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Abstract

In this paper, we propose a class of graphs, the tripartiezttid acyclic
graphs (tDAGs), to model first-order rule feature spacessémtence pair
classification. We introduce an algorithm for computing #imilarity in
first-order rewrite rule feature spaces. Our algorithm isearely efficient
and, as it computes the similarity of instances that can peesented in
explicit feature spaces, it is a valid kernel function.

1 Introduction

Natural language processing models are generally positimgbinations between
linguistic models and automatically learnt classifiersirss are extremely impor-
tant in many linguistic theories, a large amount of work eipig machine learn-
ing algorithms for NLP tasks has been developed for thissoldiglata structures
[3, 14]. These works propose efficient algorithms for detenng the similarity
between two trees in tree fragment feature spaces.

Yet, some NLP tasks such as textual entailment recognitoi®][and some
linguistic theories such as HPSG [16] require more geneegllts and, then, more
general algorithms for computing similarity among graphifortunately, algo-
rithms for computing similarity between two general graphserm of common
subgraphs are still exponential [18]. In these cases, appated algorithms have
been proposed. For example, the one proposed in [9] coumtsuimber of sub-
paths in common. The same happens for the one proposed ithidiik appli-
cable to a particular class of graphs, i.e. the hierarchdzalcted acyclic graphs.
These algorithms do not compute the number of subgraphsnmaom between
two graphs. Then, these algorithms approximate the feajpaees we need in
these NLP tasks. For computing similarities in these feaspaces, we have to in-
vestigate if we can define a particular class of graphs foclées of tasks we want
to solve. Once we focused the class of graph, we can explbcieat similarity
algorithms.

A very important class of graphs can be defined for tasks viwglsentence
pairs. In these cases, an important class of feature spates one that represents
first-order rewrite rules. For example, in textual entaiineecognition [6], we
need to determine whether a téktimplies a hypothesigi, e.g., whether or not
“Farmers feed cows animal extratentails “Cows eat animal extracty7y, Hy).
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If we want to learn textual entailment classifiers, we neeskjmoit first-order rules
hidden in training instances. To positively exploit thaniag instance Pediatri-
cians suggest women to feed newborns breast miltails “Pediatricians suggest
that newborns eat breast milKT», H,) for classifying the above example, learn-
ing algorithms should learn that the two instances hide tts¢-dirder rulep =

feedY[Z] — [YleatlZ] . The first-order rule feature space, introduced by [22],
gives high performances in term of accuracy for textualignént recognition with
respect to other features spaces.

In this paper, we propose a class of graphs, the tripartiezdid acyclic graphs
(tDAGSs), that model first-order rule feature spaces anahgusiis class of graphs,
we introduce an algorithm for computing the similarity irstiorder rewrite rule
feature spaces. The possibility of explicitly represemtihe first-order feature
space as subgraphs of tDAGs makes the derived similaritgtitma valid ker-
nel. With respect to the algorithm proposed in [15], our &thm is more efficient
and itis a valid kernel function.

The paper is organized as follows. In Section 2, we firstlycdbs tripartite
directed acyclic graphs (tDAGs) to model first-order feat{fifOR) spaces. In Sec-
tion 3, we then present the related work. In Section 4, wethice the similarity
function for these FOR spaces. This can be used as kerneidarc kernel-based
machines (e.g., support vector machines [4]). We thenduoire our efficient al-
gorithm for computing the similarity among tDAGs. In Sedcti, we analyze
the computational efficiency of our algorithm showing thasiextremely more
efficient than the algorithm proposed in [15]. Finally, incBen 6, we draw con-
clusions and plan the future work.

2 Representing first-order rules and sentence pairs as tri-
partite directed acyclic graphs

As first step, we want to define thepartite directed acyclic graphgtD AGs).
This is an extremely important class of graphs for the firdeorule feature spaces
we want to model. We want here to intuitively show that, if wedual first-order
rules and sentence pairstd3AGs, determining whether or not a sentence pair can
be unified with a first-order rewrite rule is a graph matchingigbem. This intuitive
idea helps in determining our efficient algorithm for expta first-order rules in
learning examples.

