
Reverse Engineering User-Drawn Form-Based
Interfaces for Interactive Database Conceptual

Analysis

Ravi Ramdoyal

Laboratory of Database Application Engineering - PReCISE Research Center
Faculty of Computer Science, University of Namur, Belgium

rra@info.fundp.ac.be

Abstract. In this paper, we address the problem of eliciting, communi-
cating and validating the static data requirements of a software engineer-
ing project, while improving the end-user involvement. For this purpose,
given an environment for which electronic forms are a privileged way to
exchange information and stakeholders familiar with form-based (com-
puter) interaction, we propose to use form-based user-drawn interfaces
as a two-way channel to interactively capture and validate static data
requirements with end-users, by specializing and integrating standard
techniques to help acquire data specifications from existing artifacts.
Since the main principles of our approach are already presented in [1],
we here focus on discussing two fundamental aspects of this research,
namely the means to make end-users major stakeholders in the data re-
quirements process, and the challenges facing the validation of such a
transversal research.

Keywords: Information systems engineering, Requirements engineering, Data-
base engineering, Human-computer interfaces reverse engineering.

1 Introduction

Requirements engineering is a key step in the realm of Software engineering, since
its lays the ground work for further analysis, design and development. Within
this process, Database engineering focuses on data modeling, where the static
data requirements are typically expressed by means of a conceptual schema,
which is an abstract view of the static objects of the application domain. Since
long, conceptual schemas have proved to be difficult to validate by laymen, while
traditional database requirements elicitation techniques, such as the analysis of
corporate documents and interviews of stakeholders, usually do not actively and
interactively involve end-users in the overall specification and development of
the database. Still, the necessity to associate end-users of the future system
with its specification and development steps has long been advocated [2]. In
particular, the process of eliciting static data requirements should make end-
users feel more involved and give them intuitive and expressive means to convey



their requirements to the analysts. Conversely, analysts should also be able to
capture and validate these requirements by discussing them with the end-users.

In order to facilitate this communication, we present the tool-supported
RAINBOW approach, which relies on reverse engineering user-drawn form-based
interfaces to perform an interactive database conceptual analysis. This approach
to elicit and validate database requirements is based on end-users involvement
through interactive prototyping, and the adaptation of techniques coming from
various fields of study. Since more details on our approach can be found in [1], the
remainder of the paper is structured as follows. Section 2 briefly delineates the
research context and related works. The main principles of our proposal are ex-
posed in Section 3. In Section 4, we elaborate on the implications of an improved
end-user involvement and the challenges facing the validation of our research.
Finally, in Section 5, we discuss the merits and limitations of our proposal and
anticipate future work.

2 Research Context

In our research, we focus on database conceptual modeling, through which user
requirements are translated into a conceptual schema representing the appli-
cation domain. The Entity-Relationship (ER) model has long been the most
popular medium to express conceptual requirements [3], but this formalism of-
ten fails to act as an effective end-users communication medium because of its
intrinsic complexity. Still, most users are quite able to deal with complex data
structures that are expressed through more natural and intuitive layouts such
as electronic forms [4].

This strong link existing between graphical interfaces and data models is usu-
ally exploited in forward engineering, by straightforwardly producing artifacts
such as form-based interfaces from a conceptual schema, using transformational
and generative techniques [5]. In particular, prototyping [6] often acts as a basis
for interviews or group elicitation to provide early feedback. Conversely, a form
contains data structures that can be seen as a particular view of a conceptual
schema, which implies that Database reverse engineering [7] techniques can be
applied to such interfaces to recover fragments of the conceptual schema.

Deriving requirements from prototype artifacts has a long tradition, but the
number of studies on the subject is limited (especially recently) and several lim-
itations must be underlined in most of them [1]. First of all, older studies do not
intimately involve end-users in the database design process. More generally, the
tools provided for the drawing of the interfaces are not dedicated to this purpose
and/or not convenient for end-users. Secondly, the underlying form model of the
interfaces must often be constructed by analyzing the layout of the form be-
fore its content. This is strongly related to the fact that the existing approaches
also aim to create the final form-based interfaces of the future application. Re-
garding the coherence of these interfaces, it is assumed that the labels are used
consistently through out the different forms, and little care is given to possible
lexical variation (paronymy, feminine, plural, spelling, mistakes, etc.) and on-



tological ambiguity (polysemy, homography, synonymy). The use of examples
(either through static statements or dynamic interaction) is not systematically
used to elicit constraints and dependencies. And last but not least, these ap-
proaches do not use the form-based interfaces as a means for the analysts to
validate the underlying integrated data model.

