
A structural approach to reasoning
with quantified Boolean formulas ?

Luca Pulina and Armando Tacchella

DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy
Luca.Pulina@unige.it Armando.Tacchella@unige.it

Abstract

In this paper we approach the problem of reasoning with quantified Boolean
formulas (QBFs) by combining search and resolution, and by switching be-
tween them according to structural properties of QBFs. We provide empiri-
cal evidence that QBFs which cannot be solved by search or resolution alone,
can be solved by combining them, and that our approach makes a proof-of-
concept implementation competitive with current QBF solvers.

1 Introduction

The development of the first practically efficient QBF solver can be traced back
to [4], wherein a search-based solver is proposed. Since then, researchers have
proposed improvements to the basic search algorithm including, e.g., backjumping
and learning [7], as well as different approaches to the problem including, e.g.,
skolemization [1], and resolution [2, 12]. However, in spite of such efforts, current
QBF reasoners still cannot handle many instances of practical interest. This is
witnessed, e.g., by the results of the 2008 QBF solver competition (QBFEVAL’08)
where even the most sophisticated solvers failed to decide encodings obtained from
real-world applications [14].

In this work, we consider search and resolution for QBFs, and we propose a
new approach that combines them dynamically. The key point of our approach is
to implicitly leverage graph abstractions of QBFs to yield structural features which
support the decision between search and resolution. As for the choice of a partic-
ular feature, it is known, see, e.g., [16], that resolution on plain Boolean formulas
may require computational resources that are exponential in the treewidth.1 This
connection has been studied also for quantified formulas in [5, 8, 13]. In particular,
in [5], an extension of treewidth is shown to be related to the efficiency of rea-
soning about quantified Boolean constraints, of which QBFs are a subclass. This
result tells us that treewidth is a promising structural parameter to gauge resolution
and search: Resolution is the choice when treewidth is relatively small, and search
is the alternative when treewidth is relatively large. Switching between the two

?The results herein presented are also detailed in a paper in proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence (IJCAI’09).

1Induced width, as defined in [16], is shown to be equivalent to treewidth in [9].

Proceedings of the 16th International RCRA workshop (RCRA 2009):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Reggio Emilia, Italy, 11–12 December 2009

options may occur as long as search is able to obtain subproblems whose treewidth
is smaller than the one of the original problem. In practice, QBFs of some interest
for applications may have thousands of variables, and thus even approximations of
treewidth – a well-known NP-complete problem – are too expensive to compute
on-the-fly [15]. Also, while deciding if treewidth is bounded by a constant can
be done in asymptotic linear time [3], an actual implementation of such algorithm
would be too slow to be of practical use. In this paper we show how these issues
can be overcome by considering alternative parameters indicating whether resolu-
tion is bound to increase the size of the initial set of clauses beyond “reasonable”
limits. To this purpose, we compute estimates of the number of new clauses gener-
ated during resolution, and we require that the number of such clauses is less than
the number of old clauses used to generate them. Also, we require that the expected
number of clauses is less than a predefined threshold. Both these conditions can be
checked without a prohibitive overhead, and respecting them can be as informative
as tracking treewidth in many situations.

To test our approach, we implemented it in STRUQS (for “Stru”ctural “Q”BF
“S”olver), a proof-of-concept tool consisting of less than 2K lines of C++ code.
We have experimented with STRUQS on the QBFEVAL’08 dataset [14], which
is comprised of more than three thousands QBF encodings in various application
domains – the largest publicly available collection of QBFs to date. Here, we show
that exploiting dynamic combination of search and resolution enables STRUQS to
solve QBFs which, all other things being equal, cannot be solved by the search
and resolution components of STRUQS alone. Moreover, STRUQS is competitive
with respect to current QBF solvers, as it would have ranked third best among
QBFEVAL’08 competitors if considering the number of problems solved within a
given amount of resources.

While approaches similar to ours have been proposed for plain Boolean satisfi-
ability in [16], and for non-quantified constraint satisfaction in [11], we notice that
this is the first time that a structural approach combining search and resolution is
designed, implemented and empirically tested for QBFs. Learning in search-based
QBF solvers such as, e.g., QUBE [7] and YQUAFFLE [18], can also be seen as a
way to integrate resolution and search. However, as shown in [7], this is true of a
particular form of control strategy for general resolution known as tree resolution,
while here we focus on variable elimination instead. Moreover, since STRUQS
features backjumping, and backjumping is essentially space-bounded tree resolu-
tion, we could say that our work extends the above contributions in this sense.
The solver 2CLSQ [17] is another example of integration between search and res-
olution. Also in this case, the contribution is limited to a specific form of res-
olution, namely hyper-binary resolution, which is seen as a useful complement
to the standard unit clause resolution step performed by most search-based QBF
solvers, and not as an alternative resolution-based decision procedure as we do in
STRUQS. Also QUANTOR [2] provides some kind of integration between resolu-
tion and search, but with two fundamental differences with respect to STRUQS.
The first one is that QUANTOR intertwines resolution with the expansion of univer-

2

sally quantified variables, whereas in STRUQS no such expansion is performed.
The second one is that QUANTOR uses search only at the very end of the decision
process, when the input QBF has been reduced to an equi-satisfiable propositional
formula.

