

Closing the User-Centric Service Coordination Cycle

Hans Weigand1, Paul Johannesson2, Birger Andersson2, Maria Bergholtz2,

Jeewanie Jayasinghe Arachchige1

1 Tilburg University, P.O.Box 90153,

5000 LE Tilburg, The Netherlands

H.Weigand@uvt.nl, J.JayasingheArachchig@uvt.nl
2 Royal Institute of Technology

Department of Computer and Systems Sciences, Sweden

pajo,ba,maria@dsv.su.se

In the future vision of an Internet of Services, users take an active role in

service selection and composition. In this context, web services are mostly

interfaces to real services and can be classified as coordination services with

respect to the latter. To enable users to perform service composition, the effect

of the coordination services must be described in such a way that users are not

only able to discover services but also to detect and prevent possible conflicts in

their composition. To meet these requirements, a service description language

for coordination services is proposed based on the REA business ontology.

Keywords: Internet of Services, service design, REA , service description

1. Introduction

In spite of considerable progress that has been made in the area of Service Oriented

Computing, the impact on society has still been limited. There is not yet such a thing

as an Internet of Services that would allow users to integrate the services they want to

use easily and seamlessly. It has been acknowledged that users must play a more

active role in service composition, if only because of the long tail of specific and

heterogeneous services around [1] that simply cannot be handled all by the IT

departments. Enterprise mashups may provide an instrument to realize this service co-

creation effort of users and developers [7]. In this paradigm, software resources such

as (REST or SOAP) web services are embedded in widgets that provide simple user

interaction mechanisms to these resources; these (visual) widgets are combined by the

user himself to create mashups.

However, users are not interested in composing web services as such. To them,

these are merely interfaces to “real” services such as traveling, meeting support, child

care, entertainment or car maintenance. Users have a need to plan and coordinate the

services they use (cf. [2]).

Fig. 1 depicts the envisioned user-centric service coordination cycle: users

compose mashups and interact with the widgets in them to access web services. The

web service typically supports the coordination with a service provider who offers a

2 H. Weigand et al

real-world service as part of a service bundle. The service affects a resource that

concerns the user (the resource could be the user himself, for instance in the case of a

hotel reservation). That web services themselves may be composite software entities

is left out of this figure as being less relevant to the user, but is of course relevant to

the software developer.

Fig. 1 User-centric service coordination cycle

Both web services and services need a description, but what should be in this

description? In composing web services, a major challenge is to reconcile

incompatible data representations. In composing services in the real world, a major

challenge is to meet the constraints imposed by the fact that resources are scarce, can

only be in one place at a time and often cannot be shared. For that reason, [13] argues

convincingly that “asset-driven” service modeling will be a central concern in

developing an Internet of Services and claims that “novel methodologies and tools are

needed to support the modeling of the key assets of services”. In our view, this

modeling should support at least conflict prevention and conflict detection.

Let s be a service that a user U intends to consume and let M be the set of

resources and actors involved in the execution of s. Each m in M has a time-based

context A(E,C) where E is a set of events planned for m and C a set of constraints on

E. The goal of conflict prevention is to ensure that when s is added to the planning of

U, all context constraints are still met, for all m in M. Typical events that stem from

the planning of s are the start of the service execution and its ending. The goal of

conflict detection is to check context constraints when an event e is added. Typical

events are contingencies such as a flight being delayed. We can assume that in a

future Internet of Services and Internet of Things, most of these events are generated

without active user involvement. If s is a composite service, then the check should be

done on all the services involved individually and jointly.

In order to make conflict prevention and conflict detection possible at all, web

services must provide more information than input and output requirements such as

we find in a WSDL document. What we need is a generic language to describe

services, the resources they use as well as planned and actual events on the type level.

Closing the User-Centric Service Coordination Cycle 3

Web services can use this language to represent the preconditions and effects of the

real services they connect to as well as their own semantics. A mashup environment

can collect and combine this information, integrate it with other sources such as the

user’s agenda (that should be represented in the same format) in order to provide the

user with the conflict prevention and conflict detection functionality described above.

On the basis of the service description and after instantiating the formulae with actual

data, the user immediately knows the effect of a successful service invocation.

In this paper, we propose to ground the service description language in the REA

ontology [9] where we concentrate on coordination services as being of most interest

to the user. An advantage of REA is that it has a very small set of basic concepts, and

therefore is relatively easy to understand.

To arrive at rigorous and relevant research results, we use Peffers’ design science

phases [12]. The problem identification and motivation has been stated. Our solution

objective is to develop a coordination service description language based on REA

(without addressing a particular syntactic style, e.g. OCL or OWL). In section 2, we

work out how REA represents services and the coordination of services. On the basis

of that we show in section 3 how service descriptions can be developed that enable

the required conflict detection (design and development). This is applied to the well-

known hotel reservation case (demonstration).