3 Proposal

Within the requirements engineering phase of a software engineering project,
our research therefore addresses the combination of reverse engineering tech-
niques with user-based prototyping in order to interactively involve end-users
in the conceptual modeling of the application domain. More precisely, given an
environment for which electronic forms are a privileged way to exchange infor-
mation and stakeholders are familiar with form-based (computer) interaction,
we propose to use form-based user-drawn interfaces as a two-way channel to
interactively capture and validate static data requirements with end-users, in
order to alleviate understandability limitations of the ER model.

To succeed, we need to overcome several challenges inherent to the involved
fields and their combination. Regarding Database engineering, we notably need
to clarify the terminology, elicit constraints and dependencies, handle schema
integration and generate applicative components. Regarding Database reverse
engineering, we must handle the extraction of data models from the form-based
interfaces, and since we want to make the Prototyping interactive, we need to
enable the expression of concepts through form-based interfaces and the test-
ing of generated components. Finally, integrating these fields into an approach
involving end-users implies managing this user implication and tailoring the
techniques.

To handle these challenges and answer the concerns raised in Section 2, our
RAINBOW approach is formalized into seven steps involving end-users in a sim-
ple and interactive fashion, using interfaces as a specification language rather
than legacy artifacts (as in traditional Reverse engineering), and providing the
analysts with semi-automatic tools. Let us give an overview of these steps, for
which more details can be found in [1]: (1) Represent : After preliminary dis-
cussions and appropriate training, the end-users are invited to draw a set of
form-based interfaces to perform usual tasks of their application domain. Such
interfaces are typically entry forms to capture data on, say, a new customer or
a new product. A dedicated drawing tool intentionally provides them with a
constrained layout mechanism and a limited set of primitive widgets (namely
interfaces, group boxes, tables, input fields, selection fields and action buttons).
(2) Adapt : Once the interfaces are drawn, mapping rules are automatically ap-
plied to extract the underlying data models of the interfaces. (3) Investigate:
The end-users and the analyst then jointly cross-analyze the interfaces to arbi-
trate the possible labeling ambiguities (lexically or ontologically similar labels)
and structural similarities (containers owning widgets with the same labels) that
are automatically identified in the interfaces and their underlying data models.



(4) Nurture: Using the forms they drew, the end-users then provide a set of
positive and negative data samples, from which induction techniques allow to
suggest possible constraints and dependencies that also need to be arbitrated. (5)
Bind : The validated redundancies, constraints and dependencies are processed
to perform an interactive integration of the key concepts elicited through the
previous steps, hence leading to an integrated conceptual schema. (6) Objectify :
A lightweight prototype application is generated from the integrated conceptual
schema. It comprises a simple data manager that uses the interfaces drawn by the
end-users and allows them to manipulate the concepts that have been expressed,
typically to inspect, create, modify and remove data. (7) Wander : Finally, the
end-users are invited to “play” with the prototype in order to ultimately validate
the requirements, or identify remaining flaws.

In our doctoral research, we mainly focus on the five first steps, since the gen-
eration of the components is straightforward and the manipulation of a reactive
prototype mainly adds another level of validation.

4 Discussion

In this section, we discuss the design and validation of our approach. More
specifically, we ponder how the research context and the need for interactivity
influenced the design of our approach, especially the tailoring or existing tech-
niques, and we envision the obstacles threatening its assessment.

4.1 How to make end-users major stakeholders of the data
requirements process?

The RAINBOW approach relies on the principles of the ReQuest framework [8,
9], which provides a complete methodology and a set of tools to deal with the
analysis, development and maintenance of web applications. ReQuest deals with
data modeling and the dynamic aspects of the future application, and proved
that it is possible to efficiently and swiftly involve end-users in the definition
of their needs. However, most laymen end-users were challenged by the task of
designing dynamic and rich front-end interfaces supporting the business logic
of their future application. Here, we therefore decided to focus specifically on
improving the static data requirements process, leading the interfaces to appear
as a means rather than an end product.