The paper is structured as follows. In Section 2 we lay down the foundations
of our work considering relevant definitions and known results. In Section 3 we
define the basic STRUQS algorithms, including search, resolution and their com-
bination. In Section 4 we describe our experiments and in Section 5 we summarize
our current results and future research directions.

2 Groundwork

A variable is an element of a set P of propositional letters and a literal is a variable
or the negation thereof. We denote with |l| the variable occurring in the literal l,
and with l the complement of l, i.e., ¬l if l is a variable and |l| otherwise. A clause
C is an n-ary (n ≥ 0) disjunction of literals such that, for any two distinct disjuncts
l, l′ ofC, it is not the case that |l| = |l′|. A propositional formula is a k-ary (k ≥ 0)
conjunction of clauses. A quantified Boolean formula is an expression of the form

Q1z1 . . . QnznΦ

where, for each 1 ≤ i ≤ n, zi is a variable, Qi is either an existential quantifier
Qi = ∃ or a universal oneQi = ∀, and Φ is a propositional formula in the variables
Z = {z1, . . . , zn}; the expression Q1z1 . . . Qnzn is the prefix and Φ is the matrix;
a literal l is existential if |l| = zi for some 1 ≤ i ≤ n and ∃zi belongs to the prefix,
and it is universal otherwise.

A prefix p = Q1z1 . . . Qnzn can be viewed as the concatenation of h quantifier
blocks, i.e., p = Q1Z1 . . . QhZh, where the sets Zi with 1 ≤ i ≤ h are a partition
of Z, and consecutive blocks have different quantifiers. To each variable z we
can associate a level lvl(z) which is the index of the corresponding block, i.e.,
lvl(z) = i for all the variables z ∈ Zi. We also say that variable z comes after a
variable z′ in p if lvl(z) ≥ lvl(z′).

The semantics of a QBF ϕ can be defined recursively as follows. A QBF clause
is contradictory exactly when it does not contain existential literals. If ϕ contains
a contradictory clause then ϕ is false. If ϕ has no conjuncts then ϕ is true. If
ϕ = Qzψ is a QBF and l is a literal, we define ϕl as the QBF obtained from ψ by
removing all the conjuncts in which l occurs and removing l from the others. Then
we have two cases:

• If ϕ is ∃zψ, then ϕ is true exactly when ϕz or ϕ¬z are true.

• If ϕ is ∀zψ, then ϕ is true exactly when ϕz and ϕ¬z are true.

The QBF decision problem (QSAT) can be stated as the problem of deciding
whether a given QBF is true or false.

3

Given a QBF ϕ on the set of variables Z = {z1, . . . , zn}, its Gaifman graph
has a vertex set equal to Z with an edge (z, z′) for every pair of different elements
z, z′ ∈ Z that occur together in some clause of ϕ. A scheme for a QBF ϕ having
prefix p is a supergraph (Z,E) of the Gaifman graph of ϕ along with and ordering
z′1, . . . , z

′
n of the elements of Z such that

1. the ordering z′1, . . . , z
′
n preserves the order of p, i.e., if i < j then z′j comes

after z′i in p, and

2. for any z′k, its lower numbered neighbors form a clique, that is, for all k, if
i < k, j < k, (z′i, z

′
k) ∈ E and (z′j , z

′
k) ∈ E, then (z′i, z

′
j) ∈ E.

The width wp(ϕ) of a scheme is the maximum, over all vertices zk, of the size
of the set {i : i < k, (zi, zk) ∈ E}, i.e., the set containing all lower numbered
neighbors of zk. The treewidth twp(ϕ) of a QBF ϕ is the minimum width over all
schemes for ϕ.

Clause resolution [10] for a QBF ϕ is an operation whereby given two clauses
Q ∨ x and R ∨ ¬x of ϕ, the clause min(Q ∨R) can be derived, where

1. Q and R are disjunctions of literals,

2. x is an existential variable,

3. Q and R do not share any literal l such that l occurs in Q and l occurs in R,
and

4. min(C) is obtained from C by removing the universal literals coming after
all the existential literals in C.

Variable elimination is a control strategy for resolution defined as follows.
Given a QBF ϕ on the set of variables Z = {z1, . . . , zn}, we consider a scheme
for ϕ and the associated elimination ordering Z ′ = {z′1, . . . , z′n}. Starting from
z = z′n and scanning the elimination ordering in reverse, we eliminate the vari-
ables as follows. If z is existential, and assuming that ϕ contains k > 0 clauses
in the form Q ∨ z and h > 0 clauses in the form R ∨ ¬z, then we add O(kh)
clauses to ϕ obtained by performing all the resolutions on z. In the case where
either k = 0 or h = 0, no operation is performed. If z is universal, we simply skip
to the next variable. If all the variables in ϕ can be eliminated without generating
a contradictory clause, then ϕ is true, else it is false.

