
Vol-596
urn:nbn:de:0074-596-3

Copyright © 2010 for the individual
papers by the papers' authors.
Copying permitted only for private and
academic purposes. This volume is
published and copyrighted by its
editors.

ORES-2010
Ontology Repositories and Editors for
the Semantic Web

Proceedings of the 1st Workshop on Ontology Repositories and

Editors for the Semantic Web

Hersonissos, Crete, Greece, May 31st, 2010.

Edited by

Mathieu d'Aquin, The Open University, UK

Alexander García Castro, Universität Bremen, Germany

Christoph Lange, Jacobs University Bremen, Germany

Kim Viljanen, Aalto University, Helsinki, Finland

10-Jun-2010: submitted by Christoph Lange

11-Jun-2010: published on CEUR-WS.org

CONSISTOLOGY: A SEMANTIC TOOL TO

SUPPORT ONTOLOGY EVOLUTION AND

CONSISTENCY

Najla SASSI, Miracl Laboratory, sassinajla@yahoo.fr

Wassim JAZIRI, Miracl Laboratory,, wassim.jaziri@isimsf.rnu.tn

Faiez GARGOURI, Miracl Laboratory, faiez.gargouri@isimsf.rnu.tn

Abstract

Ontologies recently have become a topic of interest in computer science since they are seen

as a semantic support to explicit and enrich data-models as well as to ensure interoperability of

data. Moreover, supporting ontology’s evolution becomes essential and extremely important,

mainly when using ontologies in changing environments. An important aspect in the evolution

process is to guarantee the consistency of the ontology when changes occur, considering the

changes semantics. This paper proposes the Consistology tool developed to assist users in

expressing evolution requirements and generating coherent ontology versions. This tool, based

on coherent kits of change, has been experimented to evolve an ontology of education.

Key Words: Consistology, Semantic tool, Evolution kits, Ontology, Consistency.

1. Introduction

Changing environments require ontologies adaptable to changes that occur over time.

The adaption of an ontology is a complex process and several evolution problems

must be treated, in particular maintaining the ontology consistency after changing.

The application of a change on ontological entities is a modification of a subset of

knowledge represented in the ontology. Change management requires defining

mechanisms specifying how knowledge can be changed and how to maintain the

consistency of knowledge after each change. In addition, ontological entities are

semantically and conceptually linked, the application of a change in some ontological

entities may have effects on other entities.

We are interested in this paper in defining evolution kits to allow updating ontologies

while preserving their consistency. We also developed an ontology evolution tool

‘consistology’ to assist users in expressing evolution requirements and generating

coherent ontology versions.

This paper is structured as follows. Section 2 presents an overview about the most

representative approaches and tools used in ontology evolution. In Section 3, we

propose our approach to support ontology evolution and to anticipate inconsistencies.

Sections 4, 5 and 6 present the Consistology tool and its application to the education

domain. Section 7 concludes this work.

2. State of the art

Several application areas are especially concerned with evolution of data and users

requirements, such as software development [RL05], temporal databases [BB08] and

ontologies.

Software systems are rarely stable following initial implementations. They have

complex structures which are likely to continually undergo changes during their

lifetime. Temporal databases support time-varying information and maintain the

history of the modelled data. They allow the maintenance of data histories through the

support of time semantics at system level. We refer to [BB08] [SBJ+10] for further

information about related work on software development and temporal databases.

Ontologies, like software development and temporal databases, need to change

every time the modelled real world has changed. Ontology evolution is the process of

adaptation of ontology to evolution changes and the consistent management of these

changes to guarantee the consistency of ontology when changes occur [KF01]

[NK04]. It encompasses the set of activities, both technical and managerial, which

ensures that ontology continues to meet organizational objectives and users needs in

an efficient and effective way [Sto04]. According to [Sto04], “Ontology Evolution is

the timely adaptation of ontology to the arisen changes and the consistent propagation

of these changes to dependent artifacts.” It concerns different aspects: the needs to

update and to evaluate data, the changes to apply in conformity with these needs, the

management of inconsistencies in all parts of the ontology as well as in the dependent

artifacts.

According to [MS03], two types of inconsistency can be identified:

• Structural inconsistency occurs when the constraints of the ontology model are

invalid or if the semantics of the subjacent language of ontology is not respected.

• Semantic inconsistency occurs when the significance of the entities of ontology is

changed.

An ontology is considered consistent if its axioms are respected and if it satisfies the

whole of the invariants defined in the model of ontology [MS03].

