
Restoring CSP Satisfiability with MaxSAT?

Inês Lynce1 and Joao Marques-Silva2

1 IST/INESC-ID, Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

2 CSI/CASL, University College Dublin, Ireland
jpms@ucd.ie

Abstract

The extraction of a Minimal Unsatisfiable Core (MUC) in a Con-
straint Satisfaction Problem (CSP) aims to identify a subset of con-
straints that make a CSP instance unsatisfiable. Recent work has
addressed the identification of a Minimal Set of Unsatisfiable Tuples
(MUST) in order to restore the CSP satisfiability with respect to that
MUC. A two-step algorithm has been proposed: first, a MUC is iden-
tified, and second, a MUST in the MUC is identified. This paper
proposes an integrated algorithm for restoring satisfiability in a CSP,
making use of an unsatisfiability-based MaxSAT solver. The proposed
approach encodes the CSP instance as a partial MaxSAT instance, in
such a way that solving the MaxSAT instance corresponds to identi-
fying the smallest set of tuples to be removed from the CSP instance
to restore satisfiability. Experimental results illustrate the feasibility
of the approach.

1 Introduction

The identification of unsatisfiable problem instances poses a few questions,
including knowing why the instance is unsatisfiable and how it can be re-
paired to become satisfiable. For example, configuring a product may not
always result in a feasible configuration, but in that case the customer would
be pleased to receive explanations to understand what made the configura-
tion unfeasible or alternatively to receive some hints about how to make it
feasible. Such feedback is in general expected to be as precise as possible, i.e.
to identify a minimal reason of unsatisfiability and to minimize the impact
of restoring satisfiability.

If one considers Boolean satisfiability (SAT), then these questions are an-
swered identifying Minimal Unsatisfiable Subformulas (MUSes) and obtain-
ing Maximum Satisfiability (MaxSAT) solutions. Similarly, in the context of
the Constraint Satisfaction Problem (CSP) these questions are answered by
identifying Minimal Unsatisfiable Cores (MUCs) and obtaining Maximum

?An earlier version of this paper has been accepted to be published at the 14th Por-
tuguese Conference on Artificial Intelligence, EPIA’2009.

Proceedings of the 16th International RCRA workshop (RCRA 2009):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Reggio Emilia, Italy, 12 December 2009

CSP (MaxCSP) solutions. However, as recently pointed out [7], in CSPs
one may consider unsatisfiable sets of tuples instead of unsatisfiable sets
of constraints. The first is considered to be a finer-grained explanation as
unsatisfiable sets of tuples may eventually not contain as many tuples as
unsatisfiable sets of constraints.

Let us get back again to the configuration of a product. Suppose you
have two configuration requirements for your new car: (1) it has to be a
sports car and (2) you want it to have the most inexpensive type of seats.
It turns out that the car model that you have selected does not allow such
configuration. So you may be simply told that those two requirements are
not compatible or, much better, that a sports car must have leather seats
which is incompatible with having cloth seats. The latter explanation is
certainly more precise. Also, it will be easier for you to repair the initial
configuration either keeping all but one of the characteristics of a sports car
(leather seats) or forgetting about inexpensive seats.

This paper addresses the problem of repairing an unsatisfiable CSP in-
stance by removing the smallest number of tuples. This has in general less
impact than removing constraints, and in the worst case the same impact.
A MaxSAT encoding is used to solve the problem of repairing a CSP for
which constraints are defined as conflicts, with no need of first extracting a
MUC. Using an unsatisfiability-based MaxSAT solver has the advantage of
identifying unsatisfiable sets of tuples while restoring satisfiability.

The paper is organized as follows. The next section introduces the pre-
liminaries, alongside with illustrative examples. Next, the new approach for
restoring satisfiability in a CSP using MaxSAT is described. Experimen-
tal results show that the proposed approach is feasible. Finally, the paper
concludes and points out future research directions.

2 Preliminaries

2.1 CSPs, MUCs and MUSTs

In what follows we assume that CSP variables have finite domains and that
the constraints over variables correspond to conflicts rather than supports.