Backtracking search [4] for a QBF ϕ is a depth-first exploration of an AND-OR
tree defined as follows. Initially, the current QBF is ϕ. If the current QBF is of the
form ∃xψ then we create an OR-node, whose children are obtained by checking
recursively whether ϕx is true or ϕ¬x is true. If the current QBF is of the form ∀yψ
then we create an AND-node, whose children are obtained by checking recursively
whether both ϕy and ϕ¬y are true. We call ϕl a branch (also, an assignment),
and since we explore the tree in a depth-first fashion, a node wherein only the first
branch was taken is said to be open, and closed otherwise. The leaves are of two

4

kinds: If the current QBF contains a contradictory clause we have a conflict, while
if the current QBF contains no conjuncts we have a solution. Backtracking from a
conflict amounts to reaching back to the deepest open OR-node: if there is no such
node, then ϕ is false; backtracking from a solution amounts to reaching back to the
deepest open AND-node: if there is no such node, then ϕ is true.

Unit propagation [4] is an optimization that can be added on top of basic vari-
able elimination and search. A clause C is unit in a QBF ϕ exactly when (i) C
contains only one existential literal l (unit literal) and, (ii) all the universal literals
in C come after l in the prefix of ϕ. If ϕ contains a unit literal l, then ϕ is true if
and only if ϕl is true. Unit propagation is the process whereby we keep assigning
unit literals until no more such literals can be found.

Backjumping is an optimization that can be added on top of search. According
to [7] the computation performed by a QBF search algorithm corresponds to a par-
ticular kind of deductive proof, i.e., a tree wherein clause resolution and term reso-
lution alternate, where a term is a conjunction of literals, and term resolution is the
“symmetric” operation of clause resolution – see [7] for details. The clause/term
tree resolution proof corresponding to search for a QBF ϕ can be reconstructed as
follows. In case of a conflict, there must be two clauses, say Q ∨ x and R ∨ ¬x
such that all the literals in Q and R have been deleted by previous assignments.
We can always resolve such clauses to obtain the working reason min(Q ∨ R) –
where Q ∨ x and R ∨ ¬x are the initial working reasons. The other clauses can
be derived from the working reason when backtracking over any existential literal
l such that |l| occurs in the working reason. There are three cases:

1. If l is a unit literal, then there is a clause C where l occurs – the reason of
assigning l – and we obtain a new working reason by resolving the current
one with C.

2. If l is an open branch, then proof reconstruction stops, because we must
branch on l, and the reason of this assignment is the current working reason.

3. If l is a closed branch, then its reason was computed before, and it can be
treated as in (1).

In case of a solution, the initial working reason is a term which is the conjunction
of (a subset of) all the literals assigned from the root of the search tree, down to the
current leaf, i.e., a Boolean implicant of the matrix of ϕ. The other terms can be
derived when backtracking over any universal literal l such that l is in the working
reason, considering cases (ii) and (iii) above, and using term instead of clause
resolution.2 Given the above, it is easy to see that closing branches over existential
(resp. universal) literals that do not appear in the current working reason is useless,
i.e., they are not responsible for the current conflict (resp. solution). Backjumping
can thus be described as the process whereby useless branches are skipped while
backtracking.

2Case (1) will not apply unless terms are learned, and thus unit propagation may involve universal
variables as well – see [7] for the technical details.

5

SEARCH(ϕ, Γ)
l← CHOOSELIT(ϕ, Γ)
push(Γ, 〈l, LS, NIL 〉)
DOASSIGN(ϕ, l)

ELIMINATE(ϕ, Γ)
v← CHOOSEVAR(ϕ, Γ)
push(Γ, 〈v, VE, NIL 〉)
DOELIMINATE(ϕ, v)

BACKTRACK(ϕ, Γ, q)
while Γ 6= EMPTY do
〈l, m, 〉 ← top(Γ)
if m = VE then

UNDOELIMINATE(ϕ, l)
else

UNDOASSIGN(ϕ, l)
pop(Γ)
if ISBOUND(q, l, ϕ) then

if m = LS then
push(Γ, 〈l, FL, NIL 〉)
DOASSIGN(ϕ, l)
return FALSE

return TRUE

PROPAGATE(ϕ, Γ)
〈l, r〉 ← FINDUNIT(ϕ)
while l 6= NIL do

push(Γ, 〈l, FL, r〉)
DOASSIGN(ϕ, l)
〈l, r〉 ← FINDUNIT(ϕ)

BACKJUMP(ϕ, Γ, q)
wr← INITREASON(ϕ, Γ, q)
while Γ 6= EMPTY do
〈l, m, r〉 ← top(Γ)
if m = VE then

UNDOELIMINATE(ϕ, l)
else

UNDOASSIGN(ϕ, l)
pop(Γ)
if ISBOUND(q, l, ϕ) then

if OCCURS(|l|, wr) then
if m = LS then

push(Γ, 〈l, FL, wr〉)
DOASSIGN(ϕ, l)
return FALSE

else if m = FL then
UPDATEREASON(wr, r)

return TRUE

Figure 1: Pseudo-code of STRUQS basic routines.

