
Vol-596
urn:nbn:de:0074-596-3

Copyright © 2010 for the individual
papers by the papers' authors.
Copying permitted only for private and
academic purposes. This volume is
published and copyrighted by its
editors.

ORES-2010
Ontology Repositories and Editors for
the Semantic Web

Proceedings of the 1st Workshop on Ontology Repositories and

Editors for the Semantic Web

Hersonissos, Crete, Greece, May 31st, 2010.

Edited by

Mathieu d'Aquin, The Open University, UK

Alexander García Castro, Universität Bremen, Germany

Christoph Lange, Jacobs University Bremen, Germany

Kim Viljanen, Aalto University, Helsinki, Finland

10-Jun-2010: submitted by Christoph Lange

11-Jun-2010: published on CEUR-WS.org

Previewing OWL Changes and Refactorings
Using a Flexible XML Database

Christoph Lange and Vyacheslav Zholudev

Computer Science, Jacobs University Bremen,
{ch.lange,v.zholudev}@jacobs-university.de

Abstract. During their lifecycle, ontologies are changed for diverse rea-
sons: their vocabulary is enhanced to enable additional application or
annotation possibilities, their expressivity is restricted to speed up rea-
soning, their internal structure is refactored for alignment with other on-
tologies or to facilitate maintenance, and many more. Any such change
can have serious consequences on applications using an ontology; there-
fore it has to be done with care. TNTBase is a versioned XML database
supporting virtual documents: XQuery-based views on XML documents
that appear to the user as files. We use this feature in order to preview
changes to OWL 2 XML ontologies: any proposed change is first tested
in a virtual document, before it is applied to the actual ontology. We
demonstrate the flexibility of this approach in several cases of changes,
discuss the limitations of working with ontologies on XML level, and
propose an integration of TNTBase as a backend with ontology editors.

1 Introduction

Change management and refactoring are important parts of the ontology life-
cycle. Originally investigated in software engineering, they are now also gaining
more and more attention and software support in ontology engineering (see, e. g.,
[19, 6]), often within the larger context of ontology evolution [25]. Change man-
agement for ontologies has been defined as “the process of performing the changes
as well as [. . .] the process of coping with the consequences of changes” [12].
Refactoring in software engineering is commonly defined as “a disciplined tech-
nique for restructuring an existing body of code, altering its internal structure
without changing its external behavior” [7]; this definition is also valid for on-
tologies. Typical ontology refactorings include splitting an ontology into several
modules, or, conversely, merging multiple ontologies, moving axioms to another
module of the same ontology, or rewriting axioms to semantically equivalent but
shorter or longer forms (e. g., in description logics, rewriting the two axioms
A v B, A v C into A v BuC). Despite the strict definition of refactoring, prac-
tical development environments, including Protégé, also subsume restructurings
that do change the external behavior of code under “refactoring”, e. g. changing
the URI of an ontology or entity [6]. However, well-behaved tools usually try to
keep the potential damage done by such a change as low as possible by adapting
all ontologies in the current project to it. On the other hand, it is not trivial for a

development environment to estimate the full impact of a change, which means
that in practice changes often do break other things, such as other ontologies
based on the current one, ontology-based software implementations, documents
annotated with terms from ontologies, etc. Consider the axiom refactoring exam-
ple mentioned before, and suppose that A, B, and C are not concepts but roles.
Not all description logics support role intersection, so certain reasoners might
not support the supposedly equivalent rewriting of two role inclusions into one.

Therefore, it is safe to assume that any change may break things. When mul-
tiple developers collaborate in a shared repository, this means changes should
be made with care, and that they should be tested. We present a repository sys-
tem that supports testing changes by not making them to the physical ontology
files in the first place, but by creating them as views on the unchanged physical
files. We have implemented this on top of our versioned XML database TNT-
Base for ontologies in the XML encoding of OWL 2. We discuss common change
and refactoring cases and show their realization in TNTBase, also taking larger
engineering workflows as a part of the ontology lifecycle into consideration. At
the same time, this is an experiment in exploring the advantages and limits of
managing OWL ontologies on the level of XML document collections.