Definition 1. (CSP) A CSP instance is a triple (X, D,C) where X =
{x1, . . . , xn} is a set of n variables, D = {d(x1), . . . , d(xn)} is a set of n
domains, where each domain d(x) corresponds to the domain of variable
x ∈ X, and C = {c1, . . . , cm} is a set of m constraints. Each constraint
c ∈ C is a pair c = (S, R) where S is a sequence of variables of X, called the
constraint scope, and R is a |S|-ary relation over D, called the constraint
relation.

An assignment to a CSP instance is a set {(v1, a1), . . . , (vk, ak)} where
{v1, . . . , vk} ⊆ X is a set of variables and ai ∈ d(vi) for all i with 1 ≤ i ≤

2

x1

x3

x2
c1

c3c2

1
2

x1 x2

x3

1
2
3

0
1

(1,1)
(1,2)

(1,1)
(1,2)

(0,1)(0,2)(0,3)(1,2)(1,3)

Figure 1: Graphical representation of the CSP instance from Example 1

k. In case k = n the assignment is said to be complete. Assuming that
a constraint relation specifies disallowed assignments, i.e. the conflicts, a
solution to a CSP instance is a complete assignment such that no assignment
to a constraint scope is a member of the corresponding constraint relation. A
CSP instance for which there is a solution is said to be satisfiable; otherwise
it is said to be unsatisfiable.

Example 1. (CSP) Let P be the CSP instance graphically represented in
Figure 1. Formally, P = (X, D,C), with X = {x1, x2, x3}, D = {d(x1) =
{0, 1}, d(x2) = {1, 2, 3}, d(x3) = {1, 2}} and C = {c1, c2, c3} = {((x1, x2),
{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)}), ((x1, x3), {(1, 1), (1, 2)}), ((x2, x3), {(1, 1),
(1, 2)})}. Figure 1 represents P taking into account its variables and con-
straint scopes (top) and its variable domains and constraint relations (bot-
tom). The arrows denote the order of the variable values in the conflict
tuples.

We should note that the constraints of the previous example could be
alternatively defined in terms of allowed assignments, i.e. the supports. In
some cases such approach has the advantage of requiring less tuples. For ex-
ample, c1 would become ((x1, x2), {(1, 1)}) instead. But in other cases it may
be the contrary. For example, c3 would become ((x2, x3), {(2, 1), (2, 2), (3, 1),
(3, 2)}).

3

Definition 2. (UC) An unsatisfiable core (UC) of an unsatisfiable CSP
P = (X, D,C) is a CSP instance P ′ = (X ′, D′, C ′) such that (1) P ′ is
unsatisfiable and (2) X ′ ⊆ X, D′ ⊆ D is the set of domains of variables in
X ′ and C ′ ⊆ C is the set of constraints with their scopes in X ′.

An unsatisfiable core (UC) of an unsatisfiable CSP instance is a CSP
instance that is a subset of the former one with respect to its variables,
domains and constraints, and is still unsatisfiable. An unsatisfiable CSP
instance has at least one UC corresponding to itself.

An unsatisfiable core is expected to be minimal as it should be as precise
as possible when identifying the causes of unfeasibility, thus extracting min-
imal unsatisfiable cores (MUCs). An UC has at least one MUC, and in case
it is unique then the MUC is equal to the UC. Removing one constraint per
MUC restores satisfiability. A smaller number of constraints suffices when
constraints are shared by different MUCs.

Definition 3. (MUC [5]) A minimal unsatisfiable core (MUC) of an un-
satisfiable CSP instance P is an UC of P , say P ′, such that removing any
of the constraints of P ′ makes the resulting CSP instance satisfiable.

Providing the user with explanations of unsatisfiability of CSPs has been
first addressed with QuickXplain [8]. Moreover, the extraction of MUCs in
CSPs has been recently made feasible [5]. The proposed algorithm performs
successive runs of a complete backtracking search, using weights, in order
to isolate an inconsistent subset of constraints.