Stojanovic et al. [SSG+03] proposed an approach for the management of evolution

and the maintaining of consistency for KAON ontologies. The authors proposed the

concept of strategies of evolution which allow choosing the most suitable solutions

for the resolution of inconsistencies

Haase et al. [HS05] also used the concept of strategies of resolution based on the

constraints of OWL-Lite for the detection and the resolution of inconsistencies in

OWL ontologies. However, the resolution of inconsistencies is done after application

of changes. It is ensured in two phases: the detection of inconsistencies which consists

in finding the parts of ontology which do not satisfy the consistency conditions and

the generation of changes that allow ensuring the consistency of ontology by

generating additional changes.

Flouris et al. [FP05] differentiate between a consistent ontology and a coherent

ontology. Ontology is inconsistent if there is no interpretation which satisfies all the

axioms of this ontology. It is incoherent if it does not satisfy some predefined

constraints or the related invariants. The predefined constraints describe the consistent

model of ontology. These authors consider the inconsistencies as sign of bad design

and their correction does not relate to the ontology evolution but it is rather related to

the ontology design.

Luong et al. [LD07] distinguish two levels of consistency for the model of ontology:

structural consistency and logical consistency. Structural consistency relates to the

constraints of consistency defined for an ontology model by ensuring a good

organization of the ontological entities at the level of structure. Logical consistency

checks if the elements of ontology remained "semantically correct" after their

evolution.

In [KJL09], the authors investigate how ontologies developed for use in Semantic

Web technology could be used in checking the consistency of requirements

specifications. They use reasoning which is a part of ontology. The TESSI tool has

been developed.

Djedidi et al. [DA10] proposed an approach of enrichment of ontology with an aim of

optimizing and automating the management of changes while ensuring the

consistency and the quality of ontology after evolution.

The maintenance of consistency is ensured through alternatives of resolution of

inconsistency. A model of quality is defined and applied to guide the resolution of

inconsistencies and to evaluate the impact of the suggested alternatives on the quality.

A prototype of the change management system was implemented to manage changes

of OWL ontologies while maintaining their consistency and quality.

In addition, number of scientific and commercial tools for creating, managing and

updating ontologies have been used to build applications in several domains such as

KAON [OVM+04], OntoView [KFK+02], OntoManager [SSG+03], TextToOnto

[MV01], SHOE [HH00], PromptDiff [NM02], Protégé
1
, etc. Some tools dedicated to

ontology debugging are also proposed, such as RADON [JHQ+09], SWOOP

[KPS+05], DION 2 , OntoClean 3 , MUPSter [SC03] etc. Other tools, such as

ConsVISor
4
, do both consistency checking and debugging. A comprehensive survey

on ontology editors and tools can be found in [Den09] [GM03].

1 http://protege.stanford.edu/.
2 http://wasp.cs.vu.nl/sekt/dion/.
3 http://www.ontoclean.org/.
4 http://projects.semwebcentral.org/projects/consvisor/.

The analysis of related work shows that no complete framework for managing

ontology coherence is proposed since they do not take into account all steps of the

ontology life cycle. The majority of works conducted so far in the field of ontologies

has focused on ontology construction issues. These works assume that the domain

knowledge encapsulated in ontology does not change over time. Indeed, in dynamic

environments, the domain knowledge evolves continually due to: the evolution in the

application domain, additional functionalities to add to the system, new requirements

of users, needs to better organize and model the information system etc.

Most of existing systems related to the ontology evolution provide only one

possibility for realizing a change, and this is usually the simplest one. For example,

the deletion of a concept always causes the deletion of all its sub concepts. It means

that users are not able to control the way changes are performed (supervision).

In this work, we aim to propose an evolution tool which allows taking into account all

relationships and offers a great level of expression. In addition, the approaches

proposed in the literature are based on the correction of inconsistencies after they

occur. We propose in this paper an anticipatory approach to manage inconsistencies

before they occur. We express the requirements of evolution using types of changes.

For each type of change, we define corrective operations that must be applied in

conjunction with this type of change in order to correct consistencies.

3. An approach based on coherent evolution kits

The identification of types of changes to apply on the ontology formally expresses the

needs of evolution required by users. The types of changes allow users expressing the

requirements of evolution. When they are applied, the ontology changes from a

current version to another one. However, the application of a type of change can

cause inconsistencies on the new ontology version. In fact, types of change ensure

only the modification of ontology. They do not guarantee that the ontology remains

coherent after modifications.