2 TNTBase, a Versioned Database for XML
TNTBase is a versioned client-server XML database [27]. Essentially, it consists
of two parts: the core and the application-specific layer. Let us briefly discuss
the technical foundations we need for refactoring OWL 2 XML ontologies.

2.1 The Core
The xSVN module, which integrates Berkeley DB XML [1] into a Subversion
server [23], is the core of TNTBase. DB XML stores HEAD revisions of XML
files; non-XML content like PDF files or images, differences between revisions,
directory entry lists and other repository information are retained in a usual
SVN back-end storage. Keeping XML documents in DB XML allows us to access
those files not only via any SVN client, but also through the DB XML API that
supports efficient querying of XML content via XQuery [2] and modifying it via
XQuery Update [3]. As many XML-native databases, DB XML also supports
indexing, which improves performance of certain queries.

TNTBase is realized as a web-application with two different communica-
tion interfaces: an xSVN interface and a RESTful interface for XML-related
tasks. The xSVN interface behaves like the normal SVN interface – Apache’s
mod_dav_svn module serves requests from SVN clients – with one exception:
When an ill-formed XML file is committed, xSVN aborts the whole transac-
tion. The RESTful [11] interface provides XML fragment access to the versioned
collection of documents:
Querying: As every XML-native database, TNTBase supports XQuery, but

extends the DB XML syntax by a notion of file system paths to address
path-based collections of documents.

Modifying: Apart from modifying documents via an SVN client, TNTBase
takes advantage of XQuery Update facilities, and, in contrast to pure DB
XML, versions modified documents: A new revision is committed to xSVN
whenever a documents in a TNTBase repository has been changed.

Querying previous revisions: Although xSVN’s DB XML back-end by de-
fault holds only the latest revisions of XML documents, and others are stored
as reverse deltas against them, it is possible to access and query previous ver-
sions by additionally providing a revision number to the TNTBase XQuery
extension functions. However, previous versions cannot be modified since
once a revision is committed to an xSVN repository, it becomes persistent.

2.2 Application Layer of TNTBase
It turned out that many tasks specific to particular XML formats can be done by
TNTBase, and that was a reason to derive a separate layer on top of the TNT-
Base core and augment this layer with format-specific functionalities. Detailed
information can be found in [28], but let us briefly describe the major features:
Virtual Documents are essentially “XML database views” analogous to views

in relational databases; these are tables that are virtual in the sense that they
are the results of SQL queries computed on demand from the explicitly repre-
sented database tables. Similarly, TNTBase virtual documents (VD) are the
results of XQueries computed on demand from the XML files explicitly rep-
resented in TNTBase, presented to the user as entities (files) in the TNTBase
file system. Like views in relational databases, TNTBase VDs are editable,
and the TNTBase system transparently patches the differences into the orig-
inal files in its underlying versioning system. Thus, a user does not have to
know about the original source of document parts and it allows him to focus
only on relevant pieces of information. Again, like relational database views,
VD become very useful abstractions in the interaction with versioned XML
storage. Technically, VDs are document templates with embedded references
to any number of XQueries and instructions how to fill those templates with
XQuery results. For example, a VD for a table of contents may consist of a
caption, some author information and XQuery that selects all chapter titles
from a collection of documents. For more examples and understanding, check
out [29]. Furthermore, VDs can be addressed directly in XQuery by calling
a dedicated XQuery TNTBase function. Hence they may seemlessly be used
in users’ XQueries as well as comprise the content of other VDs.

Validation and Presentation: TNTBase provides facilities to integrate format-
specific validation and presentation. Simple examples are XSL transforma-
tions and schema validation. But sometimes a user needs even more, e.g.
extract RDF information upon commit and cache it or retrieve a human-
readably rendered representation of a document in semantics-oriented markup.
Utilizing the TNTBase plugin API one can write additional modules and in-
ject them into the application layer. Configuration files are also stored in a
TNTBase repository, so a user do not require access to the server. Commit-
time behavior is defined by the SVN tntbase:validate property that can be

assigned to files as well as to whole directories. Pre-commit or post-commit
hooks that are automatically generated take care of processing committed
information based on the configuration files. In case of pre-commit process-
ing a corresponding plugin has access to the documents that are about to
be committed, and may reject a transaction if the collection of committed
documents is format-inconsistent, or clashes with existing documents in the
repository. Last but not least, URLs that are used to perform validation or
presentation are dynamically changed once configuration files are modified.