2. Coordination Services in REA

2.1 REA and Capacity Planning

The Resource-Event-Agent (REA) ontology was first formulated in [9] and has been

developed further, e.g. in [14,4,8]. The following is a short overview of the core

concepts of the REA ontology based on [16].

A resource is any object that is under the control of an agent and regarded as

valuable by some agent. This includes goods and services. The value can be monetary

or of an intangible nature, such as status, health state, and security. Resources are

modified or exchanged in processes. A conversion process uses some input resources

to produce new or modify existing resources, like in manufacturing. An exchange

process occurs as two agents exchange (provide, receive) resources. To acquire a

resource an agent has to give up some other resource. An agent is an individual or

organization capable of having control over economic resources, and transferring or

receiving the control to or from other agents [5]. Agents participate in events from

inside (the primary perspective of the model) or outside.

The constituents of processes are called economic events. An economic event is

carried out by an agent and affects a resource. The notion of stockflow is used to

specify in what way an economic event affects a resource. REA identifies five

stockflows: produce, use, consume, give and take, where the first three occur in

conversion processes and the latter two in exchange processes. REA recognizes two

kinds of duality between events: conversion duality and exchange duality.

Events can be assigned to a location. Sometimes the acronym REAL is used for

REA plus location [11].

4 H. Weigand et al

Using the REA model, we can define the notions of capacity and availability. We

take the perspective of the resource manager a (e.g. hotel manager) who has received

or reserved certain resources from another agent x (e.g. hotel owner). He can commit

resources of a certain resource type to another agent x for a certain date. In that case,

there is a specify relationship between the reservation and the resource type. The

commitment/reservation has a cardinality indicating the number of resources

reserved. The actual allocation of resources (instances) to a certain reservation is

usually done later. If we assume the Capacity is stable over time, the following

definitions suffice:

Capacity(a,t) = card(R)

R= {r: resource | typify(r,t) (x:agent received(a,x,r)

 s:reservation (give(x,s) take(a,s) specify(s,t) reserve(s,r)) }

Reserved(a,t,d) = ∑ c: card(s,c), s RS(a,t,d) where

RS(a,t,d) = {s: reservation | x,a:agent give(a,s) take(x,s) specify(s,t)

 date(s,d) }

Available(a,t,d) = Capacity(a,t) - Reserved(a,t,d)

The capacity for a resource type t is what the agent has received or that is made

available to him (and that is of the resource type t. To calculate the availability at

some date/time d, we first sum up the commitments, and detract this number from the

capacity.

2.2 Coordination services

Coordination services are defined in [16] as services supporting an exchange process

(a set of events) for a good or a service. Processes like identification, negotiation,

order execution and after-sales take place in both cases. We introduce the notion of

coordination object for the object of these processes: what is negotiated and executed?

The central coordination object is the purchase order fulfilled by the exchange event,

but in complex processes there are many more. The following two reoccur quite often,

especially when services are concerned: appointment and reservation. The reason for

that is simply that the delivery of a service requiring resources from both the provider

and customer to be present at the same time and place requires more coordination

than the delivery of a good.

Using REA coordination objects can be specified in terms of commitments.

Therefore, another way of characterizing coordination services is to say that these

services manipulate commitments: their goal is to give, take and fulfill commitments.

We assume that for all coordination objects there is an agreement process first

followed by an execution and evaluation process, that is, the coordination process per

coordination object takes the form of a “Conversation for Action” [3,6]. The message

exchange in these conversations is not in the scope of this paper, but what is

important is the effect of these conversations, since that is directly relevant for a user

composing and using a certain mashup application.

In standard REA, a reservation is a relationship between a commitment and a

resource. In the following, we use the term “reservation” more specifically for a

commitment that precedes the purchase order, which obliges a provider not to sell a

Closing the User-Centric Service Coordination Cycle 5

resource to any other agent than the customer for whom the reservation is created.

From an economic point of view, the main objective of this kind of reservations is to

reduce uncertainty about the business transaction – to mitigate the risks involved,

such as items being out of stock or functionality not available, and to reduce the need

for slack [15]. So although the reservation has some costs in the form of less

operational discretion, it increases the total value for both customer and provider.

