
Making Business Process Implementations
Flexible and Robust:

Error Handling in the AristaFlow BPM Suite

Andreas Lanz, Manfred Reichert, and Peter Dadam

Institute of Databases and Information Systems, University of Ulm, Germany

Abstract. Process-aware information systems will be not accepted by
users if rigidity or idleness due to failures comes with them. When imple-
menting business processes based on process management technology one
fundamental goal is to ensure robustness of the realized process-aware
information system. Meeting this goal becomes extremely complicated if
high flexibility demands need to be fulfilled. This software demonstra-
tion shows how the AristaFlow BPM Suite assists process participants
in coping with errors and exceptional situations. In particular, we focus
on new error handling procedures and capabilities using the flexibility
provided by ad-hoc changes not shown in other context so far.

1 Introduction

During the last decade we developed the ADEPT2 next generation process man-
agement technology [1]. Due to the high interest of companies, ADEPT2 has
since 2008 been transformed into an industrial-strength process management
system called AristaFlow BPM Suite [2]. One of our basic goals is to enable
robust and flexible process-aware information systems (PAIS) in the large scale.
In particular, we want to ensure error-safe and robust process execution even
at the presence of exceptions or dynamic process changes. In 2009, AristaFlow
BPM Suite was applied to a variety of challenging applications in domains like
healthcare, disaster management, logistics, and software engineering.

Our tool demo complements previous demos of ADEPT2 and focuses on a
fundamental pillar of robust process implementations: error handling. One im-
portant aspect in this context is error prevention. We achieve the latter by ap-
plying a “correctness by construction” principle during process composition and
by guaranteeing correctness and robustness in connection with dynamic process
changes. This was probably the most influential challenge for our research activ-
ities. It also had significant impact on the development of the AristaFlow BPM
Suite. In particular we try to detect as many potential errors as possible during
buildtime (e.g. incomplete data flow specifications or deadlocks) to prevent them
from happening during runtime. As we will show, however, errors cannot always
be prevented. Therefore another important aspect of PAIS robustness concerns
is exception handling. Our demo will show that the AristaFlow BPM Suite pro-
vides an easy but yet powerful way to handle exceptions during runtime. In



this context ad-hoc process changes are extremely helpful. By utilizing them it
becomes possible to even cope with severe process failures and to continue and
complete respective processes.

The paper is structured as follows: In Section 2 we introduce a simple ap-
plication scenario which we use as running example. Section 3 introduces the
AristaFlow BPM Suite. In Section 4 we demonstrate how AristaFlow copes with
errors that are encountered during process life and how to do this in a flexible
way. Section 5 discusses related work and Section 6 concludes with a summary
and outlook.

2 Application Scenario

We will use a simple example to demonstrate how errors can be handled in the
AristaFlow BPM Suite. Consider Fig. 1, which shows a simple process of an
online book store. In the first step a customer request is entered and required
data is collected. Next the bookseller requests pricing offers from his suppliers.
In this example he will request an offer from Amazon using a web service and
another offer from a second company using e-mail. After he has received the
pricing offers from both suppliers the bookseller checks whether he can find a
special offer for the requested books in the Internet. Finally he makes an offer
to his customer for the requested books.

Fig. 1. Scenario: A simple process calling a web service (in BPMN notation)

As we will show, this scenario contains several sources of potential errors.
Some of them can be detected and prevented at buildtime while others cannot.
Assume, for example, that the process implementer does not foresee a way to
enter the offer from SnailMailSeller into the system. In this case the final ac-
tivity might fail or produce an invalid output since its input parameters are not
provided as expected. Another source of errors might be the Amazon web ser-
vice; e.g. it might be not available when making the request and therefore the
Get Amazon offer activity might fail during runtime. Respective errors can be
foreseen and hence considered at buildtime. However non-expected errors might
occur as well; e.g., activity Check Special offers might fail due to troubles with
the user’s Internet connection.

In summary the following requirements for error-safe and robust process ex-
ecution exist: On the one hand errors should be avoided during buildtime, on
the other hand PAIS must enable users to effectively deal with expected and un-
expected errors during runtime. In the following we show how AristaFlow BPM
Suite meets these requirements.



3 AristaFlow BPM Suite

As aforementioned AristaFlow BPM Suite1 is based on the results of the ADEPT2
project. In this research project we targeted at a process management technol-
ogy which enables ease of use for process implementers, application developers
and end users. Furthermore, robustness of process implementations, and support
of dynamic process changes were fundamental project goals. To achieve this we
realized a “correctness by construction” principle and guarantee correctness in
the context of ad-hoc changes at the process instance level. Another important
aspect in the context of robustness is error handling. Any PAIS will not be ac-
cepted by users if rigidity comes with it or if its use in error situations is more
expensive than just handling the error by calling the right people by phone.
These challenges were probably the most influential one for the whole ADEPT2
project [1, 2].

