
The NORMA Tool for ORM 2 

Matthew Curland1 and Terry Halpin2 

1LogicBlox, USA 
2LogicBlox, Australia and INTI Education Group, Malaysia 

e-mail: {matthew.curland, terry.halpin}@logicblox.com  

Abstract: Second generation Object-Role Modeling (ORM 2) is a prime exem-
plar of fact-orientation, an approach that models the underlying facts of interest 
in an attribute-free way, using natural sentences to identify objects and the roles 
they play in relationships. ORM 2 provides languages and procedures for mod-
eling and querying information systems at a conceptual level as well as map-
ping procedures for transforming between ORM structures and other structures, 
such as Entity Relationship (ER) models, class models in the Unified Modeling 
Language (UML), relational database models, extensible markup language 
schemas (XSD), and datalog. This paper provides an overview of Natural ORM 
Architect (NORMA), an ORM 2 tool under development that is implemented as 
a plug-in to Microsoft Visual Studio. For data modeling purposes, NORMA 
typically provides greater expressive power and semantic stability than pro-
vided by tools based on ER or UML. NORMA’s support for automated verbali-
zation and sample populations facilitates validation with subject matter experts, 
and its live error-checking provides efficient feedback to modelers. 

1 Introduction 

Fact-oriented modeling is a conceptual approach (including languages and proce-
dures) for modeling, transforming, and querying information, that specifies the fact 
structures of interest as well as the applicable business rules in terms of concepts that 
are intelligible to the business users. Unlike Entity-relationship modeling (ER) [4] and 
class diagramming in the Unified Modeling Language (UML) [17], fact-orientation 
makes no use of attributes as a way to encode facts, instead representing all ground 
assertions of interest as atomic (non-decomposable) facts that are either existential 
facts (e.g. There is a country named ‘Australia’) or elementary facts that predicate 
over first-order individuals (objects that are either entities or values).  

Elementary facts are expressed using mixfix predicates, and are instances of fact 
types. For example, the UML attributes Person.isSmoker and Person.birthdate are 
modeled instead as Person smokes (unary fact type) and Person was born on Date (binary 
fact type). Higher arity fact types are allowed, for example Person played Sport for Country 
(a ternary) and Product in Year in Region sold in Quantity (a quaternary). This attribute-free 
approach facilitates natural verbalization and population of models (important for va-
lidating models with nontechnical domain experts), and promotes semantic stability 
(e.g. one never needs to remodel an attribute and associated access paths if one later 
wants to talk about an attribute). 



Business rules are modeled as constraints or derivation rules that apply to the rele-
vant business domain. Alethic constraints restrict the possible states or state transi-
tions of fact populations (e.g. No Person is a parent of itself), while deontic constraints are 
obligations that restrict the permitted states or state transitions of fact populations 
(e.g. It is obligatory that each Doctor is licensed to practice). Derivation rules enable some 
facts or objects to be derived from others.  

Fact-oriented modeling approaches include Object-Role Modeling (ORM) [8], 
Cognition-enhanced Natural Information Analysis Method (CogNIAM) [15], the Pre-
dicator Set Model (PSM) [13], and Fully-Communication Oriented Information Mod-
eling (FCO-IM) [1]. The Semantics of Business Vocabulary and Business Rules 
(SBVR) initiative is fact-based in its use of attribute-free constructs [18]. For an over-
view of fact-oriented modeling approaches, including history and research directions, 
see [7].  

Since the 1970s, various tools have been developed to support fact-orientation. 
Early tools based on NIAM include IAST and RIDL* (based on the RIDL language 
[14]). CogNIAM is currently supported by Doctool. FCO-IM is supported by the Case 
Talk tool. Related ontology tools include DOGMA Studio and Collibra. ORM tools 
began with InfoDesigner, which later evolved into InfoModeler, VisioModeler, and 
the ORM Source Model solution in Microsoft Visio for Enterprise Architects. Acti-
veQuery [3] is an ORM conceptual query tool released as a companion to InfoMode-
ler.  

More recently, a number of tools have been developed based on second generation 
ORM (ORM 2) [6]. These include Natural ORM Architect (NORMA), ActiveFacts 
[12], and ORM-Lite. For data modeling purposes, the ORM 2 graphical notation is far 
more expressive than UML’s graphical notation for class diagrams, and is also much 
richer than industrial ER notations. A detailed summary of the ORM 2 graphical nota-
tion is accessible at http://www.orm.net/pdf/ORM2GraphicalNotation.pdf. A tho-
rough treatment of the theory and practice of ORM 2 may be found in [11].  

The rest of this paper provides an overview of the NORMA tool, and is structured 
as follows. Section 2 summarizes the main components of NORMA. Section 3 illu-
strates some important capabilities of NORMA. Section 4 provides details of the im-
plementation architecture. Section 5 summarizes the main contributions and outlines 
future research directions. 