To illustrate the above idea we will use an example basedealibve rule=
feedYIZ] — [Yleat{Z] and the above sentence péit, Hy). The rulep en-
codes the entailment relation of the véoifeedand the verhlio eat If represented

over a syntactic interpretation, the rule has the followasgect:
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Figure 1:A simple rule and a simple pair as a graph
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As in the case of feature structures [2], we can observe tlesas a graph. As we
are not interested in the variable names but we need to knewnethtion between
the right hand side and the left hand side of the rule, we chstiiute each variable
with an unlabelled node. We then connect tree nodes havirigbles with the
corresponding unlabelled node. The result is a graph asend-igure 1(a). The
variabledY] and[Z] are represented by the unlabelled nodes between the trees.

In the same way we can represent the sentencepaif{; ) using graph with
explicit links between related words and nodes (see Fign¥).1 We can link
words using anchoring methods as in [17]. These links can beepropagated
in the syntactic tree using semantic heads of the constgés]. The rulep;
matches over the pafff, H;) if the graphp; is among the subgraphs of the graph
in Figure 1(b).

Both rules and sentence pairs are graphs of the same typese Bhaphs are
basically two trees connected through an intermediate fsebades representing
variables in the rules and relations between nodes in thersen pairs. We will
hereafter call these graphpartite directed acyclic graph$tDAGs). The formal
definition follows.

Definition tDAG: A tripartite directed acyclic graplis a graphG = (N, E') where
e the set of nodes is partitioned in three set§;, N,, andA
e the set of edges is partitioned in four séis £y, E4,, andE 4,

such thatt = (IVy, Ey) andg = (N,, E,) are two trees an@® s, = {(z,y)|z €
Nyandy € A} andEy, = {(z,y)|r € Nyandy € A} are the edges connecting
the two trees.
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Figure 2: Two tripartite DAGs

A tDAG is a partially labeled graph. The labeling functiéronly applies to
the subsets of nodes related to the two trees,i.e.N; U N, — L. Nodes in the
setA are not labeled.

The explicit representation of the tDAG in Figure 1(b) hasrbaseful to show
that the unification of a rule and a sentence pair is a graphhimgf problem. Yet,
it is complex to follow. We will then describe a tDAG with art@inative and more
convenient representation. A tDAG = (IV, E) can be seen as paif = (7,) of
extended trees andy wherer = (N;UA, EyUE4,) andy = (NgUA, E;UE,,).
These are extended trees as each tree contains the relatibrike other tree.

As for the feature structures, we will graphically repreésefr, y) € E4, and
a(z,y) € Ea, as boxesY] respectively on the node and on the node. These
nodes will then appear dz)Y] andL(z)Y], e.g., N®L. The namey is not a label
but a placeholder representing an unlabelled node. Thisseptation is used for

rules and for sentence pairs. The sentence pair in Figujeisitben represented
as reported in Figure 2.

3 Related work

Automatically learning classifiers for sentence pairs iseerely important for ap-
plications like textual entailment recognition, questiamswering, and machine
translation.

In textual entailment recognition, it is not hard to see bgapimilar to tripar-
tite directed acyclic graphs as ways of extracting featimes examples to feed



automatic classifiers. Yet, these graphs are generallyripattite in the sense de-

scribed in the previous section and they are not used tootféatures representing
first-order rewrite rules. In [17, 10, 11], two connectedgisrepresenting the two
sentences; andss are used to compute distance features, i.e., featuressegyire

ing the distance between andss. The underlying idea is that lexical, syntactic,
and semantic similarities between sentences in a pair lnearg features to clas-

sify sentence pairs in classes sucleatil andnot-entail

In [7], first-order rewrite rule feature spaces have beeroesd. Yet, these
spaces are extremely small. Only some features repregdirstrorder rules have
been explored. Pairs of graphs are used here to determinfeé#tare is active
or not, i.e., the rule fires or not. A larger feature space wofrite rules has been
implicitly explored in [21] but this work considers only gnad rewrite rules.