3 Implementing the structural approach

In Figure 1 we present STRUQS basic routines in pseudo-code format. All the
routines take as by-reference parameters the data structure ϕ which encodes the
input QBF, and a stack Γ which keeps track of the steps performed. We consider
the following primitives for ϕ:

• DOASSIGN(ϕ, l) implements ϕl as per Section 2, where clauses and literals
are disabled rather than deleted.

• DOELIMINATE(ϕ, v) implements the elimination of a single variable as de-
scribed in Section 2, with the addition that clauses subsumed by some clause
already in ϕ are not added – a process named forward subsumption in [2];
as in the case of DOASSIGN, the eliminated variables and the clauses where
they occur are disabled.

• FINDUNIT(ϕ), returns a pair 〈l, r〉 if l is a unit literal in ϕ and r is a unit
clause in which l occurs, or a pair 〈NIL , NIL 〉 if no such literal exists in ϕ.

• CHOOSELIT(ϕ, Γ) returns a literal l subject to the constraint that all the
remaining variables of ϕ which do not appear in Γ come after |l|.

• CHOOSEVAR(ϕ, Γ) returns a variable v subject to the constraint that v comes
after all the remaining variables of ϕ which do not appear in Γ.

6

Because updates in DOASSIGN and DOELIMINATE are not destructive, we can
further assume that their effects can by “undo” functions, i.e., UNDOASSIGN and
UNDOELIMINATE.

The routines SEARCH and ELIMINATE (Figure 1, top-left) perform one step of
search and variable elimination, respectively. SEARCH (resp. ELIMINATE), asks
CHOOSELIT (resp. CHOOSEVAR) for a literal l (resp. a variable v) and then it
(i) pushes l (resp. v) in the stack and (ii) it updates ϕ. In both cases step (i)
amounts to push a triple 〈u,m, r〉 in Γ where r is always NIL , u is the literal being
assigned or the variable being eliminated, and m is the mode of the assignment,
where LS (“L”eft “S”plit) indicates an open branch in the search tree, and VE

(“V”ariable “E”limination) indicates the corresponding resolution step. The task
of PROPAGATE (Figure 1, top-right) is to perform unit propagation in ϕ. For each
unit literal l, PROPAGATE pushes a record 〈l, FL, r〉 in Γ, where l and r are the
results of FINDUNIT, and the mode is always FL (“F”orced “L”iteral).

BACKTRACK (Figure 1 bottom-left) and BACKJUMP (Figure 1, bottom-right)
are alternative backtracking procedures to be invoked at the leaves of the search
tree with an additional parameter q, where q = ∃ if the current leaf is a conflict,
and q = ∀ otherwise. BACKTRACK goes back in the stack Γ, popping records for
search (LS) or deduction steps (VE, FL), and undoing the corresponding effects
on ϕ. Notice that, if BACKTRACK is a component of a plain search solver, then
VE-type records will not show up in Γ. BACKTRACK stops when an open branch
(LS) corresponding to a literal l bound by the quantifier q is found (ISBOUND(q, l,
ϕ)=TRUE). In this case, BACKTRACK closes the branch by assigning l with mode
FL and returning FALSE to indicate that search should not stop. On the other hand,
if all the records are popped from Γ without finding an open branch then search is
over and BACKTRACK returns TRUE.

BACKJUMP implements backjumping as per Section 2 on top of the following
primitives:

• INITREASON(ϕ, Γ, q) initializes the working reason wr. If q = ∃, then
we have two cases: (i) If top(Γ) is a FL-type record, then wr is any clause
in ϕ which is contradictory because all of its existential literals have been
disabled. (ii) If top(Γ) is a VE-type record, this means that a contradictory
clause C has been derived when eliminating a variable, and thus wr is C. If
q = ∀, then wr is a term obtained considering a subset of the literals in Γ
such that the number of universal literals in the term is minimized – VE-type
records are disregarded in this process.

• UPDATEREASON(wr, r) updates wr by resolving it with r, i.e., the reason
of the assignment which is being undone.

When BACKJUMP is invoked in lieu of BACKTRACK, it first initializes the working
reason, and then it pops records from Γ until either the stack is empty, or some open
branch is found – the return values in these cases are the same as BACKTRACK.
BACKJUMP stops at open branches (LS) only if they correspond to some literal l

7

STRUQS[BJ,VE](ϕ, Γ)
stop← FALSE
while ¬stop do

PROPAGATE(ϕ, Γ)
if ISTRUE(ϕ) then

result← TRUE
stop← BACKJUMP(ϕ, Γ, ∀)

else if ISFALSE(ϕ) then
result← FALSE
stop← BACKJUMP(ϕ, Γ, ∃)

else
if PREFERSEARCH(ϕ) then SEARCH(ϕ, Γ)
else ELIMINATE(ϕ, Γ)

return result

Figure 2: Pseudo-code of STRUQS[BJ,VE].

which is bound by the quantifier q and such that |l| occurs in the current working
reason wr (OCCURS(|l|, wr)=TRUE). Also, when popping records 〈l, FL, r〉 such
that l occurs in the working reason, the procedure UPDATEREASON is invoked to
update the current working reason wr. As described in Section 2, all the literals
bound by q that are not in the current working reason are irrelevant to the current
conflict/solution and are simply popped from Γ without further ado.