2 Overview of NORMA 

NORMA is implemented as a plug-in to Microsoft Visual Studio. Most of NORMA is 
open-source, and a public domain version is freely downloadable [16]. A professional 
version of NORMA is also under development. Fig. 1 summarizes the main compo-
nents of the tool. Users may declare ORM object types and fact types textually using 
the Fact Editor, or drag new elements off the toolbox. New model components are 
added to the conceptual model and displayed with graphical shapes on one or more 
ORM diagrams The Model Browser tool window also provides a hierarchical view of 
all model components. Sample object and fact instances may be entered in tabular 
format in the Sample Population Editor. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Main components of NORMA 

 
Currently, ORM constraints must be entered in the ORM diagrammer or the Prop-

erties Window. These constraints are automatically verbalized in FORML (Formal 
ORM Language), a controlled natural language that is understandable even by non-
technical people. Our modeling team at Logicblox recently extended the Model 
Browser to enable derivation rules for both fact types and subtypes to be formally 
captured and stored in a rules component of the conceptual model based on the role 
calculus [5]. These derivation rules are also automatically verbalized.  

Using mappers, ORM schemas may be automatically transformed into various im-
plementation targets, including relational database schemas for popular database 
management systems (SQL Server, Oracle, DB2, MySQL, PostgreSQL), datalog, 
.NET languages (C#, VB, etc.), and XML schemas. A Relational View extension dis-
plays the relational schemas in diagram form. The semantics underlying relational 
columns can be exposed by selecting them and automatically verbalizing the ORM 
fact types from which they were generated. An import facility can import ORM mod-
els created in some other ORM tools, and can reverse engineer relational schemas in 
SQL Server into ORM schemas. Import from further sources is planned. 

Other components facilitate navigation and abstraction. For example, multiple con-
current windows viewing the same model allow shapes to be copied between dia-
grams, the ORM Diagram Spy and hyperlinks in the Verbalization Browser allow rap-
id navigation through a model, and the ORM Context Window automatically displays 
the global schema neighborhood of a selected ORM element. 

3 Examples of Some NORMA Features  

Feedback from industrial practitioners indicates that automated verbalization support 
is one of the most useful features of NORMA. Fig. 2 shows a screen shot from 
NORMA illustrating verbalization of a join subset constraint.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. NORMA screenshot showing verbalization of a join-subset constraint 

Here we have three binary fact types: Advisor serves in Country; Advisor speaks Language; 
Language is used by Country. Entity types are shown as named, soft rectangles with their 
reference mode in parenthesis. Logical predicates are depicted as a named sequence 
of role boxes connected to the object types whose instances play those roles. The bar 
over each predicate depicts a spanning uniqueness constraint, indicating that the fact 
types are m:n, and can be populated with sets of fact instances, but not bags.  

The circled “⊆”connected by dashed lines to role pairs depicts a subset constraint. 
When the constraint shape is selected, NORMA displays role numbers to highlight the 
role sequence arguments to the constraint. In this example, the set of advisor-country 
instances of the role-pair (1.1, 1.2) are constrained to be a subset of the set of advisor-
country instances populating the role-pair (2.1, 2.2) projected from the role path from 
Advisor through Language to Country. In passing through Language, a conceptual in-
ner join is performed on its entry and exit roles, so this is an example of a join-subset 
constraint. The meaning of the constraint is clarified by the verbalization shown at the 
bottom of Fig. 2. Because every aspect of an ORM model can be automatically verba-
lized in such a high level language, non-technical domain experts can easily validate 
the rules without even having to see or understand the diagram notation. 

A feature of NORMA that is especially useful to modelers is its live error checking 
capability. Modelers are notified immediately of errors that violate a metarule that has 
been implemented in the underlying ORM metamodel. Fig. 3 shows an example 
where the subset constraint is marked with red fill because it is inconsistent with other 
constraints present. In this case, the committee role of being chaired is declared to be 
mandatory (as shown by the solid dot on the role connection), while the committee 
role of including a member is declared to be optional. But the subset constraint im-
plies that if a committee has a chair then it must have that person as a member. So it is 
impossible for the two fact types to be populated in this situation. NORMA not only 
detects the error but suggests three possible ways to fix the problem.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  

Fig. 4 illustrates a very simple example of mapping from ORM to a relational 
schema as well as a datalog schema. For a detailed discussion of a much more com-
plex example, as well as comparisons with ER and UML, see [9]. 

 
 
 
 
 
             
 
 
 
     ⇩ 
 

Patient(x), patient:nr(x:y) -> uint[32](y). 
Gender(x), gender:code(x:y) -> string(y). 
Drug(x), drug:name(x:y) -> string(y). 
patient:smokes(x) -> Patient(x). 
patient:gender[x]=y -> Patient(x), Gender(y). 
patient:name[x]=y -> Patient(x), string(y). 
patient:drug:isAllergicTo(x,y) -> Patient(x), Drug(y). 
Patient(x) -> patient:gender[x]=_. 
Patient(x) -> patient:name[x]=_. 
gender:code(_:y) -> y="M"; y="F". 
 