In [22], tripartite directed acyclic graphs are implicitigtroduced and ex-
ploited to build first-order rule feature spaces. Yet, bath22] and in [15], the
model proposed has two major limitations: it can represelaisrwith less than 7
variables and the proposed kernel is not a completely vaided as it uses the
max function.

In machine translation, some methods such as [8] learn doaphd rewrite
rules for generative purposes. Yet, the method present§g] ican model first-
order rewrite rules only with a very small amount of variahlee., two or three
variables.

4 An efficient algorithm for computing the first-order rule
space kernel

In this section, we present our idea for an efficient algaritfior exploiting first-
order rule feature spaces. In Section 4.1, we firstly defipestimilarity function,
i.e., the kerneK (G, G2), that we need to determine for correctly using first-order
rules feature spaces. This kernel is strongly based on timeoiphism between
graphs. A relevant idea of this paper is the observation weatan define an
efficient way to detect the isomorphism between the tDAGE{&e 4.2). This
algorithm exploits the efficient algorithms of tree isomagm as the one implicitly
used in [3]. After describing the isomorphism between tDAB& can present
the idea of our efficient algorithm for computing (G, G2) (Section 4.3). We
introduce the algorithms to make it a viable solution (Set#.4). Finally, in
Section 4.5, we report the kernel computation presente@byl1[5]. This latter is
our baseline method.

4.1 Kernel functions over first-order rule feature spaces

The first-order rule feature space we want to model is hugee lfise kernel-based
machine learning models such as SVM [4], we can implicitlfirdethe space by
defining its similarity functions, i.e., its kernel funatis. We firstly introduce the



first-order rule feature space and we then define the pratatlygernel function
over this space.

The first-order rule feature spacE@R) is in general the space of all the pos-
sible first-order rules defined as tDAGs. Within this spade fiossible to define
the functionS(G) that determines all the possible active features of the tIDAG
FOR. The functionS(G) determines all the possible and meaningful subgraphs
of G. We want that these subgraphs represent first-order ridésdin be matched
with the pairG. Then, meaningful subgraphsGf= (7, ~) are graphst, g) where
t andg are subtrees af and~y, respectively. For example, the subgraph#pand
P; in Figure 2 are hereafter partially represented:
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In the FOR space, the kernel functidh should then compute the number of
subgraphs in common. The trivial way to describe the forneendd function is
using the intersection operator, i.e., the keriigl=, G2) is the following:

K(G1,G2) = [8(G1) N S(Ga)| 1)

This is very simple to write and it is in principle correct. Aaghg in the intersec-
tion S(G1) N S(G2) is a graph that belongs to bof(G;) andS(G2). Yet, this
hides a very important fact: determining whether two graphsand g,, are the
samegraphg; = gs is not trivial. For example, it is not sufficient to superfibia
compare graphs to determine thatbelongs both ta&5; andS,. We need to use
the correct property fogy; = g¢», i.e., theisomorphismbetween two graphs. We
can call the operatafso(g1, g2). When two graphs verify the properfygo(gi, g2),
both g; and g, can be taken as the graphepresenting the two graphs. Detecting
Iso(g1,92) has an exponential complexity [13].

This complexity of the intersection operator between setgaphs deserves a
different way to represent the operation. We will use theesagymbol but we will
use the prefix notation. The operator is hereafter re-defined

ﬁ(S(Gl),S(Gg)) = {gl|gl € S(Gl),HQQ € S(GQ),ISO(gl,QQ)}



4.2 Isomorphism between tDAGs

As isomorphism between graphs is an essential activityefnning from structured
data, we here review its definition and we adapt it to tDAGs.tNém observe that
isomorphism between two tDAGs can be divided in two sub-emis:

¢ finding the isomorphism between two pairsextended trees

e checking whether the partial isomorphism found betweentwepairs of
extended treeare compatible.