In particular, we wanted form-based interfaces to serve as a basis for discus-
sion and joint development, and developed a tool to support this approach. To
make the development of the interfaces more accessible and focus the drawing
on the substance rather than (ironically) the form, we restricted the available
graphical elements to the most commonly used ones and limited the layout of
forms as a vertical sequence of elements [1], which also simplifies the mapping
rules between the form model and the ER model. During the drawing, end-users
must at least provide the label and cardinality of these elements, while advanced
users may also provide integrity and existence constraints (which are normally



addressed during the following steps). The interfaces being drawn by non ex-
perts and possibly multiple end-users increases the possibility of inconsistencies
among the labels used. In order to standardize the vocabulary from the start,
we include a term analyzer that suggests alternative labels on-the-fly for new
elements, using String Metrics [10] and the lexical reference system WordNet
[11]. The same term analyzer is used during the Investigate phase to clarify any
remaining ambiguity.

We mentioned in [1] the structural redundancy issue that we deal with dur-
ing that same phase, and how our context led us to prefer a simple comparison
algorithm to existing frequent embedded subtrees mining algorithms for rooted
unordered trees. This case is very representative of the choices we made during
the design of our approach. Take for instance the Nurture phase, during which we
need to elicit integrity constraints (identifiers, cardinalities, value types and sizes,
domain values, ...), existence constraints among optional fields (coexistence, at
least one, exactly one, at most one, ...), and functional dependencies (when the
values of certain fields may determine the values of other fields). Such constraints
and dependencies can be discovered by analyzing existing data samples. Several
techniques deal with this issue (candidate generate-and-test, minimal cover, ...),
but they rely on large preexisting data sets. In our case, there is possibly no avail-
able data sample or the re-encoding would be too expensive, and it is anyways
unrealistic to ask end-users to willingly provide numerous data samples.

These observations naturally called for new ways to discover and suggest
constraints and dependencies on-the-fly, based on the incremental input of data
samples by the end-users. Regarding the constraints, inductions can be made on
these data samples to make suggestions on the value types (if all the instances of
a given field are filled with numbers, this could suggest that the field is numeric
or textual), the cardinalities (if all the instances of a given optional field are not
empty, this could suggest that the field is actually mandatory), the existence
constraints (when two optional fields are always filled at the same time, they
could be coexistent), and so on...

As for functional dependencies (FDs), the ideal process should lead us to
build a set of data samples and dependencies so that each entity type of the
underlying conceptual schema becomes an Armstrong relation (i.e. a relation
that satisfies each FD implied by a given set of FDs, but no FD that is not
implied by that set). Reaching such a state is obviously not trivial, but we
can try to near it progressively narrowing the FDs. We start by calculating the
“strongest” valid candidates FDs for each entity type (i.e. each mandatory simple
attribute of an entity type may determine the others), and maintain them until
a data sample proves them wrong. Whenever a new data sample jeopardizes a
functional dependency, the FD is discarded and valid alternative “lesser” FDs are
recursively generated. To add interactivity, end-users can enforce or discard FDs
by adding valid data samples for the entity type, arbitrating problematic data
samples for a given FD (automatically generated from previously provided valid
data samples), or even by directly enforcing or discarding FDs. This process
should be repeated until there are only discarded and/or enforced FDs left for



each entity type. Possible identifiers should also be validated, knowing that an
enforced FD f : X → Y may induce a identifier for the entity type E iff X∪Y =
Attributes(E).

We consequently developed the RAINBOW tool kit, which is a user-oriented
development environment, intended to assist end-users and analysts during the
five first steps of our approach. The tool kit interacts with the repository of
DB-Main, a database engineering CASE tool [12] providing all the necessary
functionalities to support a complete database design process, as well as trans-
formation tools and Database reverse engineering support. The interaction be-
tween these tools allows one to cover the whole database engineering process
from both the end-user and the analyst perspectives.

4.2 How to validate the RAINBOW approach?

One of the most critical aspect of this research concerns its validation. The
transversal nature of our approach, as well as the interdependence between the
methodology and the tool support, naturally lead to the following research ques-
tions: (1) Does the RAINBOW approach and tool support help end-users and
analysts to communicate (i.e. express, capture, validate) static data requirements
to each other? (2) What is the quality of the conceptual schema produced using
the RAINBOW approach?