Fig. 4. Simple example of mapping an ORM schema to a relational schema and datalog 



4 Implementation 

The NORMA designer is built primarily on the Domain Specific Language (DSL) 
Toolkit from the Visual Studio SDK, as well as general Visual Studio extension 
points. The implementation of NORMA adds multiple framework services to DSL to 
enable a highly modularized and extensible system. Extension points are available for 
file importers, additional DSL models and designers that interact with the core 
NORMA models, and extension points for artifact generation. All core NORMA 
components have exactly the same architecture as the extension models, except that 
the core models cannot be removed from the list of current extensions. 

DSL was chosen because it was a model-driven system, providing for a large 
percentage of the required code to be generated. The generated code defines a trans-
acted object model with standard notifications that enable responsive secondary mod-
el changes in response to atomic changes in the object model. A particularly impor-
tant feature of DSL is the built-in support for delete closures, which provide 
notifications for elements that are pending deletion but have not yet been detached 
from the model. Delete closures enable NORMA to minimize the parts of the model 
that require revalidation in response to a model change, which in turn enables ex-
tremely responsive incremental validation irrespective of model size. 
 The NORMA implementation relies on a number of enhancements to the DSL 
tooling and runtime components. Most extensions are necessary because many of the 
DSL supporting SDK components assume that the complete metamodel is known at 
all times, whereas NORMA makes the opposite assumption—the complete metamo-
del and associated rules are not known until a model file is opened and the set of ex-
tension models are read from the root XML element in the model file. Allowing mul-
tiple models also required significantly more flexibility for serialization of NORMA 
models than for a standard DSL model. The NORMA modeling framework includes 
multiple extensions to the DSL rules engine to enable compartmentalized model vali-
dation that minimizes incremental processing within a model and isolates dependent 
models from other models that they do not even know are loaded. 
 Extensions to NORMA can be classified in the following areas: 
 

1. Importers allow XML data sources with schemas not supported first-hand by 
the NORMA designers (including older NORMA file formats) to be trans-
formed automatically on load. Most importers are XSLT transformations, al-
though additional wizards can be registered with Visual Studio to first trans-
late a non-XML data source into XML suitable for import. 

2. Primary Domain Models (domain model is a DSL term for a metamodel) are 
extensions that provide model elements and validation rules for runtime ex-
ecution inside the designer. Extension models provide schematized XML 
components and a mapping from the in-memory model to the XML ele-
ments, load fixup mechanisms to reach an internally consistent state at load 
completion, and rules to maintain consistency after the model is loaded. Pro-
vided extensions in this category include the core ORM metamodel (Fact-
Type, ObjectType, etc) and the relational metamodel, which contains ele-
ments such as Table, Column, and ReferenceConstraint. 



3. Presentation Models have the same characteristics as primary domain mod-
els and are modeled similarly. However, presentation elements are treated as 
views on the underlying model, not the model itself. The ORM Diagram and 
Relational View, along with their contained shapes, are defined in presenta-
tion models. A single element from a primary domain model may be asso-
ciated with multiple presentation shapes. 

4. Bridge Models are also domain models with the special function of relating 
two primary domain models. Bridge models consist of relationships between 
two other models, plus generation settings that control the current relation-
ships between the models. Primary domain models are designed to be stan-
dalone so that transformations can be performed in either direction. This al-
lows, for example, an importer to be written for the XML schema of the 
relational model that is generated directly from a database and has no ORM 
information. Bridge models enable changes in one primary model to be ap-
plied to another loaded standalone model while maintaining the relationships 
between the source and target. 

5. Shell Components are views and editors targeting specific parts of an in-
memory ORM model, such as the Model Browser and Fact Editor tool win-
dows discussed earlier. 

6. Artifact Generators produce non-ORM outputs such as DDL, class models, 
and other implementations mapped from an ORM model. In general, artifact 
generators are much easier to create than DSL models because generators 
deal with a static artifact—namely a snapshot of the ORM model in XML 
form—and do not have to worry about the change management that is the 
bulk of the implementation cost for domain models. NORMA’s generation 
system supports a dependent hierarchy of generated files based on output 
format. A single generator can request inputs of both the standard ORM for-
mat (with required extensions specified by the generator) and any other for-
mats produced by other registered generators. 
    The hierarchical generation process allows analysis to be performed once 