4 Demonstration of the Application Scenario

In the following we consider the scenario from Section 2 from the perspectives of
the process implementer, the system, the end user, and the system supervisor.
We demonstrate how each of these parties can contribute to the handling of
errors.

Process implementer perspective: Fig. 2 shows a part of the process from
Fig. 1 as it can be modeled using the AristaFlow Process Template Editor. For
implementing workflows, we pursue the idea of process composition in a “plug
& play” style supported by correctness checks. The latter contributes to exclude
certain errors during process execution. As prerequisite, for example, implicit
data flow dependencies among application services have to be made explicit
to the process engine. AristaFlow provides an intuitive graphical editor and
composition tool to process implementers (cf. Fig. 2), and it applies a correctness
by construction principle by providing at any time only those operations to
the user which allow to transform a structurally sound process schema into
another one; i.e., change operations are enabled or disabled according to which
region in the process graph is marked for applying an operation. Deficiencies not
prohibited by this approach (e.g., concerning data flow) are checked on-the-fly
and are reported continuously in the problem window of the Process Template
Editor. An example can be seen in Fig. 2, where AristaFlow detects that data
element Customer price per unit is read by activity Write Customer offer but
not written by any preceding activity.

Generally, we should not require from process implementers that they have
detailed knowledge about the internals of the application functions they can as-
sign to process activities. However, this should not be achieved by undermining

1 The AristaFlow BPM Suite is provided free of charge to universities for research and
educational purposes. Please visit www.AristaFlow-Forum.de for more information
on this topic. For commercial usage please visit www.AristaFlow.com.



Problems View

Data element not supplied 
at read access

Fig. 2. AristaFlow Process Template Editor

the correctness by construction principle. In AristaFlow, all kinds of executables
that may be associated with process activities are first registered in the Activity
Repository as activity templates. An activity template provides all information to
the Process Template Editor; e.g., about mandatory and optional input/output
parameters or data dependencies to other activity templates. The process imple-
menter just drags and drops an activity template from the Activity Repository
Browser window of the Process Template Editor onto the desired location in the
process graph.

One major advantage of this approach is that common errors, e.g. missing
data bindings, can be completely prevented at buildtime. Therefore the time
needed for testing and debugging can be significantly reduced; i.e., AristaFlow
guarantees that process models without any detected deficiencies are sound and
complete with respect to the activity templates used.

System perspective: The approach described above ensures that in principle
the process model is executable by the system in an error-safe way. As always,
this might not hold in practice. Again, consider the scenario from Fig. 1: the
web service involved by activity Get Amazon offer might not be available when
the process is executed, leading to an exception during runtime. Such errors can
neither be detected in advance nor completely be prevented by the system.

Failures of the Amazon web service might be anticipated by the process
implementer. Thus he can assign specific error handling procedures to the re-
spective activity. Following the workflow paradigm, AristaFlow uses processes
to handle exceptions, i.e., AristaFlow provides a reflective approach in which
error handling is accomplished using a workflow being executed by AristaFlow.
A simple error handling process is shown in Fig. 3. Depending on whether or
not the failure of the process activity was triggered by the user (e.g. through
an abort button) either the system supervisor is notified about the failure or



the process silently terminates. Generally, error handling processes can be arbi-
trarily complex, long running processes. It is important to note that AristaFlow
treats error handling processes the same way as any other process. Thus they
can contain any activity available in the repository. Note that this enables error
handling of higher semantical level, involving users where required. If an activity
fails, the respective error handling process is initiated and provided with all the
data necessary to identify and handle the error, e.g. the ID of the failed activity
instance, the agents responsible for the activity and the process, the cause of the
error, etc. (cf. Fig. 3).

User assigned to
the selected activity

Input parameters of the 
process template

Properties of the
selected activity

Fig. 3. A simple error handling process

After an error handling process has been created and deployed to the AristaFlow
Server it can be assigned to an activity or process by simply selecting it from a
list of processes. Whether or not a process is suitable as error handling process
is decided based on its signature, i.e. the input and output parameters of the
process.

It is also possible to assign an error handling process to a complete process
instead of an activity. In this case this general error handling process will be
used if no other error handling process is associated with the failing activity. In
case there is no error handling process assign to either the activity or the process
a system default error handling process will be used.

One of the advantages of using processes for error handling is that standard
process modeling tools and techniques can be used for designing error handling
strategies as well. Therefore process implementers do not need to learn any new
concept to provide error handing. Another important advantage is that error
handling at a higher semantical level can be easily achieved. For example, it is
also possible to use more complex error handling strategies like compensation or
to apply ad-hoc changes to replace parts of the failed process.