To ensure the consistency of an ontology after evolution, we propose to anticipate

inconsistencies that can be generated by each type of change in order to propose

alternatives to address these inconsistencies [Jaz09]. Thus, we defined coherent

evolution kits. A coherent evolution kit is composed of a type of change and

corrective operations that allow correcting the potential inconsistencies caused by the

considered change. The role of corrective operations is to correct inconsistencies by

proposing additional changes to be applied by the system in combination with the

initial type of change required by users. If several possibilities exist, i.e., various

corrective operations may be applied with different effects, the ontology engineer has

to choose to implement the adequate corrective operation. Each type of change in

addition to the corrective operations forms a "coherent evolution kit" that must be

applied in full. We refer to [JSG10] for more details about the evolution kits of

change.

4. Consistology: a tool to ensure consistency of ontologies

In a collaborative setting, given some changes to do on the ontology, users must be

able to: (1) apply changes on the ontology; (2) examine the effects of changes

visually; and (3) accept or reject changes.

Due to the lack of tools providing an efficient automatic support for ontology

evolution, the development of an automatic tool is very useful to maintain uniformity

and consistency of ontologies. We developed the Consistology tool, based on Java

and Eclipse, to serve as an efficient automatic support for ontology evolution.

Changes on the ontology are performed using elementary and composite changes. The

application of elementary and composite changes on the initial ontology allows

generating a new ontology version (Figure 1).

Figure 1. The Consistology tool allows applying elementary and composite changes.

The developed Consistology tool incorporates all actors (expert, ontology designer,

system, user) in the evolution process. The ontology evolution process is initialized

by the ontology designer and the expert, started by the user and guided by the system.

The ontology designer initializes the process of evolution by introducing the ontology

file and defining the metadata related to the semantic relationships. The expert defines

the metadata related to the key concepts of the domain of study.

The user expresses evolution requirements using types of changes provided by the

system which controls the required changes and applies the corresponding evolution

kits of change in order to ensure the ontology consistency.

5. Application of Consistology to the Education domain

We present in this section an application of the developed Consistology tool to update

an ontology of education related to the Tunisian higher education system.

The Tunisian higher education system is continually subject to changes to comply

with social, economic and political strategies. Actually, it migrates from the old

classical system toward a BMD (Bachelor’s, Master’s, Doctorate) system. The

transition from the classical to the BMD system will certainly leave questions

especially to students who followed their teachings within the old system. To provide

satisfactory answers to these questions, it is necessary to understand and model the

classical and the BMD systems as well as the transition between them. The modeling

of this transition is also useful for the reuse of the current education system in case of

future evolutions.

The modeling of the Tunisian education system requires a formal representation of

knowledge. We use the ontology to explicit the semantics of the education domain

and to model the classical and the BMD education systems [SJG09b]. The ontology

of the BMD education system is an evolved version of the ontology related to the

classical system. The evolution requires applying types of changes in order to adapt

the old education ontology and to create a new ontology version adapted to the BMD

system. We ensure the evolution of ontology based on primitive and complexes

operators.

The acquisition of knowledge related to the education system is based on the analysis

of technical documents and instruction manuals provided by the Ministry of higher

education as well as interviews with experts of the domain. The ontology construction

is done using Protégé.

We present in the following, an extract from the initial ontology of education

according to the OWL syntax:

To express the evolution from the classical education system toward the BMD

system, we apply operators of changes such as:

1. Add new concepts which exist only in the BMD system, such as: MENTION,

OPTIONAL_UNIT, COURSE, OBLIGATORY_UNIT, LICENCE, MASTER1,

MASTER2, EDUCATION_UNIT etc.

2. Add new relationships between concepts such as:

• Equivalence: for example, an equivalence relationship is added between the

concepts: TECHNICIAN and LICENCE, MAITRISE and MASTER1, etc.

• Synonymy: for example, a synonymy relationship is added between the

concepts: MODULE and EDUCATION_UNIT.

6. An illustrative example

We present in this section an example of application of an evolution kit: Add_concept.

In this example, we aim to add a new concept ‘LICENCE’ to a hierarchy of concepts

in the ontology of the classical education system to evolve it towards to the BMD

system.

The user introduces an initial ontology to update and selects the type of change to

apply on the ontology, for example Add_Concept (Figures 2 and 3).

Figure 2. The input of Consistology is an ontology (e.g., owl file) to update.

Figure 3. Add a new concept ‘LICENCE’ to the initial ontology.