Another approach for explaining unfeasibility consists in dealing with
the tuples of constraint relations (in the sequel called tuples) rather than
constraints defined as a pair with their scopes and relations [7]. This ap-
proach has clear advantages. Instead of identifying a set of constraints as the
cause of unsatisfiability, a set of tuples is identified. Consequently, restoring
satisfiability when considering tuples implies removing tuples rather than
constraints, which may have a minor impact on the encoding. This as-
sumes that, when making the encoding of a CSP instance, errors have been
introduced when encoding a few tuples rather than when encoding a few
constraints (including all its tuples).

Definition 4. (MUST [7]) A minimal unsatisfiable set of tuples (MUST)
of an unsatisfiable CSP P = (X, D,C), with C = {(S1, R1), . . . , (Sm, Rm)},
is a CSP P ′ = (X ′, D′, C ′) such that (1) P ′ is unsatisfiable, (2) ∀(S′, R′) ∈
C ′ ∃(S, R) ∈ C : S′ = S ∧ R′ ⊆ R, X ′ ⊆ X is the set of variables in S′ and
D′ ⊆ D is the set of domains of variables in X ′ and (3) removing any tuple
from R′ s.t. (S′, R′) ∈ C ′ makes the resulting CSP instance satisfiable.

It is worth mentioning that tuples in a MUST do not necessarily belong
to constraints in a MUC. An illustrative example is given below.

4

x1

x3

x2
c1

c3c2

1
2

x1 x2

x3

1
2
3

0
1

(1,1)
(1,2)

(1,1)
(1,2)

(0,1) (0,2) (1,2)
(0,3) (1,3)

1
2

x1 x2

x3

1
2
3

0
1

(1,1)
(1,2)

(1,1)
(1,2)

(0,1) (0,2) (1,2)
(0,3) (1,3)

Figure 2: MUCs and MUSTs of the CSP instance from Example 1

Example 2. (MUC and MUST) Figure 2 illustrates MUCs and MUSTs of
the CSP instance P introduced in Example 1. P has two MUCs: one with
c1 and c2 and another one with c1 and c3. An intuitive explanation is the
following: c1 implies the assignment {(x1, 1), (x2, 1)}, whereas c2 forbids the
assignment {(x1, 1)} and c3 forbids the assignment {(x2, 1)}. Any of these
MUCs contains seven tuples. Several MUSTs can be identified in P but
only two of them are illustrated in the figure (bottom). One of them (left)
corresponds to the smallest MUST and contains only five tuples. The point
is that not all tuples from constraint c1 are required to make the instance
unsatisfiable when considering also c2. The other MUST (right) contains
six tuples with the particularity of covering all the constraints.

Satisfiability of a CSP can be restored by removing one tuple of each
MUST. Similarly to MUCs, a smaller number of tuples may be removed
when tuples are shared by different MUSTs. For the running example,
removing a tuple representing either the conflict between assignments x1 = 0
and x2 = 2 or assignments x1 = 0 and x2 = 3 suffices to restore satisfiability.

2.2 SAT, MUSes and MaxSAT

We assume the reader is familiar with the SAT problem that consists in
deciding whether there exists a satisfying assignment to a set of Boolean

5

variables such that a given CNF formula is satisfied. A CNF formula is
a conjunction of clauses, where a clause is a disjunction of literals and a
literal is a Boolean variable or its complement (a positive or a negative
literal, respectively).

A large body of research in SAT has been devoted to explaining unfea-
sibility of CNF formulas in the last decade. These explanations have many
different applications and are of the utmost importance in model checking
using SAT solvers. For each iteration, if the call to the SAT solver returns
no solution, then an explanation is extracted to be incorporated in the next
iteration. Clearly, this explanation should be as precise as possible. Expla-
nations including irrelevant clauses are expected to have a negative impact
in the subsequent iterations.

The design of tools to identify unsatisfiable subformulas (USes) in SAT
formulas has been early addressed by Bruni [2] who used an heuristic ap-
proach to identify a subset of clauses that are still unsatisfiable. Later on,
Zhang [18] and Goldberg [4] proposed a similar idea of extracting unsatis-
fiability proofs based on the resolution steps taken for deriving the empty
clause. These resolution steps are implicitly behind the conflict clauses
added to the formula as a result of the analysis of conflicts during the search.
The identification of all the minimal unsatisfiable subformulas (MUSes) in
a systematic way was first developed by Liffiton [11, 12] and later used for
identifying the smallest MUS in an efficient way [10]. The identification of
MUSes has also shown to be competitive recurring to a local search proce-
dure as a preprocessing step to reduce the number of clauses that may be
part of the MUS [6].