Custom XQuery modules: A user can write his own XQuery extensions and
store them in the repository. Thus it is not necessary to have modules located
in the server’s file system or remotely. XQuery modules can be referenced
inside repository itself, which is particularly useful if the development of
XQuery modules is still in progress.

3 Previewing Changes and Refactorings in TNTBase

As the main contribution made by this paper, we will analyze how a number of
common OWL ontology change and refactoring tasks can be realized in TNTBase
by means described in section 2. As TNTBase is an XML database, we have
to agree on a fixed XML schema for our implementation. We chose OWL 2
XML [15], the straightforward XML encoding of the functional-style syntax [17]
of OWL 2, in terms of which the direct semantics is specified [16]. The RDF/XML
serialization of OWL is still more widely used but has to sacrifice the elegance of
the functional-style syntax to accommodate for restrictions imposed by RDF’s
graph-based data model. Moreover, RDF/XML is a particularly awkward RDF
serialization, as it cannot be validated against an XML schema, and as there are
too many alternatives for expressing the same facts (cf. [5]). Committing to the
OWL 2 XML serialization is not a conceptual restriction, though, as translations
from and to other serializations can be provided independently, e. g. by the OWL
API [24]. Thanks to the Subversion-based infrastructure, such a translation can
even be integrated almost transparently into TNTBase: A post-commit hook
could translate any committed RDF/XML file to OWL XML.

We assume that the ontologies one wants to work with are stored as OWL
2 XML files in a TNTBase repository.1 The file and directory structure is com-
pletely up to the users. We will not perform changes in the first place, but
preview them. Change and refactoring patterns will be implemented as VDs,
which can be applied to any existing ontology – an actual physical OWL XML
document, or another VD. The latter permits chaining multiple change steps.
Our VDs will usually affect relatively small pieces of an OWL XML document,
while leaving the rest unchanged. Therefore, their implementation will heavily

1 We provide an entry point for a sandbox repository at https://tntbase.org/wiki/

usecase_ontologies, where you can apply the refactorings presented below, or your
own ones, to your ontologies.

https://tntbase.org/wiki/usecase_ontologies
https://tntbase.org/wiki/usecase_ontologies

rely on the XQuery update facility [3], which allows for concisely expressing
changes to XML documents.2

We discuss some typical change and refactoring patterns below. In each case,
we give a general description, then describe its implementation for OWL XML,
and discuss its impact the current ontology or other ontologies depending on the
current one. Changes with a local impact do not affect dependent ontologies, but
they may affect the usage of the current ontology – e. g. if a syntactic construct
is introduced that the reasoner or editor in use does not support. Refactorings in
the strict sense of the definition are local – recall the definition in section 1 –, but
many changes commonly considered “refactorings” – such as renamings – have
non-local effects on dependent ontologies or annotated resources. The larger the
impact of a change becomes, the more desirable do we consider evaluating the
impact by previewing the change using a VD in TNTBase.

3.1 Renaming Entities

All entities of an OWL ontology – classes, properties, and individuals – are
identified by IRIs. Renaming entities is a frequent refactoring task. Such a change
affects the ontology O in which an entity is declared, all ontologies importing O,
and ultimately all external documents or software using O. The refactoring VD
not only has to be applied to O, but to all dependent ontologies. We restrict our
investigations to non-distributed repositories and thus to dependencies within
the same repository. We have not yet automated the cross-document part of this
refactoring; one would have to manually apply the VD to all ontologies in the
repository.3

IRIs can be absolute or relative. Relative IRIs are resolved against the base
IRI, which defaults to the URI of the ontology document but can be changed
using the xml:base mechanism. Absolute IRIs can be abbreviated using a pre-
fix:localname syntax, where prefixes are defined on the top level of the on-
tology, e. g. <Prefix name="foaf" IRI="http://xmlns.com/foaf/0.1/"/>. Renaming
such abbreviated IRIs is still quite straightforward, compared to the RDF/XML
serializations of OWL, which delegates prefix 7→IRI mapping to the more involved
namespacing mechanism of XML.