On top of the basic algorithms of Figure 1, we define five different versions
of STRUQS: Three “single” versions, namely STRUQS[BJ], STRUQS[BT], and
STRUQS[VE], and two “blended” ones, namely STRUQS[BT,VE] and STRUQS[BJ,VE].
The single solvers implement basic reasoning algorithms and are provided for ref-
erence purposes, while the blended ones implement our structural approach.3 The
pseudo-code of STRUQS[BJ,VE] is detailed in Figure 2 where we consider some
additional primitives on ϕ: ISTRUE(ϕ) returns TRUE exactly when all clauses in
ϕ have been disabled; ISFALSE(ϕ) returns TRUE exactly when there is at least one
contradictory clause in ϕ; finally, PREFERSEARCH(ϕ) is some heuristic to choose
between search and variable elimination. The other versions of STRUQS can be
obtained from the code in Figure 2 as follows. If PREFERSEARCH always re-
turns TRUE, then we obtain the search solver STRUQS[BJ], and if it always returns
FALSE, then we obtain the variable elimination solver STRUQS[VE]. Replacing
BACKJUMP with BACKTRACK, we obtain STRUQS[BT,VE], and if we further as-
sume that PREFERSEARCH always returns TRUE, then we obtain STRUQS[BT].

We now consider the implementation of PREFERSEARCH for the blended ver-
sions of STRUQS. As discussed in Section 1, PREFERSEARCH needs to be based
on parameters which are informative, yet computable without a prohibitive over-
head. To this end, in PREFERSEARCH we resort to the following criteria:

1. Given the current ϕ and Γ, check if there is any existential variable x which
respects CHOOSEVAR’s constraints, and such that the number of clauses po-
tentially generated by DOELIMINATE(ϕ, x) is less than the number of clauses

3The source code of STRUQS is available at http://www.mind-lab.it/projects.

8

containing x in ϕ.

2. If condition (1) is met for some x, then consider the number of clauses where
x occurs, say nx, and the number of clauses where ¬x occurs, say n¬x, and
compute the diversity of x as the product nxn¬x; check if the diversity of x
is less than a predefined threshold div.

Notice that, when checking for conditions (1) we compute an upper bound on the
number of clauses generated as nxn¬x, and we stop checking when the first vari-
able respecting both conditions is found. If both conditions above are met for some
x, then PREFERSEARCH returns FALSE, and CHOOSEVAR is instructed to return
x. If either condition is not met, then PREFERSEARCH returns TRUE. In this case,
CHOOSELIT tries to pick a literal l which respects CHOOSELIT’s constraints, and
such that |l| is a node in the neighborhood of some variable x tested during the last
call to PREFERSEARCH. If no such literal can be found, then CHOOSELIT returns
a literal l such that |l| has the maximum degree among all the candidate literals of
ϕ.

We mention here that condition (1) is proposed in [6] to control variable elim-
ination during preprocessing of plain Boolean encodings, and diversity is intro-
duced in [16] to efficiently account for structure of Boolean formulas. Intuitively,
in our implementation condition (1) provides the main feedback that implicitly
considers the treewidth of the current formula: If variable elimination becomes
less efficient, then this means that the structure of the current QBF is probably
less amenable to this kind of approach. Condition (2) fine tunes (1): Whenever
some variable x meets condition (1), but nxn¬x is too large, eliminating x could
be overwhelmingly slow. Finally, the search heuristic in CHOOSELIT is modified
in order to use search for breaking large clusters of tightly connected variables. If
this cannot be done, then CHOOSELIT falls back to assigning the variable which is
most constrained.

4 Putting the structural approach to the test

All the experimental results that we present are obtained on a family of identical
Linux workstations comprised of 10 Intel Core 2 Duo 2.13 GHz PCs with 4GB
of RAM. The resources granted to the solvers are always 600s of CPU time and
3GB of memory. To compare the solvers we use the QBFEVAL’08 dataset, which
is comprised of 3326 formulas divided into 17 suites and 71 families (suites may
be comprised of more than one family). All the formulas considered are QBF
encodings of some automated reasoning task [14]. In the following, we say that
solverA dominates solverB whenever the set of problems solved byA is a superset
of the problems solved by B; we say that two solvers are incomparable when
neither one dominates the other.

Our first experiment aims to provide an empirical explanation on why alternat-
ing between search and resolution can be effective. In Figure 3 (a,b) we present two

9

(a) (b) (c)

Figure 3: (a) Number of reasoning steps (x axis) vs. approximated treewidth value (y axis) in
STRUQS[VE] (triangles) and STRUQS[BJ] (dots). (b) As (a), but describing the alternation of search
(dots) and variable elimination (triangles) steps inside STRUQS[BJ,VE]. The number of reasoning
steps corresponds to the number of LS- and VE-type records pushed on Γ. In particular, we consider
the sequence of QBFs ϕ1, ϕ2, . . . where ϕ1 is the input QBF, and ϕi+1 is obtained from ϕi as
follows. If ϕi does not correspond to a conflict or a solution, then ϕi+1 is the result of a destructive
update of ϕi corresponding to (i) unit propagation and (ii) variable elimination or search. If ϕi is a
conflict or a solution, then ϕi+1 is the formula corresponding to the node where STRUQS backtracks
to. For all ϕ1, ϕ2, . . ., approximated treewidth t̂wp(ϕi) is such that twp(ϕi) ≤ t̂wp(ϕi). (c)
Number of formulas solved (y axis) vs. div parameter value (x axis) in STRUQS[BJ,VE].