The MaxSAT problem consists in finding the largest number of clauses
that can be satisfied in a CNF formula. The partial MaxSAT problem
distinguishes between hard and soft clauses: hard clauses must be satisfied
by any solution, while the number of soft clauses satisfied by a solution must
be maximized. Partial MaxSAT can be seen as a compromise between SAT
and MaxSAT where the hard clauses are treated as a SAT problem and the
soft clauses are treated as a MaxSAT problem.

3 Restoring Satisfiability with MaxSAT

The goal of restoring satisfiability of a CSP instance with a minimal impact
can be achieved by identifying the smallest size set of tuples to be removed
from the CSP constraint relations. Removing these tuples guarantees that
the instance is no longer unsatisfiable, whereas adding any of the removed
tuples makes the instance unsatisfiable.

With the aim of restoring CSPs satisfiability, recent work by Grégoire et
al. [7] introduced a two-step algorithm: (1) identify a MUC and (2) identify
a MUST in that MUC. This algorithm is called Muster and is outlined in

6

Algorithm 1 Identifying a MUST in a CSP

Muster(CSP P)
1 P ′ ← Extract MUC from P
2 P ′

SAT ← Encode CSP P ′ into SAT
3 � MP ′−P ′

SAT
contains mapping SAT/CSP

4 SolP ′
SAT
← Extract MUS from P ′

SAT

5 P ′′ ← CSP with recovered constraint tuples from SolP ′
SAT

6 � using MP ′−P ′
SAT

7 return P ′′

Algorithm 2 Restoring CSP satisfiability with MaxSAT

RestoreCSPwithMaxSAT(CSP P)
1 PPMaxSAT ← Encode P as a partial MaxSAT instance
2 � MP−PPMaxSAT

contains mapping SAT/CSP
3 SolPPMaxSAT

← PMaxSATsolver(PPMaxSAT)
4 P ′ ← CSP with recovered constraint tuples from SolPPMaxSAT

5 � using MP−PPMaxSAT

6 return P ′

Algorithm 1. The extraction of a MUC and the extraction of a MUST is
performed by using tools developed in the past which are publicly available.

This paper suggests restoring CSP satisfiability with MaxSAT. This is a
clear advantage with respect to Muster, which only removes one MUST.
The proposed algorithm involves three steps: (1) encoding the problem into
partial MaxSAT, (2) solving the partial MaxSAT instance and (3) identifying
the tuples to be removed from the CSP instance given the partial MaxSAT
solution. The pseudo code for this procedure is illustrated in Algorithm 2.
For each partial MaxSAT instance P ′ encoding a CSP instance P , there is
a mapping between each MaxSAT variable and each domain value of a CSP
variable. A partial MaxSAT solver is then called to solve P ′. Its solution
is used to identify the set of constraint tuples of P to be removed. In this
section, we will explain how to encode a CSP instance into a partial MaxSAT
instance to restore satisfiability.

7

3.1 A MaxSAT Encoding

We recall that given a CSP instance P = (X, D,C) for which the constraints
represent conflicts, it is encoded into a SAT instance P ′ as follows 1:

• For each variable x ∈ X and each value in the corresponding domain
d(x) ∈ D is created a Boolean variable.

• For each set of Boolean variables {b1, . . . , b|d(x)|} associated with the
same CSP variable x ∈ X create one clause (b1∨ . . .∨ b|d(x)|) to ensure
that each CSP variable is assigned at least one value, and a set of
binary clauses (¬bi ∨ ¬bj) with 1 ≤ i < j ≤ |d(x)| to ensure that no
more than one value is assigned to a CSP variable. In what follows,
these clauses will be called at least one clauses and at most one clauses,
respectively.