In general, two tDAGs(z; = (N, E1) andGy = (No, E) areisomorphic(or
match) if [ N1| = |Na2|, |E1| = |E2|, and a bijective functiorf : Ny — N, exists
such that these properties hold:

e for each node: € Ny, L(f(n)) = L(n)

e for each edgén;,no) € £y an edgd f(n1), f(n2)) isin Ey

The bijective functionf is a member of the combinatorial sgtof all the possible
bijective functions between the two sé¥s and Ns.

The trivial algorithm for detecting if two graphs are isomloic is exponential
[13]. It explores all the sef. It is still undetermined if the general graph iso-
morphism problem is NP-complete. Yet, we can use the fatttB®Gs are two
extended trees for building a better algorithm. There isfaaient algorithm for
computing isomorphism between trees (as the one implig#hd in [3]).

Given two tDAGSG1 = (71,71) andGy = (72,72) the isomorphism can be
reduced to the problem of detecting two properties:

1. Partial isomorphism Two tDAGs G and G, arepatrtially isomorphic The
partial isomorphism produces two bijective functiofysand f,.

2. Constraint compatibility Two bijective functionsf, and f., are compatible
on the sets of noded; and A, if for eachn € Ay, it happens thaft, (n) =

f(n).

We can rephrase the second property, i.e., the constraimpatibility, as follows.
We define two constraints(r, 72) and ¢(v1,72) representing the functiong,

and f, on the setsd; and A,. The two constraints are defined &s1,72) =

{(n, fr(n))|n € A1} andc(y1,72) = {(n, fy(n))|n € A;}. Two partially isomor-
phic tDAGs are isomorphic if the constraints match, iér;, 7o) = c(y1,72)-

For example, the fourth pair &(P;) and the third pair oS(P,) are isomor-
phic as: (1) these are partially isomorphic, i.e., the rigdnd sides and the left
hand sides are isomorphic; (2) both pairs of extended trees generatedhstraint
¢ = {(@,13), (3],[4])}. In the same way, the second pair&(P; ) and the second
pair of S(P,) generate, = {(1,[1))}
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Figure 3: Intuitive idea for the kernel computation
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Figure 4: Simple non-linguistic tDAGs

4.3 General idea for an efficient kernel function

As discussed above, two tDAGs are isomorphic if the two ptigse thepar-
tial isomorphismand theconstraint compatibility hold. To compute the kernel
function K (G1, G2) defined in Section 4.1, we can exploit these properties in the
reverse order. Given a constraintwe can select all the graphs that meet the
constraintc (constraint compatibility. Having the set of all the tDAGs meeting the
constraint, we can detect thartial isomorphism We split each pair of tDAGs into
the four extended trees and we determine if these exteneesl are compatible.

We introduce this method to compute the kerAglG1, G2) in the FOR space
in two steps. Firstly, we give an intuitive explanation asd¢ondly, we formally
define the kernel.

4.3.1 Intuitive explanation

To give an intuition of the kernel computation, without laxfsgenerality and for
sake of simplicity, we use two non-linguistic tDAGRE, and P, (see Figure 4), and
the subgraph functioss(6). This latter is an approximated version 8f9) that
generates tDAGs with subtrees rooted in the root of theairitees off.