3.2 Factoring out Modules

When an ontology grows large and hard to manage, developers often identify
modules and factor them out into subontologies. This is, for example, supported
by the Module Extraction plugin of the NeOn Toolkit [18]. Common candidates
for such subontologies are all sub- or superclasses of a given class, possibly with
their instances, with related properties, and other dependent entities. The sub-
ontology S factored out should be connected to the original ontology O via an
2 The transform functions of XQuery Update, which we use here for clarity, are not
yet completely reliable in DB XML. Therefore, our actual implementation explicitly
recurses over XML trees, which is less elegant.

3 In a well-formed collection, applying a VD to all ontologies will not do any harm.

import. Either direction of the import could make sense: (i) If O is intended to be
the main ontology reused by other ontologies and applications, O should import
S. Here, O just happens to have a modular structure internally, but applications
need not know that. (ii) Conversely, O can be designed as a core ontology, of
which S is a domain-specific refinement. Applications in the respective domain
would rather use S, which imports O. We have implemented XQuery functions
for selecting certain subontologies, such as the subclasses of a given class, and
generic functions that factor out a given subontology. Previewing such a change
requires two VDs: one for O – removing S from it and possibly replacing it by
an import link –, and one for the new ontology document containing S.

3.3 Merging Modules

The inverse operation to modularization is merging several modules back into
one, which can be desirable for deploying an ontology, or for compatibility with
tools that do not support modular ontologies. Here, we will only consider the
easy case that all modules to be merged are disjoint, i. e. that no two modules
declare two different entities with the same IRI. Then, merging reduces to merg-
ing axioms and removing import links. Multiple ontology modules spread over
different files and directories can be addressed by the tnt:collection XQuery func-
tion. For instance, a part of a query collection(’/onto*//*.owx’) will address all
OWL XML ontologies in the child folders of directories having the onto prefix.

3.4 Rewriting Axioms

In section 1, we have seen a case of rewriting axioms in a semantics-preserving
way. In the migration to OWL 2, there are more such cases. OWL 2 not only
introduces new axiom or construct types that require additional expressivity,
but also mere syntactic sugar [9]. A prominent example for that is the disjoint
union of classes. In OWL 1 one had to state separately the pairwise disjointness
of a group of classes D1, . . . , Dn, and the equivalence D = D1 t · · · tDn.4 The
DisjointUnion axiom of OWL 2 allows for directly stating that D is the disjoint
union of D1, . . . , Dn. In order to make legacy ontologies from the OWL 1 age
more readable, or in order to benefit from performance improvements offered by
OWL 2 reasoners, it is thus desirable to rewrite disjoint unions. This is a change
with a local impact. The XQuery in listing 1.1 rewrites separate declarations
of pairwise disjointness and union equivalence into single disjoint union axioms.
Listing 1.2 shows how that XQuery can be used for creating a VD specification.
Note that we factored out the query itself to a separate module and only reference
it from a specification by providing a repository-scoped URI. In section 4, we will
4 In the RDF/XML syntax, which was the most common one for OWL 1, there was
not even a shorthand notation for expressing pairwise disjointness of more than
two classes. In the following, we will, however, not deal with translations between
RDF/XML and OWL XML, but assume that that has been done before by a lower-
level tool.

see how to apply this VD specification to a concrete input document (for more
information on what VD specifications are and how to use them refer to [26, 29])

Listing 1.1. Creating disjoint union axioms
module namespace tntx = "http://tntbase.mathweb.org/ns/ores";

declare function tntx:refactor-disjoint-union(

$doc as document-node()) as document-node() {

copy $tmp := $doc modify (

(: find equivalent class declarations with two children :)

for $equiv in $tmp/owl:Ontology/owl:EquivalentClasses[count(*) eq 2

and owl:ObjectUnionOf (: ... one of which is a union :)

and *[not(self::owl:ObjectUnionOf)]] (: ... and the other one is something else :)

let $whole := $equiv/*[not(self::owl:ObjectUnionOf)] (: D :)

let $parts := $equiv/owl:ObjectUnionOf/* (: D1, ..., Dn :)