Fig. 2 REA Application Model for reservations

The REA application model in Fig. 2 contains and relates two coordination objects:

reservation and purchase order. The reservation is commitment that specifies a

resource type and there is a “reserve” relationship with resource, being all resources

involved in the fulfillment of the commitment and set apart for that purpose. Quite

often, the commitment specifies a resource type only and the allocation of the specific

resource is done later. According to REA, there is exchange reciprocity between

commitments. This reciprocity leads to dependencies between commitments that must

be managed properly by the coordination services. The contract can be explicit or

implicit. It may contain additional commitments, usually conditional ones (terms),

such as a penalty for non show-up. In line with [8] we distinguish between d-

commitments (decrement) and i-commitments (increment), for commitments by or to

the service provider, respectively. The fulfill relationship is one between commitment

and economic event. The fulfillment of the reservation is the accept-order event by

which the purchase order is created. The fulfillment of the purchase order is the

service exchange event. Since this could be seen as the ultimate objective of the

reservation as well, we define a fulfill* relationship being the transitive closure of

fulfill-relationships.

6 H. Weigand et al

3. Service Description and Conflict Detection

3.1 Service Description Using REA

Using the REA ontology, service descriptions can be developed for coordination

services either in the form of REA events REA relations. Table 1 specifies the basic

predicates.

Table 1. Basic REA predicates

RELATIONS EVENTS TERMS

At(Agent,Location) Commit(Id,Agent,Agent, e(Resource

Type,Time))

contract

Fulfil(Event,Commitment) Cancel(Id,Commitment) commitment

Clause(Commitment, Contract) Purchase(Id,Agent,Agent, Resource)

Available(Agent,

ResourceType,Time): Number

Pay(Id,Agent,Agent,Money)

Capacity(Agent , Resource
Type):Number

Move(Id,Agent,Location)

PlannedCapacity(Agent, Resource

Type, Time):Number

Move(Id,Agent,Resource, Location)

The relations and terms have a direct counterpart in REA or have been defined in

section 2. We use some shorthands for the events. Commit stands for create

commitment, Cancel for withdraw commitment. Purchase and Pay stand for the

standard exchange events. Move stands for the event of changing the location of the

agent or some resource. In both Commit and commitment we make use of an

embedded functor e(x,t) where e is an Event Type, x can be a any object (and there

may be more than one argument x) and t is a time reference. Expressions of this form

are called i-events and are used in the same way as actions in the situation calculus

[10], where they can be the object of a do-action.

Using these predicates, we define the following list of coordination services (table

2). Note that they are services in terms of [16]: their goal is an event that affects a

relevant resource. Being coordination services, they manipulate commitments. Table

2 presents the IOPEs (Input/Output/Precondition/Effect) for hotel services but in a

quite general way. As such it can be applied to a flight service or theater service as

well. However, the way the coordination services are bundled in web services may

differ. In the typical hotel case, the Create_Contract and Check_In are one

transaction: at the moment the customer shows up, according to his reservation, a

contract is set up and a specific resource is allocated. In the typical flight case, the

Create_Contract is performed long time before the Check_In.

3.2 Conflict Detection

As said in section 1, each resource or agent is assumed to have a time-based context

A(E,C) where E is a set of planned events and C a set of constraints on E. To support

Closing the User-Centric Service Coordination Cycle 7

conflict detection and conflict prevention, we should be able to check whether E

meets the constraints C.

 Let M be the set of resources relevant to U. To determine the contents of M, the set

Eu of committed events for U is calculated first as follows:

Eu = {e: event | c: commitment(c) fulfill*(e,c) participate(e,U))}

Then

 M = {m | e Eu: stockflow(e,m) participate(e,m)} (resources and agents

involved, as far as known)

 For some m M, the context Em contains the committed events that involve m. Note

that U M. However, not only the context of U, but the context of every m M should

not violate its constraints. The constraints in the context can be resource-specific, but

a very fundamental constraint is that there can be no “agenda conflict”:

Table 2. Generic coordination services

Coordination

Service

Input Output Precondition Effect (Goal)

Check_Availability ResrcType R

Time T

User U

Bool A A=

(Available(Self,R,T)>0)

Not a social fact

Create_Reservation Customer C
Time T

ResrcType R

Id Res Available(Self,R,T)>0
At(Self,L)

commit(i,Self,C, e(R,T)) and
i=Res and

commit(j,C,Self,

move(C,L,T.start))

Cancel_Reservation Customer C

Time T

ResrcType R
Id Res

- commitment(i, Self,C,

e(R,T)) and

i=Res and not
exist p: fulfill(p,i)

cancel(j,i) and forall j:

commitment(j,C,Self,

move(C,L,T.start)) implies
cancel(j)

Create_Contract Customer C

Time T

Id Res

Id PO

Amount

F

commitment(i,Self,C,

e(R,T)) and i=Res

commit(j,Self,C,e(Rs,T)) and

j=PO and typify(Rs,R)

and exist contract(CT)
and clause(PO,CT)

and clause(Inv,CT) and
commitment(Inv,C,Self,

pay(F,T2))

and fulfill(PO.Res)