To exploit theconstraint compatibilityproperty, we defing asthe set of all
the relevant alternative constraintse., the constraints that are likely to be gen-



erated when detecting thgartial isomorphism For P, and P,, this set isC' =
{c1,e2} = {{@W[A),([2.2)},{(@.[2), 2.,B8)}}. We can then determine the
kernel K (P,, F;) as:

K (Pa,Py)=IN(S(Pa),S(Py))|=|N(S(Pa),S(Py))l ey UN(S(Pa)S(Py))les |

wheren(S(P, ) S(Pb))\c are the common subgraphs that meet the consirait
tDAG ¢’ = (7',7) in S(P,) is in N(S(P,), S(By))le if ¢" = (7 ”,7”) in S(P,)
exists, g’ is partlally isomorphic tg)”, andd’ = ¢(7',7") = ¢(+',+") is covered
by andcompatiblewith the gonstrziint, i.e.,cd C c. For example in Figure 3,
the first tDAG of the setn\(S(P,),S(Fs))|., belongs to the set as its constraint

= {((1],[2))} is a subset of;. B N

Observing the kernel computation in this way is importatentents im(S(P,), S(F))|c

already satisfy the property @bnstraint compatibility We only need to deter-
mine if thepartially isomorphicproperties hold for elements in(S(P,), S(P))|c-
Then, we can write the following equivalence:

N(S(Pa),S(P))|e=N(S(a),S (1)) e XS (7a) S (1)) (2

Figure 3 reports this equivalence for the two sets derivédguthe constraints
c1 andcy. Note that this equivalence is not valid if a constraint is ayaplied, i.e.,
N(S(P,), (~ ) #N(S S(7a), S(1))XN(S (7a), S( »)). The pairP, itself does not
belong ton(S(P,), S(P,)) but it does belong to/(S(7,), S(73)) X (S(fya) S()).
The equivalence (2) allows to compute the cardmaht;n(xﬁ( ), S(FPp))]e
using the cardinalities of\(S(7,),S(7))]e andN(S(7a), S(7s))le. These latter
sets contain only extended trees where the equivalencesdetunlabelled nodes
are given byc. We can then compute the cardinalities of these two setgjusin
methods developed for trees (e.g., the kernel funchigy(6;, 62) introduced in

[3D.

4.3.2 Formal definition

Given the idea of the previous section, it is easy to dematssthat the kernel
K (G1,Gz) can be written as follows:

K(G1,G2)=|U ccc N(S(11),8(12)) e XN(S(711),8 (72))lc |

whereC' is set of alternative constraints andS(6,),S(62))|. are all the common
extended trees compatible with the constraint
We can compute the above kernel using the inclusion-exaiusioperty, i.e.,

AU UAy = Y (=) 4y 3)

where2{!--"} is the set of all the subsets 6f, ..., n} andA; = ;e ; 4.



To describe the application of the inclusion-exclusion eidd our case, let
firstly define:
Ks(01,02,¢) = |N(S(61),5(602))lc| 4)

wheref; can be bothr; and~; andé, can be bothr, and~,. Trivially, we can
demonstrate that:

K(G1,G2) = =%, _,1....;c)y (DT K s (r1,m2,6() K s (11 72,¢(])) )

wherec(.J) = ;¢ ¢i-
Given the nature of the constraint $gt we can compute efficiently the previ-
ous equation as it often happens that two diffet&nand.J, in 2{1I¢l} generate

the same;, i.e.
c= ﬂ = ﬂ G (6)

i€J1 1€J2

Then, we can defin€* as the set of all intersections of constraintg’in.e. C* =

{e(J)|J € 211-IC1 ). We can rewrite the equation as:
K(G1,G) = Y Kg(m,m,¢)Ks(11,72,¢)N(c) (7
ceC*
where
Ne= > (/I 8)
Jeall.lch
c=c(J)

The complexity of the above kernel strongly depends on tindircaity of C'
and the related cardinality @f*. The worst-case computational complexity is still
exponential with respect to the size4f andAs. Yet, the average case complexity
[20] is promising.

The setC' is generally very small with respect to the worst caseZ i, 4,)
are all the possible correspondences between the nddesd A, it happens
that [C| << [F(a,,4,)| Where|F 4, 4,)| is the worst case. For example, in the
case ofP; and P, the cardinality oiC' = {{(1[1))}, {(1,[3)), (31[4)), (2.5)}}
is extremely smaller than the one8f4, 4,) = {{(@/1), (2[2), (3[3)}, {(L[2),
@3, (338)}, {(@[2), (23)),(3[T)}, ..., {@[3),(2/[4),(3)[5B)}}. In Section 4.5
we argue that the algorithm presented in [15] has the wast-complexity.