(: look for declarations of pairwise disjointness of D1, ..., Dn :)

for $disjoint in $equiv/../owl:DisjointClasses[fn:deep-equal(*, $parts)]

return (

delete node $disjoint, (: delete the disjointness axiom and replace the ... :)

replace node $equiv with (: ... equivalence axiom by a disjoint union axiom :)

<owl:DisjointUnion> { $whole, $parts } </owl:DisjointUnion>)

) return $tmp };

Listing 1.2. VD specification for disjoint union axioms
<tnt:virtualdocument xmlns:tnt="http://tntbase.mathweb.org/ns">

<tnt:skeleton>

<Ontology xmlns="http://www.w3.org/2002/07/owl#">

<tnt:xqinclude>

<tnt:query name="disj.xq"/>

<tnt:return><tnt:result/></tnt:return>

</tnt:xqinclude>

</Ontology>

</tnt:skeleton>

<tnt:query name="disj.xq">

import module namespace tntx = ’http://tntbase.mathweb.org/ns/ores’

at ’tntbase:/modules/refactor/disjoint-union.xq’;

tntx:refactor-disjoint-union(tnt:doc($ontology-path))

</tnt:query>

<tnt:params><!-- parameter declarations, with default values that can be overridden -->

<tnt:param name="ontology-path"> <!-- on creating a VD from this specification -->

<tnt:value>/ontologies/test-ontology.owx</tnt:value>

</tnt:param>

</tnt:params>

</tnt:virtualdocument>

3.5 Lowering Expressivity

OWL 2 has several sub-profiles [14]. They allow for efficient reasoning, as they
correspond to less expressive logics than SROIQ, which covers the full expres-
sivity of OWL 2. There are SROIQ reasoners, but reducing the expressivity of

an ontology may be desirable in order to benefit from a more efficient reasoner.
For example, the “QL” profile can be implemented on top of an SQL database.
If an existing ontology is more expressive than the desired profile, certain com-
plex axioms and constructs will have to be removed. Among the axiom types
that OWL 2 QL does not support, there are declarations of functional, inverse
functional, and transitive properties. These are easy to identify, as they are rep-
resented by XML elements on the top level of the ontology. Some constructs are
not allowed in certain places, such as existential quantification in the subclass
position (e. g. ∃R.C v D). Other constructs, such as unions of classes, are com-
pletely forbidden. When lowering the expressivity of an ontology, some forbidden
axiom types, or axioms containing forbidden constructs have to be stripped en-
tirely, whereas others can be weakened. Stripping is easy to implement using
XQuery Update; one would simple delete nodes that satisfy a certain node test.
Weakening usually requires adding a number of new axioms to the ontology. For
example, the union

⊔n
i=1 Ci is the smallest common superclass of C1, . . . , Cn and

can therefore be weakened to a class C with Ci v C for each i = 1, . . . , n. An-
other forbidden construct is the complement of a class in subclass expressions,
e. g. ¬A v B. This can be weakened by introducing a C v B, where AtC v ⊥,
i. e. where A and C are disjoint, which is allowed in OWL 2 QL.

3.6 Stripping Axiom Annotations

OWL 2 introduced annotation of axioms, not just of entities of an ontology.
Axiom annotations do not yet enjoy wide tool support. For example, Protégé
supports them, whereas the NeOn Toolkit doesn’t. They are particularly cum-
bersome to handle when an OWL ontology is represented in RDF (cf. [21]). Thus,
we have implemented a change pattern that strips annotations from axioms. For-
tunately, all kinds of annotations are easy to handle in the XML syntax. They
are simply given as an optional sequence of initial child elements of an axiom:
<ClassAssertion>