• For each tuple t ∈ R of each constraint c = (S, R) ∈ C is created
a clause with |S| negative literals to ensure that the corresponding
values are disallowed. In what follows, these clauses will be called
conflict clauses.

We should note that there exist alternative encodings for guaranteeing
that exactly one value is assigned to each CSP variable (see for example [13,
16]).

Example 3. (CSP to SAT) Consider a CSP instance P = (X, D,C) =
({x1, x2}, {d(x1) = {1, 2}, d(x2) = {1, 3}}, {((x1, x2), {(1, 1), (2, 3)})}). Let
us consider that a Boolean variable bij corresponds to the domain value j ∈
d(xi) ∈ D of variable xi ∈ X. The corresponding SAT instance has therefore
the following set of clauses: {(x11 ∨ x12), (x21 ∨ x23), (¬x11 ∨ ¬x12), (¬x21 ∨
¬x23), (¬x11 ∨¬x21), (¬x12 ∨¬x23)}. The first two clauses correspond to at
least one clauses, the next two clauses correspond to at most one clauses and
the last two clauses correspond to conflict clauses.

The CSP to SAT encoding used by Muster does not include the at most
one clauses. Provided that every at least one clause belongs to the MUST,
computing one MUST amounts to compute one MUS in the CNF formula.

Consider an unsatisfiable CSP instance P = (X, D,C) with constraints
representing conflicts and for which the minimum set of tuples to be removed
in order to restore satisfiability is to be found. This problem is encoded into
a partial MaxSAT instance P ′ as follows:

• Each at least one clause produced by an encoding of P into SAT is a
hard clause of P ′.

1Details about encoding CSP into SAT and vice versa can be found in [17].

8

• Each conflict clause produced by an encoding of P into SAT is a soft
clause of P ′.

Remark 1. When using the MaxSAT encoding to restore satisfiability of a
CSP instance, there is no need of adding at most one clauses to guarantee
a one-to-one correspondence between Boolean variables and CSP variable
values.

Proof. We assume that the CSP instance is unsatisfiable. The hard clauses
guarantee that at least one value is assigned to each CSP variable. The soft
clauses guarantee the smallest number of violated constraints. Having more
than one value assigned to a CSP variable, which means that any of those
values can be selected to be in the solution, cannot reduce the number of
violated constraints.

Proposition 1. A solution to the MaxSAT instance P ′ corresponds to the
minimum set of tuples to be removed from P in order to restore satisfiability.

Proof. The hard clauses guarantee that any solution to the partial MaxSAT
instance corresponds to a CSP complete assignment. Each soft clause rep-
resents one tuple in a constraint. Hence, a solution to the partial MaxSAT
instance satisfies the largest number of tuples, which is equivalent to unsat-
isfying the smallest number of tuples.

Remark 2. No more than one tuple of each constraint has to be removed
to restore the satisfiability of a CSP instance.

Proof. Restoring the satisfiability of a CSP instance corresponds to finding
an assignment such that no constraint is violated. One assignment can
violate at most one tuple in a constraint. Hence, no more than one tuple
per constraint needs to be removed.

As an additional remark, observe that MaxSAT has been used in the
past to solve the MaxCSP problem [1], thus allowing to know which con-
straints have to be removed to restore satisfiability of a CSP. Although the
motivation of this use of MaxSAT clearly differs from the one proposed here,
the encoding is similar.

Proposition 2. (From [1]) A MaxCSP solution may be obtained from iden-
tifying the smallest set of tuples to be removed to restore the satisfiability of
a CSP instance.

3.2 Unsatisfiability-Based MaxSAT Solvers

Unsatisfiability-based MaxSAT solvers [3, 15, 14] represent an approach for
solving MaxSAT problem instances, which contrasts with the traditional

9

MaxSAT solvers based on branch and bound algorithms [9]. Unsatisfiability-
based MaxSAT solvers iteratively identify Unsatisfiable Subformulas (USes),
not necessarily minimal, which are relaxed after being identified. Clauses are
relaxed by adding one relaxation variable per clause. The use of cardinality
constraints on the variables used to relax clauses in USes guarantees that
a minimum number of clauses is relaxed. Hence, the MaxSAT solution is
computed. The identification of clauses in USes is iterated until the resulting
formula is satisfiable. In this case, one clause from each identified US is
relaxed. A number of variants of MaxSAT algorithms have been proposed [3,
15, 14], which differ on the actual organization of the algorithm, and the way
cardinality constraints are encoded to clausal form.