plots showing the connection between the behaviour of STRUQS – as dictated by
PREFERSEARCH – and the treewidth4 of the input formula as it is modified during
the solution process. The plots have been obtained by running various versions of
STRUQS on the instance test5 quant5 – family jmc quant, suite Katz in
the QBFEVAL’08 dataset. We consider test5 quant5 because it is the small-
est instance (358 variables, 941 clauses, 3 quantifier blocks) which is solved by
STRUQS[BJ,VE], and it is not solved by STRUQS[BJ] and STRUQS[VE]. Look-
ing at Figure 3 (a), we can see that STRUQS[VE] (triangle dots) is able to decrease
slightly treewidth (from an initial estimate of 96 to a final estimate of 86), but it
can go as far as a few hundred steps before exhausting resources. On the other
hand, STRUQS[BJ] (circle dots) can decrease substantially treewidth, but it gets
trapped into structurally simpler subproblems, without managing to solve the input
QBF after about 9 × 106 steps, when it reaches the time limit.5 From Figure 3
(b) we can see that STRUQS[BJ,VE] changes its behavior according to the cur-
rent value of treewidth, i.e., PREFERSEARCH implicitly takes into account struc-
ture. In the first 206 steps, only variable elimination is performed (triangle dots).
Then, as this approach becomes untenable, search (circle dots) is exploited to ob-
tain structurally simpler subproblems. Comparing the two plots, it is clear that
PREFERSEARCH prevents search to go “too deep”, because as soon as t̂wp(ϕi)
becomes small, PREFERSEARCH reckons that variable elimination alone can deal
with ϕi. Overall, STRUQS[BJ,VE] solves test5 quant5 in less than 4 × 105

4More precisely, we consider an approximation of treewidth, computed as described in [15].
5Only the first 103 steps are shown in plots of Figure 3 (a,b). The hidden portions of STRUQS[BJ]

and STRUQS[BJ,VE] behave as they do in the last few hundred steps shown.

10

Solver Performance
Time #LS (×105) #VE (×105)

STRUQS[BJ,VE] 1304 63141 656 1407
STRUQS[BT,VE] 1019 41900 1744 1731
STRUQS[BJ] 614 31543 11478 –
STRUQS[VE] 528 12834 – 3
STRUQS[BT] 380 10855 35594 –

Table 1: Comparison of STRUQS versions considering the number of problems solved (“#”), the
cumulative CPU seconds spent (“Time”), the cumulative number of search (“#LS”) and variable
elimination (“#VE”) steps performed on solved problems.

steps, of which about 25% are search steps. Another interesting phenomenon is
that even when search is prevailing – for t̂wp(ϕ) values roughly in between 75 and
25 – PREFERSEARCH still gives a chance to variable elimination. In these cases,
variable elimination plays essentially the same role of unit propagation, i.e., it stops
in advance the exploration of irrelevant portions of the search space.

In the above experiment, PREFERSEARCH turns out to be effective in switching
between variable elimination and search with a specific value of the threshold div
(2000). Since different values of div influence the behaviour of PREFERSEARCH,
it is reasonable to ask how much a particular setting of div will influence the perfor-
mance of STRUQS, if at all, and which is the best setting, at least in the dataset that
we consider. In figure 3 (c) we present the result of running STRUQS[BJ,VE] with
various settings of the parameter div on the formulas in the QBFEVAL’08 dataset
which cannot be solved by either STRUQS[VE] or STRUQS[BJ] alone (660 for-
mulas). In particular, we consider an initial value div = 125 and we increase it by
a ×2 factor until div = 16000, each time running STRUQS[BJ,VE] on the above
dataset. The plot in Figure 3 clearly shows that (i) div ≈ 2000 appears to be the
best setting in the QBFEVAL’08 dataset, and that (ii) only 15 instances separate
the performance of the best STRUQS[BJ,VE] setting (div = 2000) with respect to
the worst one (div = 125). In all the experiments that we show hereafter div is
fixed to 2000, but we conjecture that while tuning div helps in making STRUQS
faster in some cases, relatively small changes in the number of problems solved are
to be expected.