<Annotation>

<AnnotationProperty abbreviatedIRI="rdfs:comment"/>

<Literal>TNTBase is a database</Literal>

</Annotation>

<Class abbreviatedIRI="dbpedia:Database"/>

<NamedIndividual IRI="http://tntbase.org/tntbase"/>

</ClassAssertion>

3.7 Common Query Patterns

We realized that some functions are reused in many ontology refactoring XQueries.
Thus, we distilled them into a shared XQuery module that includes common aux-
iliary functions. The most common ones are: getting the base IRI of a node, or
expanding an IRI using the prefix information and the base IRI in the scope (cf.
section 3.1). With standard XQuery – without the update facility –, recursing

over an XML tree and returning subtrees with some changes applied would be
another recurring pattern, which can be implemented by a recursive function.
The most involved function we have implemented so far is equality: Reducing
equality of a set of OWL expressions to equality of XML trees (fn:deep-equal),
as done in listing 1.1, is a bit naïve, as it hardly takes into account the se-
mantics of OWL. For example, in many constructs, such as DisjointClasses or
ObjectUnionOf, the order of class expressions does not matter. Other cases of
semantic equivalence of syntactically different expressions are related to IRIs
(cf. section 3.1), which can be written absolutely, relatively, or using prefixes.
Therefore, we have implemented OWL expression equality as a recursive XQuery
function, which defaults to XML tree equality but handles other cases specially.

4 Integration into the Ontology Lifecycle

Over its whole lifecycle, an ontology will change many times, requiring extensive
work with VDs. Applying a single change is straightforward. First, to create a
VD one just has to give it a name and associate it with a VD specification path.
In this step, query parameters can be associated with a VD; for example, the
ontology path parameter in listing 1.2 can be overridden to point to the actual
ontology the user wants to refactor. Then content retrieval is done by providing
a path of a created VD. In XQueries, e. g. in other VDs, the content of a VD
can be addressed by the tnt:vd function. From a user perspective, getting a VD
is the same as getting a usual file. There is one exception, though: VDs can
be obtained only via the RESTful interface of TNTBase. In addition, dynamic
parts of a VD (i. e. parts that are results of VD XQueries) are editable. When a
user modified a VD, he can commit it back using a RESTful method or a special
XQuery function tnt:submit-vd. All changes will be propagated to the original
documents [28]. Another feature of the RESTful interface is materializing of VDs
– when refactoring is finished and the content of a VD looks right5, a user is able
to create a refactored ontology as a physical document in the TNTBase reposi-
tory based on VD content. Alternatively, the possibility of having editable VDs
does not force ontology engineers to materialize all changes: Different developers
can keep different views on (sub)ontologies and work with them, without having
to adapt to a particular structure of the actual physical ontology.

Our approach should scale well to large ontologies. DB XML indexing facili-
ties might tremendously reduce query time. For instance, we experimented with
a collection of 2000 documents and ran filtering queries based on attribute and
element names. Adding indexes reduced the timing from 30 seconds to 0.5 sec-
onds. Whereas we do not claim that such speed improvement will be achieved for
every query, it gives us a better impression how things may scale in TNTBase.
Multiple users can read/write to TNTBase simultaneously – TNTBase secures
every user action with a transaction and takes care about deadlocks resolution.
5 TNTBase itself does not support the collaborative decision making that is required
here. We leave that feature to a future integration of TNTBase into a development
environment that, e. g., supports argumentation.