Moreover, the seC* is extremely smaller thag!!ICl} due to the above
property (6).

We will analyze the average-case complexity with respedhéoworst-case
complexity in Section 5.

4.4 Enabling the efficient kernel function

The above idea for computing the kernel function is extrgnaeresting. Yet,
we need to make it viable by describing the way we can deterrefficiently

10



the three main parts of the equation (7): 1) the set of altema&onstraintsC'
(Section 4.4.1); 2) the s&t™ of all the possible intersections of constraintCin
(Section 4.4.2); and, finally, 3) the numbeéYygc) (Section 4.4.3).

4.4.1 Determining the set of alternative constraints

The first step of equation (7) is to determine the alternativestraintsC. We
can here strongly use the possibility of dividing tDAGs irotwees. We build”
asC; U C, where: 1)C. are the constraints obtained from pairs of isomorphic
extended treeg € S(m) andty € S(m2); 2) C, are the constraints obtained from
pairs of isomorphic extended tre&se S(v;1) andty € S(y2).

The idea for an efficient algorithm is that we can computeheithout ex-
plicitly looking at all the subgraphs involved. We insteaskland combine the
constraints derived comparing the productions of the elddrirees. We can com-
pute thenC’: with the productions of, andr, and C, with the productions of
v and~,. For example (see Figure 2), focusing on thethe rule NP3 —

NNR2INNS[3l of Gy and NP4 — NNBNNSA of Gy generates the
constrainic = {((3],[4)), (2,[5))}.

Using the above intuition it is possible to define an algonitthat builds an

alternative constraint sét with the following two properties:

1. for each common subtree according to a set of constrainis € C such
thate C ¢/;

2. 3c,¢" € C suchthat! C ¢’ andc’ # 0.

4.4.2 Determining the set’"*

The setC* is defined as the set of all possible intersections of altemaon-
straints inC'. Due to the property (6) discussed in Section 4.3, we canraalby
demonstrate that the average complexity of the algorithnedmnputingC™ is not
bigger thanO(|C|?). Yet, again, the worst case complexity is exponential.

4.4.3 Determining the values ofV(c)

The multiplier N(c) (Eq. 8) represents the number of times the constraigton-
sidered in the sum of equation 5, keeping into account threithe corresponding
addend. It is possible to demonstrate that:

N(=1- > No ©)
CIIEC*
c'Dc
This recursive formulation of the equation allows us to lgad®termine the value
of N(c) for everyc belonging toC*. It is possible to prove this property using set
properties and the binomial theorem. The proof is omittedaick of space.

11



4.5 Reviewing the strictly related work

To understand if ours is an efficient algorithm, we compateitih the algorithm
presented by [15]. We will hereafter call this algorithif,,,... The K,,,, algo-
rithm and kernel is an approximation of what is a kernel nddde a FOR space
as it is not difficult to demonstrate théf,,.. (G1,G2) < K(G1,G2). The Ka
approximation is based on maximization over the set of ptssiorrespondences
of the placeholders. Following our formulation, this kdrappears as:

Kiaz(G1,G2) = max  Kg(11,72,¢)Ks(71,72,¢) (10)
cEF(A1,Ay)

where F 4, 4,) are all the possible correspondences between the nédesd
A, of the two tDAGS as the one presented in Section 4.3. Thisdt@tion of the
kernel has the worst case complexity of our formulation, Eg. 7.

For computing the basic kernel for the extended treeskig6,, 02, ¢) we use
the model algorithm presented by [22] and refined by [15] dasethe algorithm
for tree fragment feature spaces [3]. As we are using the sasie kernel, we can
empirically compare the two methods.