during generation, and then reused for multiple other generators. NORMA 
provides XML schemas for all intermediate formats, allowing extension ge-
nerators to understand and leverage existing work. Some examples of inter-
mediate formats we use are DCIL (relational data constructs), DDIL (XML 
representation of data-definition constructs, created from the DCIL format), 
and PLiX (an XML representation of object-oriented and procedural code 
constructs). These intermediate XML formats are transformed into target-
specific text artifacts. DDIL is directly transformed to either SQL Server or 
Oracle specific DDL formulations, and PLiX generates C#, VB, PHP, and 
other languages—all without changing the intermediate file formats. 
    Another advantage of the use of well-defined intermediate structures is 

the ability to modify these structures during artifact generation. For example, 
attempting to decorate an ORM model with auditing constructs is extremely 
invasive at the conceptual model level. However, adding auditing columns to 
each table is a simple transform from DCIL to DCIL with additional col-
umns for each table, with the modified file continuing in the generation pipe-
line. 



5 Conclusion 

This paper provided a brief overview of the NORMA tool and its support for ORM 2. 
Major recent work not reported on here because of space restrictions includes deep 
support for entry of formal derivation rules and their automated verbalization, as well 
as a prototype implementation of FORML 2 as an input language. Details on the latter 
may be found in [10]. Research is also under way to extend NORMA with support for 
dynamic rules [2]. 

 
References 
 
1. Bakema, G., Zwart, J., & van der Lek, H. 2000, Fully Communication Oriented Informa-

tion Modelling. Ten Hagen Stam. 
2. Balsters, H. & Halpin, T. 2008, ‘Formal Semantics of Dynamic Rules in ORM’, On the 

Move to Meaningful Internet Systems 2008: OTM 2008 Workshops, eds. R. Meersman, Z. 
Tari, P. Herrero et al., Monterrey, Mexico, Springer LNCS 5333, pp. 699-708. 

3. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc. ER’97: 16th 
Int. Conf. on conceptual modeling, Springer LNCS, no. 1331, pp. 113-126. 

4. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM 
Transactions on Database Systems, 1(1), pp. 9−36. 

5. Curland, M., Halpin, T. & Stirewalt, K. 2009, ‘A Role Calculus for ORM’, On the Move 
to Meaningful Internet Systems 2008: OTM 2009 Workshops, eds. R. Meersman, P. Herre-
ro et al., Vilamoura, Portugal, Springer LNCS 5872, pp. 692-703. 

6. Halpin, T. 2005, ‘ORM 2’, On the Move to Meaningful Internet Systems 2005: OTM 2005 
Workshops, eds R. Meersman, Z. Tari, et al., Cyprus. Springer LNCS 3762, pp 676-87. 

7. Halpin, T. 2007, ‘Fact-Oriented Modeling: Past, Present and Future’, Conceptual Model-
ling in Information Systems Engineering, eds. J. Krogstie, A. Opdahl & S. Brinkkemper, 
Springer, Berlin, pp. 19-38. 

8. Halpin, T. 2009, ‘Object-Role Modeling’, Encyclopedia of Database Systems, ed. L, Liu 
& M. Tamer Ozsu, Springer-Verlag, Berlin. 

9. Halpin, T. 2010, ‘Object-Role Modeling: Principles and Benefits’, International Journal 
of Information Systems Modeling and Design, Vol. 1, No. 1, IGI Global, pp. 32-54. 

10. Halpin, T. & Wijbenga, J. P. 2010, ‘FORML 2’, Enterprise, Business-Process and Infor-
mation Systems Modeling, eds. I. Bider et al., Springer LNBIP 50, pp. 247–260. 

11. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second 
Edition, Morgan Kaufmann, San Francisco. 

12. Heath, C. 2009. ActiveFacts Website: http://dataconstellation.com/ActiveFacts/.  
13. ter Hofstede, A., Proper, H. & van der Weide, T. 1993, ‘Formal definition of a conceptual 

language for the description and manipulation of information models’, Information Sys-
tems, vol. 18, no. 7, pp. 489-523. 

14. Meersman, R. 1982, The RIDL Conceptual Language, Int. Centre for Information Analy-
sis Services, Control Data Belgium, Brussels. 

15. Nijssen, M., & Lemmens, I. 2008, ‘Verbalization for Business rules and Two Flavors of 
Verbalization for Fact Examples’, On the Move to Meaningful Internet Systems 2008: 
OTM 2008 Workshops, eds. R. Meersman, Z. Tari, P. Herrero et al., Springer LNCS 5333, 
pp. 760-769. 

16. NORMA (Natural ORM Architect) tool download site for public-domain version: 
http://www.ormfoundation.org/files/folders/norma_the_software/default.aspx. 

17. Object Management Group 2009, UML 2.2 Specifications. Online at: www.omg.org/uml. 
18. Object Management Group 2008, Semantics of Business Vocabulary and Business Rules 

(SBVR). Online at: http://www.omg.org/spec/SBVR/1.0/. 


