for computing the kernel function for first
order rule feature spaces. Moreover, the resulting algorithm is a valid kernel as
it can be written as dot product in the explicit space of the tDAG fragments. We
demonstrated that our algorithm outperforms in term of average complexity the
previous algorithm and it yields to better accuracies for the final task. We are
investigating if this is a valid algorithm for two general directed acyclic graphs.
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