The type of change Add_Concept generates inconsistencies related to an isolated and

empty concept. To resolve the first inconsistency, the system automatically proposes

to the user to add a new relationship between the added concept and another one in

the ontology. In this example, we chose to add a Hierarchy relationship between the

concepts: LICENCE and DIPLOMA (Figure 4). Thus, since it is a hierarchy

relationship, the concept LICENCE inherits the properties from the concept

DIPLOMA and therefore the second inconsistency is resolved.

Figure 4. Add a new hierarchy relationship between the new concept LICENCE and

another concept belonging to the ontology. The new concept LICENCE is added to

the ontology as well as a hierarchy relationship between LICENCE and DIPLOMA.

In addition, the developed Consistology tool allows enriching the ontology by adding

new axioms (Figure 5).

Figure 5. The tool allows enriching the ontology by adding new axioms (optional

extensions). Example: A new axiom ’disjoint classes’ is added between the concepts

LICENCE and INGENIORAT.

The application of elementary and composite changes on the initial ontology allows

generating a new ontology version (Figure 6). A historic file is created containing an

ordered sequence of types of changes applied to the initial version.

Figure 6. Consistology produces a new ontology version (OWL file) and a graph

representing the ontology.

7. Conclusion and perspectives

Ontologies represent an explicit specification of a domain and serve as a support for

providing and searching knowledge sources. They need to be modified to reflect new

requirements and must remain coherent.

We express the requirements of evolution using types of changes. However, types of

change allow updating ontology but do not ensure its consistency. The application of

a type of change may produce inconsistencies on ontological entities. To correct

them, corrective operations are defined and automatically done in addition to the type

of changes.

An inconsistent ontology may be the consequence of a bad design or of the

application of changes. We consider that the first case is rather a problem of ontology

design and building. To maintain ontology consistency after applying types of

changes, we developed a proactive approach to manage inconsistencies before they

occur rather than managing them after evolution. This approach is based on evolution

kits, defined to ensure the consistency of ontology after evolution. An evolution kit

anticipates the inconsistencies that can generate each type of change in order to apply

additional changes able to treat them. After the execution of a change, some

corrective operations are automatically applied.

To implement types of changes, we developed the Consistology tool. Consistology is

an ontology evolution support which allows users updating ontologies while

preserving their consistency. It is based on elementary and composite changes that

allow expressing the different possibilities of evolution requirements.

Experimentation is presented, related to the evolution of the Tunisian higher

education system. The Consistology tool is used to apply changes on the education

ontology and to adapt it to new evolution requirements.

In future work, we aim to apply the developed system to other applications involving

evolution changes. We will also add other functionalities to support versionning of

ontology and to store and query various versions in an ontological database.

In fact, the problem of evolution and versioning is also present in other application

areas, more especially in the context of databases systems. Dynamic schema evolution

in databases is defined as managing schema changes in a timely manner without loss

of existing data. Particular problems addressed are cascading changes (changes

required to other parts of the schema as a result of a change), ensuring consistency of

the schema, and propagation of the changes to the corresponding database.

Although there are significant differences between schema evolution and ontology

evolution, many of the methods and technologies developed for schema evolution can

be applied or adapted to ontology evolution. Our research in the ontology evolution

can benefit from the many research works in database systems. Thus, we aim to

exploit the techniques of databases to create versions of ontology and to incorporate

additional functionalities in Consistology in order to allow representing, saving,

evolving and accessing to ontology versions.

References

[BB08] Brahmia, Z., Bouaziz, R. (2008). Schema Versioning in Multi-Temporal XML

Databases, Proceedings of the 7th IEE/ACIS International Conference on Computer and

Information Science (IEEE/ACIS ICIS 2008), pages 158-164, Oregon, USA.

[DA10] Djedidi, R., Aufaure, M.A. (2010). ONTO-EVOAL an Ontology Evolution Approach

Guided by Pattern Modeling and Quality Evaluation. FoIKS 2010: 286-305.

[Den09] Denny, M. (2009). Ontology Tools Survey. From

http://www.xml.com/pub/a/2004/07/14/onto.html.

[FP05] Flouris, G., Plexousakis, D. (2005). Handling Ontology Change: Survey and Proposal

for a Future Research Direction. Technical report FORTH-ICS/TR-362.

[GM03] Gómez-Pérez, A., Manzano-Macho, D. (2003). A survey of ontology learning methods

and Techniques, Deliverable 1.5, Universidad Politécnica de Madrid.