The first question raises methodological (strategic design decisions), practical
(potency and usability of the tool-support, added value for stakeholders) and so-
ciological (end-user/analyst communication, empowerment, objectivity) issues,
while the second question addresses the intrinsically complex predicament of
quality assessment. Such problems are not easy to experiment, measure and val-
idate, especially given the inherent difficulty of evaluating methodologies for the
development of large systems : valuable learnings would require comparing our
approach to existing ones, based on multiple experimentations led on numerous
and different case studies over an extensive time span, which is not feasible at
our level.

However, one of the contributions of our research is instead to define an ex-
perimentation canvas, based on preliminary studies that could in turn lead to a
more realistic experimentation endeavor. The main idea to achieve this objective
is to observe real-life implementations of our approach (using the Participant-
Observer principles), then analyze the resulting conceptual schemas (using the
Brainstorming/Focus group principles). Two independent studies have therefore
been led, based on real-life issues concerning the two carefully chosen end-user
participants EU1 and EU2. For each preliminary study, a pair of observers (in-
cluding a main observer MO and a different assistant observer in each case)
have therefore observed the interaction of one of the end-users with an analyst
DB1 (the same in each case), jointly designing the conceptual schema of their
dedicated project using the RAINBOW methodology and tool kit. Then, each re-
sulting conceptual schema was discussed by three database analysts (DB1, DB2
and MO) to determine their qualities and flaws, as well as the delta between the
“automatically” produced schemas and their “corrected” version.



Before starting the observation, EU1, EU2 and DB1 received a short training
on the tool support and methodology based on screencast tutorials, and a session
of questions/answers. The process was organized in four sequential sessions, each
focusing on a peculiar aspect of the RAINBOW approach:

1. Drawing the forms (Represent): first of all, the end-users drew and edited
the forms necessary to accomplish the tasks of their application project with
the help of the analyst. They were asked to focus on the terminology and
data aspect of this application, that is, the consistency of the labels and the
specification of the widgets they needed, typically to input data.

2. Analyzing the terminology of the forms (Investigate): (1) the end-user and
the analyst first analyzed the terminology of all the form elements to clarify
any remaining ambiguities; (2) then, they analyzed the terminology of the
containers to explain the relations existing between them. Whenever neces-
sary, the pair went back and edited their forms.

3. Providing examples and constraints (Nurture): for each form, the pair first
provided data samples then examined the technical constraints, the existence
constraints, the functional dependencies and the possible identifiers associ-
ated with the form and its elements. Whenever necessary, the pair went back
and replayed the previous steps.

4. Finalizing the project (Bind): from the previous steps, a set of “high level”
concepts were materialized. For each of these concepts, the pair arbitrated
the properties that were to be associated with the concept, then examined
the associated technical constrains, the existence constraints, the functional
dependencies and the possible identifiers. Whenever necessary, the pair went
back and replayed the previous steps.

The observations and results of these preliminary studies must still be ana-
lyzed in depth, however they already raised several open questions, for instance
regarding the drawing phase. During that step, the end-users naturally gave
the commands to the analyst and were initially reluctant to manipulate the
RAINBOW tool kit. On the other hand, the analyst did not feel very helpful
or required for the process when he was not in charge of the drawing, though
the end-users felt their presence reassuring. Who should therefore be drawing
and who should be assisting? Is the drawing really a job for the end-user? What
about the analyst’s involvement and gratification?

We wanted to lead the end-user to focus on the content of the forms rather
than their appearance, and subsequently chose an adaptative rendering for the
widgets. For instance, selection widgets automatically switches from radio but-
tons to checkboxes or a selectable list according to the number of options and
the cardinality of the field. However, this behavior surprised the end-users, and
more generally they would have enjoyed at least a minimum of customization
for the rendering of the widgets. Though the forms could be rendered afterwards
in more stylish fashions (e.g. with HTML and CSS), could aesthetical consider-
ations lead to a “bad” modeling, just because the end-users want the forms to
be prettier? Can the analyst convince them that “it is ok even if it is ugly”, and
can the end-users really agree on that?



Likewise, the available widgets are restricted to forms, fieldsets, tables, in-
puts, selections and action buttons. For the two studies, these widgets seemed
sufficient, although the composition sometimes called for creativity. We also
observed that the end-users often drew single forms to collect multiple informa-
tions instead of drawing smaller, simpler forms (i.e. breaking the problems into
smaller sub problems). Do the available widgets hence lead to the drawing of
single oversized forms?