5 Related Work

Several ontology editors offer client-side refactoring. Protégé natively supports
a few basic refactorings [6], whereas for the NeOn toolkit several more sophisti-
cated refactoring plugins have been developed [18]. In contrast, our solution is,
to the best of our knowledge, the only one that supports ontology refactoring in
a server-side repository. Once a VD specification has been provided for change
pattern, any other user can apply it to any ontology and load the result into his
favorite development environment for evaluation and testing. We believe that
the overall workflow would benefit from a closer client-server integration. The
NeOn toolkit seems the most suitable candidate for an integration of our work,
as its underlying Eclipse IDE has a Subversion client built in. We would only
have to add support for those features that require interaction with TNTBase’s
RESTful interface, such as the creation or materialization of VDs. While we have
focused on changes and refactorings, the Evolva framework – implemented as an-
other NeOn plugin – addresses the general challenge of ontology evolution [25].
It validates an ontology after each change, checking for consistency, duplication,
and time-related inconsistencies. TNTBase can perform schema validation on
materialized VDs; more advanced validation can be done by integrating 3rd-
party validation plugins. All in all, Evolva dynamically adapts an ontology to
a changed environment. We believe that such an evolution framework could be
nicely complemented with our database backend. Finally, there are alternatives
to querying OWL 2 XML with XQuery (Update): for example, representing an
OWL ontology as RDF, querying it with SPARQL, and changing it using the
proposed SPARQL-Update [22]. A clear specification of SPARQL under differ-
ent entailment regimes, such as OWL, is under way [8], but the implications on
SPARQL-Update have not yet been investigated. RDF is on a higher abstraction
level than XML, which practically means, for example, that different syntaxes of
encoding IRIs (cf. section 3.1), which make a difference in XQuery, do not affect
a SPARQL query. But the RDF encoding of OWL is contrived in other aspects:
Everything has to be broken down to RDF triples, which introduces artificial
complexity for n-ary structures that can be represented in a straightforward way
in XML. The new SPARQLAS language, however, supports intuitive query for-
mulation in the OWL functional-style syntax [20], which is internally translated
to standard SPARQL. So far, it only covers querying ontologies, though, not up-
dating them. The OWL API [24], the technical basis of Protégé and the NeOn
toolkit, does not change ontologies by queries but programmatically by Java
methods, but makes it convenient to implement refactoring algorithms, as all
OWL constructs are represented as Java objects on a semantic level, abstracting
from a concrete serialization. On the other hand, the OWL API has to parse a
complete ontology into the memory, whereas Berkeley DB XML, the database
underlying TNTBase, does not have to do that, and therefore is more scalable.6

6 Actually, the OWL API is prepared for ontologies stored in databases (cf. [10]). Out
of the box it only provides an in-memory representation, but integrating it with a
TNTBase backend would be feasible.

6 Conclusion and Future Work

We have showed how TNTBase, a versioned XML database, supports ontology
changes and refactorings. As changes and refactorings can break modules or re-
sources that depend on an ontology, we do not immediately apply them, but
create them as views on the original ontology, using TNTBase’s virtual doc-
uments. We have showed that several common change patterns can be imple-
mented for OWL XML using XQuery at a reasonable cost – even more so now
that we provide a module of commonly needed functions. Thanks to XQuery
Update, changes can be written down concisely. Applying them to given ontolo-
gies is straightforward as long as the ontologies are implemented in single files;
otherwise more work is required, which could be automated in future, though.
As OWL XML is a direct XML encoding of the OWL functional-style syntax,
in terms of which the direct semantics of OWL has been specified, processing
on XML level is surprisingly close to processing it on a higher “semantic” level.
However, we initially had to implement some of the OWL semantics in XQuery,
such IRI expansion and the somewhat more involved equality of expressions.
Now, these are part of a reusable XQuery module, to which we will add further
functionality, possibly including functions that compute ontology metrics.

Here, we have focused on the repository management and XML querying fea-
tures of TNTBase, but TNTBase can actually do more. For different document
formats, we have shown how to extend TNTBase by XML→RDF translations
that are automatically run when committing an XML file, how to integrate an
RDF triple store, and how to serve Linked Data – raw RDF, or RDFa embedded
into human-readable XHTML documents (think of ontology documentation) [4,
13]. We consider this a beneficial complement to the OWL change and refactor-
ing functionality here. If the OWL ontologies are in a triple store with a reasoner
attached, more sophisticated SPARQL(AS) queries will become possible.

With change patterns and ontologies stored in the same repository, TNTBase
enables an agile way of collaborative refactoring, where a development team can
not only discuss the outcome of a refactoring step, but also easily improve the
change patterns. We will explore the potential of this methodology in further case
studies with real-world ontologies. So far, implementing a change pattern involves
manual XQuery editing, and instantiating requires manual VD administration in
the repository. These tasks could be facilitated for ontology engineers by a closer
integration of TNTBase with a client-side development environment. The NeOn
toolkit can already access Subversion-compatible repositories, and Protégé has
been successfully connected to other kinds of repositories. Therefore, a closer
TNTBase integration seems feasible, and would take us closer to the goal of
editable ontology repositories.

References

[1] Berkeley DB XML. url: http://oracle.com/database/berkeley-db/xml/.
[2] XQuery 1.0: An XML Query Language. Recommendation. W3C, 2007.

http://oracle.com/database/berkeley-db/xml/

[3] XQuery Update Facility 1.0. Candidate Recommendation. W3C, 2009.
[4] C. David, M. Kohlhase, C. Lange, F. Rabe, N. Zhiltsov, and V. Zholudev.