The use of unsatisfiability-based MaxSAT solvers has the advantage of
having a solver which identifies unsatisfiable cores while running. Hence,
in case a solution is not found within the allowed CPU time, there is still
relevant information for restoring satisfiability.

In this paper we will be using the unsatisfiability-based MSUnCore [15,
14] version of April 2009. For this reason, we will use the name MSUnCore
to denote the MaxSAT-based algorithm for restoring CSPs satisfiability.

3.3 Muster vs MSUnCore

A few interesting remarks are made below in order to stress that MSUn-
Core should be considered as an alternative approach to Muster.

We should first clarify how the Muster algorithm could be instrumented
to restore CSPs satisfiability. First, a MUC is identified in a CSP. Second,
MUSTs in the MUC are identified to restore satisfiability, i.e. the required
tuples are removed from the MUC such that it becomes satisfiable. Now
these same tuples are removed from the CSP and the whole process is re-
peated.

Remark 3. The solution provided by MSUnCore removes a number of
tuples that is equal or smaller than the iterated application of Muster.

Proof. Muster first identifies a MUC and then MUSTs within the MUC.
This does not guarantee removing tuples shared by MUSTs belonging to
different MUCs. (Figure 2 illustrates this issue: unless Muster is lucky
enough to remove tuple (0, 2) or tuple (0, 3), Muster will remove two tuples
in two iterations, while MSUnCore will remove only one tuple.)

Remark 4. The number of Unsatisfiable Sets of Tuples (USTs) identified
by MSUnCore during the search provides a lower bound for the number of
tuples to be removed to restore satisfiability.

Proof. Unsatisfiability-based MaxSAT solvers (of which MSUnCore is a
concrete example), iteratively identify and relax unsatisfiable subformulas
(USes). Moreover, for each iteration for which a US is found, the number

10

of clauses to relax is increased by 1. Consequently, at each step of the
MSUnCore algorithm, the number of identified USes represents a lower
bound on the MaxSAT solution, and so represents a lower bound on the
number of tuples to be removed to restore satisfiability.

4 Experimental Evaluation

This section illustrates the feasibility of the proposed approach, i.e. the
use of MaxSAT to restore CSP satisfiability removing the smallest number
of tuples. With this purpose, MUSTs are eliminated although not directly
identified. This approach is clearly different from the one implemented in
Muster as we end up restoring the satisfiability of a CSP instance. In
contrast, Muster identifies one MUST in a MUC. Restoring satisfiability
would require running Muster iteratively and removing tuples to eliminate
MUSTs until the problem instance becomes satisfiable. Note that this pro-
cedure does not guarantee that the smallest number of tuples is removed
because MUSTs with tuples in constraints in more than one MUC are not
given priority. Figure 2 illustrates this feature. Suppose you first identify c1

and c2 as a MUC and then you eliminate the MUST in the figure (bottom,
left) by removing tuple (0, 1). This does not eliminate the other MUST in
the figure, but having removed either tuple (0, 2) or (0, 3) would have done
so.

The proposed approach and Muster should therefore be regarded as
complementary approaches. Even though, we have performed an experi-
mental evaluation running both approaches (Muster and MSUnCore) on
the same set of instances from the First CSP Competition2, which corre-
sponds to the set of instances used to test Muster in [7]. These instances
range from random binary CSP instances (named composed) to instances
of the queens-knights problem (qk), instances of the radio link frequency
assignment problem (graph and scen), one instance of the queen attacking
problem (qa) and 3-SAT instances encoded using the dual method (dual ehi).