Check_In Customer C
Time T

Id PO

Id Ri commitment(j,C, Self,
move(C,L,T.start) and j=

LRes

and at(C,L) and
commitment(i, Self,C,

e(Rs,T)) and i=PO

commit(i,Self,C,e(Ri,T)) and
realize(Rs,Ri) and

forall m: move(m,C,L)

implies fulfill(m,LRes)

Check_Out Customer C
Id Ri

Id S commitment(i,Self,C,
e(Rs,T)) and i=PO and

realize(Rs,Ri)

purchase(j,Self,C,Ri,T) and
i=S and

fulfill(S,PO)

Receive_Payment Customer C

Id PO

Id P exist contract (CT) and

clause(PO,C) and
clause(Inv,C) and

commitment(Inv,C,Self,

pay(F,T2))

pay(j, C,Self, F) and j=P and

fulfill(P,Inv)

Cancel_Contract Customer C

Time T

Resource Rs
Id PO

- commitment(i, Self,C,

e(Rs,T)) and

i=PO and exist
contract(C)

and clause(PO,C)

cancel(j,i) and forall j:

commitment(j,C,Self, Q,T’)

implies cancel(j)

8 H. Weigand et al

 e1, e2 Em e1.time e2.time =

Another general constraint is that the resource can be at only one place at a time, and

needs time for moving:

 e1, e2 Em : e1.time.end = e2.time.start e1.location = e2.location

 e1, e2 Em : next(e1, e2) e1.location <> e2.location

 (ei Em : e1< ei < e2 ei.type= «move» e1.object = m

 ei.destination = e2.location)

where next(e1, e2) means that e2 is the first event after e1.

To prevent conflicts when considering the use of a service s, the user first adds the

commitments produced by s to his context (using the coordination service effect

descriptions), and then executes the conflict detection process.

References

1. Anderson, C. The Long Tail: How endless choice is creating unlimited demand. Random

House Business Book, London (2006).

2. Benatallah, B., Casati, F., and Toumani, F. Web Service Conversation Modeling: A

Cornerstone for E-Business Automation. IEEE Internet Computing 8, 1(2004).

3. Dietz. J. Enterprise Ontology - Theory and Methodology. Springer, Berlin (2006).

4. Geerts, G., McCarthy, W.E. An Accounting Object Infrastructure For Knowledge-Based

Enterprise Models. IEEE Int. Systems & Their Applications, pp. 89-94, (1999).

5. Gailly, F., Laurier, W., Poels, G. Positioning and Formalizing the REA enterprise ontology.

Journal of Information Systems 22, 219-248 (2008).

6. Goldkuhl, G. Action and media in interorganizational interaction. Comm.. ACM 49, 5

pp.53-57 (2006).

7. Hoyer, V., Stanoevska-Slabeva, K. Towards a reference model for grassroots enterprise

mashup environments. Proc. ECIS 2009 (2009).

8. Hruby, P. Model-Driven Design of Software Applications with Business Patterns. Springer

Verlag (2006).

9. McCarthy W.E., The REA Accounting Model: A Generalized Framework for Accounting

Systems in a Shared Data Environment. The Accounting Review (1982).

10. McCarthy, J., Hayes, P.J. Some philosophical problems from the standpoint of artificial

intelligence. Machine Intelligence, 4:463–502 (1969).

11. O'Leary, D., REAL-D: A Schema for Data Warehouses, Journal of Information Systems,

Volume 13, Number 1, pp. 49-62 (1999).

12. Peffers, K., Tuunanen, T., Rothenberger, M., and Chatterjee, S. A Design Science Research

Methodology for Information Systems Research. Journal of Management Information

Systems, 24(3), 45-77 (2008)

13. Pistore, M., Traverso, P., Paolucci M., Wagner, M. From Software Services to a Future

Internet of Services. In: G. Tselentis et al (eds), Towards the Future Internet. IOS Press,

(2009).

14. UN/CEFACT Modelling Methodology (UMM) User Guide. Available at

 http://www.unece.org/cefact/umm/UMM_userguide_220606.pdf (2003)

15. Weigand, H., Heuvel, W.J.A.M. van den. A conceptual architecture for pragmatic web

services. In M. Schoop, A. de Moor, & J. Dietz (Eds.), Proc. 1st Int. Conf. on the Pragmatic

Web (pp. 53-66). Heidelberg: Springer-Verlag (2006).

16. Weigand H., Johannesson, P., Andersson, B., Bergholtz Value-based Service Modeling and

Design: Toward a Unified View of Services. Proc. CAiSE’09, Springer, pp.410-424 (2009).