[HH00] Heflin, J., Hendler, J. (2000). Dynamic Ontology on the Web, Proceedings of the

Seventeenth National Conference on Artificial Intelligence AAAI/MIT, pages 443-449,

CA.

[HS05] Haase, P., Stojanovic, L. (2005). Consistent Evolution of OWL Ontologies. In A.

Gomez-Perez and J. Euzenat, editors, Proceedings of the 2nd European Semantic Web

Conference (ESWC ’05), volume 3532 of LCNS, pages 182–197. Springer.

 [Jaz09] Jaziri, W. (2009). A methodology for ontology evolution and versioning, The Third

International Conference on Advances in Semantic Processing (SEMAPRO’2009),

pages 15-21, ISBN: 978-1-4244-5044-2, Sliema, Malta.

[JHQ+09] Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S. (2009). RaDON: Repair and

Diagnosis in Ontology Networks, Lecture Notes in Computer Science, pages 863-867,

Volume 5554/2009, Springer Berlin-Heidelberg.

[JSG10] Jaziri, W., Sassi, N.,Gargouri F. (2010). Approach and tool to evolve ontology and

maintain its coherence, International Journal of Metadata, Semantics and Ontologies,

Inderscience Publishers, United Kingdom.

[KF01] Klein, M., Fensel, D. (2001). Ontology versioning on the Semantic Web, In

Proceedings of the 1st Semantic Web Working Symposium, Stanford, CA, USA.

[KFK+02] Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D. (2002). Ontology versioning and

change detection on the web. Lecture Notes in Computer Science, pages 247-259, volume

2473, Springer.

[KJL09] Kroha, P., Janetzko, R., Labra, J.E. (2009). Ontologies in Checking for Inconsistency

of Requirements Specification, The Third International Conference on Advances in

Semantic Processing (SEMAPRO’2009), pages 32-37, Sliema, Malta.

 [KPS+05] Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J. (2005). Debugging unsatisfiable

classes in owl ontologies, Journal of Web Semantics, volume 3(4), pages 268-293.

[LD07] Luong, P-H., Dieng-Kuntz, R. (2007). A Rule-based Approach for Semantic

Annotation Evolution, The Computational Intelligence Journal, 23(3): 320-338, USA.

 [MS03] Maedche A., Staab S. (2003), Ontology Learning. In S. Staab & R. Studer (eds.),

Handbook on Ontologies in Information Systems, pages 173-190, Springer.

[MV01] Maedche, A., Volz, R. (2001). The Text-To-Onto Ontology Extraction and

Maintenance System, Workshop on Integrating Data Mining and Knowledge Management

co-located with the first International Conference on Data Mining, San Jose, California,

USA.

[NM02] Noy, N., Musen M. (2002). Promptdiff: a fixed-point algorithm for comparing

ontology versions. In Proceedings of the 18
th

 National Conference on Artificial Intelligence,

pages 744-750, Canada.

[NK04] Noy, N., Klein, M. (2004). Ontology evolution: Not the same as schema evolution,

Knowledge and Information Systems, 6(4):428-440.

[OVM+04] Oberle, D., Volz, R., Motik, B., Staab, S. (2004). An extensible ontology software

environment, In: Steffen Staab, Rudi Studer (Eds.), Handbook on Ontologies, pages 311–

333, Springer, Berlin.

[RL05] Robbes, R., Lanza, M. (2005). Versioning systems for evolution research, In

Proceedings of the 8th International Workshop on Principles of Software Evolution (IWPSE

2005), pages 155-164, Lisbon, Portugal.

[SBJ+10] Sassi, N., Brahmia, Z., Jaziri, W., Bouaziz, R. (2010). From Temporal Databases to

Ontology Versioning: An Approach for Ontology Evolution, Ontology Theory,

Management and Design: Advanced Tools and Models, Ed. Faiez Gargouri and Wassim

Jaziri, IGI-Global, USA (to appear, March 2010).

[SC03] Schlobach, S., Cornet, R. (2003). Non-standard reasoning services for the debugging of

description logic terminologies. In Proceedings of the 18th International Joint Conference

on Artificial Intelligence, pages 355-362, Acapulco, Mexico.

[SSG+03] Stojanovic, L., Stojanovic, N., Gonzalez, J., Studer, R. (2006). Ontomanager - a

system for the usage-based ontology management”, In Proceedings of ODBASE’2003,

pages 858-875, Springer.

[Sto04] Stojanovic, L. (2004). Methods and Tools for Ontology Evolution. PhD Thesis,

University of Karlsruhe.