End user perspective: In certain cases the simple error handling process from
Fig. 3 might be not appropriate since it increases the workload of the system
supervisor. Most standard errors can also be handled in a (semi-)automatic way
by the agent executing the activity. Upon failure of the respective activity the
agent responsible for executing this activity could be provided with a set of
possible error handling strategies he can choose from. An example for such more
complex error handling process is shown in Fig. 4. Here the user can choose
between a variety of ways to handle the respective error: retrying the failed
process step, aborting the whole process instance or applying predefined ad-hoc
changes to fix or compensate the error.

Fig. 4. A more complex error handling process involving the user

Additionally, suggested error handling strategies may depend on the back-
ground of the respective user, i.e. his knowledge and position in the organiza-
tional model and various other factors. Based on the selection of the user the
respective strategy is then applied to handle the error.

Such a semi-automatic, user-centered approach offers many advantages. Since
for each process activity a predefined set of possible strategies can be provided
to users, they do not need to have deep insights into the process to handle
errors appropriately. This allows to significantly reduce waiting times for failed
instances since users can handle errors immediately by their own and do not
have to wait for a probably busy helpdesk to handle errors for them. This in
turn allows to relieve the helpdesk from the tedious task of handling simple
process errors.

System supervisor perspective: Certain errors cannot be handled by the
user. For example they might not have been foreseen at buildtime, i.e., no ap-
propriate error handling process exists; or it might be simply not possible to
handle errors in an easy and generic way. In such cases the system supervisor
can use the AristaFlow Process Monitor shown in Fig. 5 to take a look at this
process instance, to analyze its execution log, and decide for an appropriate er-
ror handling. Additionally the system supervisor can use the AristaFlow Process
Monitor to keep track of failed instances; e.g., he may intervene if a web service
becomes unavailable permanently.

Consider again our bookseller example from Fig. 1. Assume that a process
instance wants to issue a request for a book using Amazon’s web service facilities,



Finding Instances 
with failed activities

Execution log

Fig. 5. Process Monitor: Monitoring Perspective

but then fails in doing so. The system administrator detects that the process
is in trouble and uses the AristaFlow Process Monitor to take a look at this
process instance (cf. Fig. 5). Analyzing the execution log of the failed activity
he detects that its execution failed because the connection to Amazon could not
be established. Let us assume that he considers this a temporary problem and
just resets the activity so that it can be repeated once again. Being a friendly
guy, he takes a short look at the process instance and its data dependencies,
and sees that the result of this and the subsequent activity is only needed when
executing the Choose offer activity. Therefore, he moves these two activities
after activity Check Special Offers; i.e., the user can continue to work on this
process instance before the PAIS tries to re-connect to Amazon (cf. Fig. 6).
To accomplish this change he would switch to the Instance Change Perspective
of the Process Monitor which provides the same set of change operations as the
Process Template Editor. In fact, it is the Process Template Editor, but it is aware
that a process instance has been loaded and, therefore, all instance-related state
information is taken additionally into account when enabling/disabling change
operations and applying correctness checks. The system administrator would
now move the two nodes to their new position by using the respective standard
change operation. The resulting process is depicted in Fig. 6. Assume now that
the web service problem lasts longer than expected and, therefore, the user wants
to call Amazon by phone to get the price that way. In this case he would ask
the system administrator to delete the activities in trouble and to replace them
with a form-based activity which allows to enter the price manually.



Move Nodes 
Change Operation

Fig. 6. Process Monitor: Instance Change Perspective

5 Related Work

Besides ADEPT, YAWL [3] has been one of the first workflows engines to sup-
port some sort of “correctness by construction” as well as correctness checks at
buildtime. jBPM [4] rudimentarily supports ad-hoc deviations of running process
instances, but without any correctness assurance as provided by the AristaFlow
BPM Suite. Most BPEL-based workflow engines like Websphere Process Server
[5] support error handling processes using fault handlers, but without the possi-
bility to structurally change process instances during runtime.

6 Summary and Outlook

Due to its “correctness by construction” principle and its comprehensive support
of ad-hoc changes during runtime, as well as the possibility to define arbitrary
error handling processes, AristaFlow is well suited to enable robust process im-
plementations while preserving the possibility to flexibly react to exceptional
situations during runtime. Currently, we investigate the handling of other kinds
of errors (e.g. time related errors).

References

1. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware informa-
tion systems. LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) 2 (2009) 115–135

2. Dadam, P., Reichert, M.: The ADEPT project: A decade of research and develop-
ment for robust and flexible process support - challenges and achievements. Com-
puter Science - Research and Development 22 (2009) 81–97

3. Russell, N., ter Hofstede, A.H.M.: Surmounting BPM challenges: the YAWL story.
Computer Science - R&D 23 (2009) 67–79

4. Koenig, J.: JBoss jBPM (whitepaper) (2004)
5. Kloppmann, M., Konig, D., Leymann, F., Pfau, G., Roller, D.: Business process

choreography in websphere: Combining the power of BPEL and J2EE. IBM Systems
Journal 43 (2004) 270–296