Note that the results are not intended to provide a winner or a loser,
but rather to identify strengths and weaknesses of different approaches used
to achieve different albeit complementary goals. Table 1 provides the char-
acterization and results for each instance. Each instance is characterized in
terms of the number of CSP variables (#vars) and constraints (#constr). In
addition, the CPU time required by Muster to identify one MUC and one
MUST in that MUC is given (1MUC+1MUST), as well as the CPU time
required by an unsatisfiability-based MaxSAT solver (MSUnCore [14]) to
identify the first UST (1UST), which is not necessarily minimal. Additional
information gives the CPU time required by MSUnCore to restore satis-
fiability (AllMUSTs), which implies eliminating all MUSTs, as well as the

2http://cpai.ucc.ie/05/CallForSolvers.html

11

total number of tuples to be removed to restore satisfiability (RmTup). The
CPU time was limited to 1000 seconds (TO means timeout). In case only a
few USTs are identified, it is given a lower bound on the number of tuples to
be removed to restore satisfiability. Both Muster and MSUnCore were
run on a Intel Xeon 5160 3GHz under RedHat Enterprise Linux WS4.

First of all, the results illustrate the feasibility of the proposed approach.
Many times MSUnCore is able to restore satisfiability faster than Muster
is able to identify one MUST in a MUC. Also interesting is to note that most
instances are restored in terms of satisfiability by removing very few tuples.
This supports the claim that removing tuples has a very little impact. For
the cases where MSUnCore is not able to completely restore satisfiability,
it is able to identify a few USTs though, which gives a lower bound on the
number of tuples to be removed. In any case, the identification of the first
UST by MSUnCore is always faster than using Muster. Also, MSUn-
Core seems to require more time when the number of tuples to be removed
is larger.

5 Conclusions and Future Work

This paper suggests the use of MaxSAT to restore CSP satisfiability by
removing the smallest number of constraint tuples. This solution contrasts
with a MaxCSP solution as tuples instead of constraints are removed. We
argue that removing tuples is more adequate for most of the problems due
to having a minor impact.

Future work includes adapting MSUnCore for identifying minimal un-
satisfiable cores. This will have the advantage of identifying MUSTs instead
of USTs, which are more relevant in case the search does not terminate in
the given timeout.

Acknowledgments

This research is partially funded by Fundação para a Ciência e Tecnolo-
gia under research projects SHIPs (PTDC/EIA/64164/2006) and BSOLO
(PTDC/EIA/76572/2006).

References

[1] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Modelling Max-
CSP as partial Max-SAT. In International Conference on Theory and
Applications of Satisfiability Testing, pages 1–14, 2008.

[2] R. Bruni. On exact selection of minimally unsatisfiable subformulae.
Annals of Mathematics and Artificial Intelligence, 43(1):35–50, 2005.

12

[3] Z. Fu and S. Malik. On solving the partial MAX-SAT problem. In
International Conference on Theory and Applications of Satisfiability
Testing, pages 252–265, August 2006.

[4] E. I. Goldberg and Y. Novikov. Verification of proofs of unsatisfia-
bility for CNF formulas. In Design, Automation and Test in Europe
Conference, pages 10886–10891, 2003.

[5] É. Grégoire, B. Mazure, and C. Piette. Extracting MUSes. In European
Conference on Artificial Intelligence, pages 387–391, 2006.

[6] É. Grégoire, B. Mazure, and C. Piette. Local-search extraction of
MUSes. Constraints, 12(3):325–344, 2007.

[7] É. Grégoire, B. Mazure, and C. Piette. MUST: Provide a finer-grained
explanation of unsatisfiability. In International Conference on Princi-
ples and Practice of Constraint Programming, pages 317–331, 2007.

[8] U. Junker. QUICKXPLAIN: Preferred explanations and relaxations for
over-constrained problems. In AAAI National Conference on Artificial
Intelligence, pages 167–172, 2004.

[9] C. M. Li and F. Manyà. MaxSAT, hard and soft constraints. In A. Biere,
M. Heule, H. van Maaren, and T. Walsh, editors, SAT Handbook, pages
613–631. IOS Press, 2009.

[10] M. Liffiton, M. Mneimneh, I. Lynce, Z. Andraus, J. Marques-Silva, and
K. Sakallah. A branch and bound algorithm for extracting smallest
minimal unsatisfiable subformulas. Constraints, In Press, 2009.