5 Experimental evaluation

In this section we want to empirically estimate the bendifiteims of the computa-
tional cost of our algorithm with respect to the algorithrogwsed by [15]. Our al-
gorithm is in principle exponential with respect to the dedlternative constraints
C. Yet, given the ideas in Section 4.4 and as the(Seis usually very small, the
average complexity is extremely low. Following the theorytbe average-cost
computational complexity [20], we estimated the behaviathe algorithms on a
large distribution of cases. We then compared the comptitings of the two al-
gorithms. Finally, ag< and K,,,,.. compute slightly different kernels, we compare
the accuracy of the two methods. We implemented both algostK' (G, G2)
andK .. (G1,G2) in support vector machine classifier [12] and we experingente
with both implementations on the same machine. We hereafigyze the results
in term of execution time (Section 5.1) and in term of accur@ection 5.2).

5.1 Average computing time analysis

For the first set of experiments, the source of examples isribef the recognizing
textual entailment challenge, i.e., RTE2 [1]. The datagéie@challenge has 1,600
sentence pairs.

The computational cost of both (G, G2) and K., (G1, G2) depends on
the number of placeholders = |A;| of G; and onm = |Az| the number of
placeholders of75. Then, in the first experiment we want to determine the i@tati
between the computational time and the factox m. Results are reported in
Figure 5(a) where the computation times are plotted witheeston x m. Each
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Figure 5: Comparison of the execution times

point in the curve represents the average execution timeépairs of instances
havingn xm placeholders. As expected, the computation of the fundtioe more
efficient than the computatio’,,,.... The difference between the two execution
times increases with x m.

We then performed a second experiment that determines|ti®neof the to-
tal execution with the maximum number of placeholders inek@mples. This is
useful to estimate the behavior of the algorithm with respedts application in
learning models. Using the RTE2 data, we atrtificially builifledent versions with
increasing number of placeholders. We then have RTE2 wighpdaceholder at
most in each pair, RTE2 with two placeholders, etc. The nurobeairs in each
set is the same. What changes is the maximal number of plaeehoResults are
reported in Figure 5(b) where the execution time of the ingirphase in seconds
(s) is plotted for each different set. We see that the contipataf X, iS expo-
nential with respect to the number of placeholders and iblves intractable after
7 placeholders. The computation &fis instead more flat. This can be explained
as the computation ok is related to the real alternative constraints that appgears
the dataset. The computation of the kerfiethen outperforms the computation of
the kernelK,,,qz-

5.2 Accuracy analysis

As K,,.. that has been demonstrated very effective in term of acgdtadRTE
and K compute a slightly different similarity function, we wamt $how that the
performance of our more computationally efficiénis comparable, and even bet-
ter, to the performances df,,... We then performed an experiment taking as
training all the data derived from RTE1, RTE2, and RTES3, (4667 training ex-

13



Kernel Accuracy Used training Support

examples Vectors
Koax 59.32 4223 4206
K 60.04 4567 4544

Table 1:Comparative performances éf,,,,,, andK

amples) and taking as testing RTE-4 (i.e., 1000 testing pkesh The results are
reported in Table 1. As the table shows, the accuracy ak higher than the
accuracy ofK ... There are two main reasons. The first is tha},.. is an ap-
proximation of K. The second is that we can now consider sentence pairs with
more than 7 placeholders. Then, we can use the completengaiat as the third
column of the table shows.

6 Conclusions and future work

We presented an interpretation of first order rule featuaesp atripartite directed
acyclic graphs(tDAGs). This view on the problem gave us the possibility of
defining a novel and efficient algorithm for computing theriafunction for first
order rule feature spaces. Moreover, the resulting alyoris a valid kernel as

it can be written as dot product in the explicit space of tha@fragments. We
demonstrated that our algorithm outperforms in term of ayercomplexity the
previous algorithm and it yields to better accuracies fa fimal task. We are
investigating if this is a valid algorithm for two generatelited acyclic graphs.
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