As previously mentioned, widgets have a cardinality specifying how many
values could and should at least and at most be provided. We observed that
the end-users often specified widgets as “mandatory”, even if they sometimes
acknowledged that it would not really be problematic if the given fields were not
filled. Could the end-users therefore abusively use this type of cardinality while
it is not really necessary? Do they understand the difference between a paper
form, which can be submitted even if it is incorrect, and an electronic form which
offers immediate acceptance or rejection?

As we can see, the drawing behavior of the end-users would make for an
interesting research topic by itself, and so would the response of analysts to
such an approach. These preliminary studies therefore highlight several sensible
phenomenons that would require special attention on a larger scale experimen-
tation. Besides, it would also be interesting to study the evolution aspects of our
approach. While we already consider the possibility to “loop” during the steps
of our approach as long as we are in the conceptual design, what would be the
situation if we needed to edit a working database produced using our approach?

5 Conclusion

This paper presented a comprehensive interactive approach to bridge the gap be-
tween end-users and analysts during the conceptual modeling phase of database
engineering. This approach supports the elicitation and validation of static data
requirements with end-users, while overcoming several limitations of existing
prototyping methods. It relies on the expressiveness and understandability of
form-based user interfaces, used jointly with tailored Reverse engineering tech-
niques to acquire data specifications from existing artifacts. Although our ap-
proach addresses a significant subset of these requirements, it does not cover all
of its aspects, and therefore does not replace more traditional task and informa-
tion analysis approaches, but rather complements them.

To get a better perspective on this research, we also discussed how the re-
search context and the need for user involvement and interactivity influenced the
design of our approach, especially the tailoring and combination of the existing
techniques, as well as the inclusion of supportive tools.

Finally, we addressed the intrinsic difficulty to validate our transversal ap-
proach, while exposing a series of open questions raised by our ongoing prelim-
inary studies. From the observations of these real-life implementations of our
approach, we will define a set of guidelines for an experimentation canvas that
could set the basis for a wider evaluation and an improved use of this approach.



Acknowledgments This doctoral research is being led under the supervision
of Pr. Jean-Luc Hainaut, Laboratory of Database Application Engineering -
PReCISE Research Center, Faculty of Computer Science, University of Namur,
Belgium.

References

1. Ramdoyal, R., Cleve, A., Hainaut, J.L.: Reverse engineering user interfaces for
interactive database conceptual analysis. In: Proc. CAISE’10 (to appear). (2010)

2. Rosson, M.B., Carroll, J.M.: Usability Engineering: Scenario-Based Development
of Human-Computer Interaction. Morgan Kaufmann (October 2001)

3. Shoval, P., Shiran, S.: Entity-relationship and object-oriented data modeling-an
experimental comparison of design quality. Data Knowl. Eng. 21(3) (1997) 297–315

4. Terwilliger, J.F., Delcambre, L.M.L., Logan, J.: The user interface is the conceptual
model. In: Proc. ER’06. Volume 4215 of LNCS., Springer (2006) 424–436

5. Hainaut, J.L.: The transformational approach to database engineering. In Lämmel,
R., Saraiva, J., Visser, J., eds.: Generative and Transformational Techniques in
Software Engineering. Volume 4143 of LNCS., Springer (2006) 95–143

6. Davis, A.M.: Operational prototyping: A new development approach. IEEE Softw.
9(5) (1992) 70–78

7. Hall, P.A.V.: Software Reuse and Reverse Engineering in Practice. Chapman &
Hall, Ltd. (1992)

8. Brogneaux, A.F., Ramdoyal, R., Vilz, J., Hainaut, J.L.: Deriving user-requirements
from human-computer interfaces. In: Proc. IASTED’05. (2005) 77–82

9. Vilz, J., Brogneaux, A.F., Ramdoyal, R., Englebert, V., Hainaut, J.L.: Data con-
ceptualisation for web-based data-centred application design. In: Proc. CAISE’06.
LNCS, Springer (2006) 205–219

10. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proc. IJCAI IIWeb Workshop. (2003) 73–78

11. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
12. DB-Main: The official website http://www.db-main.be.