[11] M. Liffiton and K. Sakallah. On finding all minimally unsatisfiable
subformulas. In International Conference on Theory and Applications
of Satisfiability Testing, pages 173–186, 2005.

[12] M. Liffiton and K. Sakallah. Algorithms for computing minimal unsatis-
fiable subsets of constraints. Journal of Automated Reasoning, 40(1):1–
33, 2008.

[13] J. Marques-Silva and I. Lynce. Towards robust CNF encodings of car-
dinality constraints. In International Conference on Principles and
Practice of Constraint Programming, pages 483–497, 2007.

[14] J. Marques-Silva and V. Manquinho. Towards more effective
unsatisfiability-based maximum satisfiability algorithms. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing,
pages 225–230, 2008.

13

[15] J. Marques-Silva and J. Planes. Algorithms for maximum satisfiability
using unsatisfiable cores. In Design, Automation and Test in Europe
Conference, pages 408–413, 2008.

[16] C. Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In International Conference on Principles and Practice of
Constraint Programming, pages 827–831, 2005.

[17] T. Walsh. SAT v CSP. In International Conference on Principles and
Practice of Constraint Programming, pages 441–456, 2000.

[18] L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other appli-
cations. In Design, Automation and Test in Europe Conference, pages
10880–10885, 2003.

14

Table 1: Experimental results: for each instance CSP is given its name, the
number of variables and constraints, the CPU time required by Muster
(for finding 1MUC+1MUST), the CPU time required by MSUnCore (for
finding both 1UST and AllMUSTs) and the number of removed tuples by
MSUnCore to restore satisfiability.

Instance CSP Muster MSUnCore
Name #vars #constr 1MUC+1MUST 1UST AllMUSTs RmTup
composed-25-1-2-0 224 4,440 20.02 0.01 0.04 1
composed-25-1-2-1 224 4,440 16.83 0.01 0.67 3
composed-25-1-25-8 247 4,555 10.78 0.01 0.18 2
composed-75-1-2-1 624 10,440 47.22 0.01 0.17 2
composed-75-1-2-2 624 10,440 51.00 0.01 0.19 2
composed-75-1-25-8 647 10,555 60.25 0.01 0.25 2
composed-75-1-80-6 702 10,830 44.76 0.01 0.16 2
composed-75-1-80-7 702 10,830 325.66 0.01 0.05 1
composed-75-1-80-9 702 10,830 47.82 0.01 0.18 2
qk 10 10 5 add 55 48,640 TO 74.62 92.89 1
qk 10 10 5 mul 105 49,140 TO 99.55 111.16 1
qk 8 8 5 add 38 19,624 TO 6.04 13.44 1
qk 8 8 5 mul 78 19,944 TO 10.58 19.36 1
graph2 f25 2,245 145,205 TO 0.36 1.64 1
qa 3 40 800 0.57 0.01 0.06 1
dual ehi-85-297-14 4,111 102,234 110.93 0.14 TO ≥8
dual ehi-85-297-15 4,133 102,433 94.31 0.15 TO ≥8
dual ehi-85-297-16 4,105 102,156 109.91 0.15 TO ≥8
dual ehi-85-297-17 4,102 102,112 116.67 0.15 TO ≥8
dual ehi-85-297-18 4,120 102,324 77.27 0.15 TO ≥8
dual ehi-90-315-21 4,388 108,890 129.24 0.28 TO ≥8
dual ehi-90-315-22 4,368 108,633 130.77 0.26 TO ≥8
dual ehi-90-315-23 4,375 108,766 0.89 0.25 TO ≥8
dual ehi-90-315-24 4,378 108,793 84.53 0.21 TO ≥7
dual ehi-90-315-25 4,398 108,974 98.7 0.20 TO ≥8
scen6 w2 648 513,100 TO 2.51 TO ≥7
scen6 w1 f2 319 274,860 TO 17.25 31.83 1
scen11 f10 4,103 738,719 TO 1.99 TO ≥4
scen11 f12 4,103 707,375 TO 1.87 TO ≥3

15