As we anticipated, there is a number of instances that can be solved by STRUQS[BJ,VE],
but cannot be solved by the corresponding single solvers. Our next experiment is
to compare all STRUQS versions to see whether blended solvers have an edge over
single ones. Indeed, a quick glance at the results shown in Table 1 reveals that
blended solvers are always superior to single ones. In more detail, STRUQS[BT]
can solve 11% of the dataset, STRUQS[VE] can deal with 16% of it, and STRUQS[BJ]
tops at 18%. Only 273 problems (8% of the dataset) are solved by both STRUQS[BT]
and STRUQS[VE], which are incomparable. On the other hand, STRUQS[BJ]
dominates STRUQS[BT] and it is incomparable with STRUQS[VE]. As for the
blended versions, we see that STRUQS[BT,VE] is more efficient than all the single
versions: It can solve 31% of the dataset, which is more than the set of problems
solved by at least one of STRUQS[BT] and STRUQS[VE] (635). STRUQS[BJ,VE]

11

turns out to be the most efficient among STRUQS versions: It can solve 39% of
the dataset, which is also more than the set of problems solved by at least one
of STRUQS[BJ] and STRUQS[VE] (800). If we normalize the number of search
steps performed by the solvers considering the problems that are solved, we see
a 10× gap between STRUQS[BT,VE] and STRUQS[BJ], while the same gap be-
tween STRUQS[BJ] and STRUQS[BT] is only 5×. This means that combining
search and variable elimination turns to be efficient per se, and even more ef-
ficient than boosting search with backjumping. If we look at variable elimina-
tion steps, we can see a substantial increase in the normalized number of steps:
nearly 300× (resp. 200×) gap between STRUQS[VE] and STRUQS[BT,VE] (resp.
STRUQS[BJ,VE]). Indeed, variable elimination is used more in STRUQS[BT,VE]
and STRUQS[BJ,VE] than in STRUQS[VE], but this happens on subproblems that
are structurally simpler, as there is only a 1.7× (resp. 2×) gap in normalized CPU
time between STRUQS[VE] and STRUQS[BT,VE] (resp. STRUQS[BJ,VE]). No-
tice also that STRUQS[BJ,VE] performs less search and variable elimination steps
than STRUQS[BT,VE], and this appears to be the net effect of backjumping.

One last set of considerations about Table 1 regards dominance relationships.
In particular, STRUQS[BT,VE] is incomparable with both STRUQS[BT] and STRUQS[VE].
In the case of STRUQS[BT], there are 6 problems in the suite Ansotegui which
can be solved by STRUQS[BT], but not by STRUQS[BT,VE]. Indeed, the size of
these problems is such that variable elimination becomes prohibitive too quickly
for PREFERSEARCH to notice. STRUQS[VE] can solve 162 problems that STRUQS[BT,VE]
cannot solve, where the bulk of such problems (121) is from the suite Pan: in these
formulas, condition (1) of PREFERSEARCH is almost always unmet, and yet they
turn out to be very difficult for search. Relaxing condition (1) of PREFERSEARCH

can have positive effects on these formulas, but it can also severely degrade the
performance of STRUQS[BT,VE] on other suites. STRUQS[BJ,VE] dominates
STRUQS[BT,VE] and STRUQS[BT], but is incomparable with STRUQS[BJ] and
STRUQS[VE]. In particular, there are 52 problems solved by STRUQS[BJ] that
STRUQS[BJ,VE] cannot solve, whereof 40 are from the family blackbox-01X-QBF.
These instances are characterized by the largest number of quantifier blocks among
formulas in the dataset, and search is already quite efficient on them. STRUQS[VE]
can solve 68 formulas on which STRUQS[BJ,VE] fails, of which 67 are from the
suite Pan and have the same peculiarities mentioned about STRUQS[BT,VE].

In Table 2 we conclude this section by comparing STRUQS[BJ,VE] with state-
of-the-art QBF solvers. We have considered all the competitors of QBFEVAL’08,
namely AQME, QUBE6.1, NENOFEX, QUANTOR, and SSOLVE. To them, we have
added the solvers SKIZZO [1] which is representative of skolemization-based ap-
proaches, QUBE3.0 [7] which is the same as QUBE6.1 but without preprocessing,
YQUAFFLE [18] and 2CLSQ [17] which are also search-based solvers, and QM-
RES [12] which features symbolic variable elimination. Although STRUQS[BJ,VE]
is just a proof-of-concept solver, Table 2 reveals that it would have ranked third
best considering only the participants to QBFEVAL’08, and it ranks as fourth
best in Table 2. Moreover, there are 24 instances that can be solved only by

12

Solver Solved True False
Time # Time # Time

AQME 2434 43987 977 19747 1457 24240
QUBE6.1 2144 32414 828 18248 1316 14166
SKIZZO 1887 40864 631 17550 1256 23314
STRUQS[BJ,VE] 1304 63141 576 32685 728 30456
QUBE3.0 1077 16700 406 6536 671 10164
NENOFEX 985 22360 459 13853 526 8507
QUANTOR 972 15718 485 10418 487 5300
SSOLVE 965 23059 450 9866 515 13193
YQUAFFLE 948 16708 389 9058 559 7650
2CLSQ 780 21287 391 13234 389 8053
QMRES 704 13576 360 7722 344 5853

Table 2: STRUQS[BJ,VE] vs. state-of-the-art QBF solvers considering the number of problems
solved and the cumulative CPU seconds considering overall results (“Solved”), as well as “True”
and “False” formulas separately.

STRUQS[BJ,VE]. If we consider that AQME is a multi-engine solver combining
the ability of several engines (including QUBE6.1 and SKIZZO), and that both
QUBE6.1 and SKIZZO are fairly sophisticated pieces of software, we can con-
clude that STRUQS[BJ,VE] performances are very satisfactory. Indeed, STRUQS
is somewhat limited by the straigthforward implementation of operations such as,
e.g., .forward subsumption. On one hand, disabling forward subsumption brings
to 1114 the number of problems solved by STRUQS[BJ,VE]. On the other hand,
forward subsumption accounts for 8% of the total time spent by STRUQS[BJ,VE]
on the formulas that it can solve, but for 20% of the total time on the formulas that
it cannot solve. Increasing the time limit to 1200 seconds allows STRUQS[BJ,VE]
to solve about one hundred additional problems, indicating that the efficiency of
basic operations is currently a limiting factor for STRUQS.

5 Conclusions and future work

Summing up, the combination of search and resolution featured by STRUQS seems
to offer a gateway to effective reasoning in QBFs. The two key results of our work
are (i) showing that the blended solvers STRUQS[BT,VE] and STRUQS[BJ,VE]
outperform the single ones, and (ii) showing that STRUQS[BJ,VE] is competitive
with other state-of-the-art solvers. We believe that these results can be improved
by pursuing an efficient implementation of STRUQS. The fact that STRUQS, how-
ever unsophisticated, is able to solve 24 problems that cannot be solved by other
state-of-the-art QBF solvers is promising in this sense. Also, STRUQS[BJ,VE]
used as a SAT solver on a subset of 790 QBFEVAL’08 formulas can solve 668
problems within one hour of CPU time and it is competitive with, e.g., MINISAT
which can solve 787 of them, while STRUQS[BJ] and STRUQS[VE] top at 553 and
145 problems solved, respectively. Other improvements would be leveraging dif-
ferent structural features and approximations thereof, and/or integrating inductive
techniques to synthesize (sub)instance-based PREFERSEARCH policies.

13

References

[1] M. Benedetti. sKizzo: a Suite to Evaluate and Certify QBFs. In 20th Int.l.
Conf. on Automated Deduction, volume 3632 of LNCS, pages 369–376, 2005.

[2] A. Biere. Resolve and Expand. In 7th Intl. Conf. on Theory and Applications
of Satisfiability Testing, volume 3542 of LNCS, pages 59–70, 2004.

[3] H. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Treewidth. SIAM J. of Computation, 25(6):1305–1317, 1996.

[4] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quan-
tified boolean formulae. In 15th Nat.l Conf. on Artificial Intelligence, pages
262–267, 1998.

[5] H. Chen and V. Dalmau. From Pebble Games to Tractability: An Ambidex-
trous Consistency Algorithm for Quantified Constraint Satisfaction. In In
proc. of 19th Int.l workshop on Computer Science Logic, volume 3634 of
LNCS, pages 232–247, 2005.

[6] N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination. In 8th Intl. Conf. on Theory and Applications of Satisfi-
ability Testing, volume 3569 of LNCS, pages 61–75, 2005.

[7] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause-Term Resolution and
Learning in Quantified Boolean Logic Satisfiability. Artificial Intelligence
Research, 26:371–416, 2006.

[8] G. Gottlob, G. Greco, and F. Scarcello. The Complexity of Quantified Con-
straint Satisfaction Problems under Structural Restrictions. In 19th Int.l Joint
Conference on Artificial Intelligence, pages 150–155, 2005.

[9] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP
decomposition methods. Artificial Intelligence, 124:243–282, 2000.

[10] H. Kleine-Büning, M. Karpinski, and A. Flögel. Resolution for Quantified
Boolean Formulas. Information and Computation, 117(1):12–18, 1995.

[11] J. Larrosa and R. Dechter. Boosting Search with Variable Elimination in
Constraint Optimization and Constraint Satisfaction Problems. Constraints,
8(3):303–326, 2003.

[12] G. Pan and M. Vardi. Symbolic Decision Procedures for QBF. In 10th Int.l
Conf. on Principles and Practice of Constraint Programming, pages 453–
467, 2004.

[13] G. Pan and M. Vardi. Fixed-Parameter Hierarchies inside PSPACE. In 21st
IEEE Symposium on Logic in Computer Science, pages 27–36, 2006.

14

[14] C. Peschiera, L. Pulina, and A. Taccchella. Sixth QBF solvers evaluation
(QBFEVAL), 2008. http://www.qbfeval.org/2008.

[15] L. Pulina and A. Tacchella. Treewidth: a useful marker of empirical hard-
ness in quantified Boolean logic encodings. In 15th Int.l Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning, volume 5330 of LNCS,
2008.

[16] I. Rish and R. Dechter. Resolution versus search: Two strategies for sat.
Journal of Automated Reasoning, 24(1/2):225–275, 2000.

[17] H. Samulowitz and F. Bacchus. Binary Clause Reasoning in QBF. In In proc.
of Ninth Int.l Conference on Theory and Applications of Satisfiability Testing,
volume 4121 of LNCS, pages 353–367, 2006.

[18] Y. Yu and S. Malik. Verifying the Correctness of Quantified Boolean For-
mula(QBF) Solvers: Theory and Practice. In Conference on Asia South-
Pacific Design Automation, pages 1047–1051, 2005.

15