“Publishing Math Lecture Notes as Linked Data”. In: ESWC. 2010. arXiv:
1004.3390.

[5] I. Davis. The Sixteen Faces of Eve. 2005. url: http://iandavis.com/blog/
2005/09/the-sixteen-faces-of-eve.

[6] N. Drummond. Protege 4.x Menu Actions and Keyboard Shortcuts. 2009.
url: http://protegewiki.stanford.edu/index.php?title=Protege4Shortcuts&
oldid=6142#Refactor.

[7] M. Fowler. Refactoring Home Page. url: http://refactoring.com.
[8] SPARQL 1.1 entailment regimes. Working Draft. W3C, 2009.
[9] OWL 2: New Features and Rationale. Recommendation. W3C, 2009.
[10] M. Horridge and S. Bechhofer. “The OWL API: A Java API for Working

with OWL 2 Ontologies”. In: OWLED. 2009.
[11] JSR 311: JAX-RS: The Java API for RESTful Web Services. url: https:

//jsr311.dev.java.net/nonav/releases/1.0/index.html.
[12] M. Klein. “Change Management for Distributed Ontologies”. PhD thesis.

Vrije Universiteit Amsterdam, 2004.
[13] C. Lange and M. Kohlhase. “A Mathematical Approach to Ontology Au-

thoring and Documentation”. In: MKM. Springer, 2009.
[14] OWL 2: Profiles. Recommendation. W3C, 2009.
[15] OWL 2: XML Serialization. Recommendation. W3C, 2009.
[16] OWL 2: Direct Semantics. Recommendation. W3C, 2009.
[17] OWL 2: Structural Specification and Functional-Style Syntax. Recommen-

dation. W3C, 2009.
[18] NeOn Toolkit. url: http://neon-toolkit.org.
[19] D. A. Ostrowski. “Ontology Refactoring”. In: IEEE International Confer-

ence on Semantic Computing. IEEE, 2008.
[20] F. S. Parreiras et al. SPARQLAS. url: http://code.google.com/p/twouse/

wiki/SPARQLAS.
[21] OWL 2: Mapping to RDF Graphs. Recommendation. W3C, 2009.
[22] SPARQL 1.1 Update. Working Draft. W3C, 2009.
[23] Subversion. url: http://subversion.tigris.org/.
[24] The OWL API. url: http://owlapi.sourceforge.net.
[25] F. Zablith, M. Sabou, M. d’Aquin, and E. Motta. “Ontology Evolution

with Evolva”. In: ESWC. 2009.
[26] V. Zholudev and M. Kohlhase. “Scripting Documents with XQuery: Vir-

tual Documents in TNTBase”. In: submitted to Balisage: The Markup Con-
ference. 2010. url: http://kwarc.info/kohlhase/papers/balisage10.pdf.

[27] V. Zholudev and M. Kohlhase. “TNTBase: a Versioned Storage for XML”.
In: Balisage: The Markup Conference. Vol. 3. Mulberry, 2009.

[28] V. Zholudev, M. Kohlhase, and F. Rabe. “A [insert XML Format] Database
for [insert cool application]”. In: XML Prague. 2010.

[29] V. Zholudev et al. TNTBase – Virtual Documents. 2010. url: http://

trac.mathweb.org/tntbase/wiki/VD.

http://arxiv.org/abs/1004.3390
http://iandavis.com/blog/2005/09/the-sixteen-faces-of-eve
http://iandavis.com/blog/2005/09/the-sixteen-faces-of-eve
http://protegewiki.stanford.edu/index.php?title=Protege4Shortcuts&oldid=6142#Refactor
http://protegewiki.stanford.edu/index.php?title=Protege4Shortcuts&oldid=6142#Refactor
http://refactoring.com
https://jsr311.dev.java.net/nonav/releases/1.0/index.html
https://jsr311.dev.java.net/nonav/releases/1.0/index.html
http://neon-toolkit.org
http://code.google.com/p/twouse/wiki/SPARQLAS
http://code.google.com/p/twouse/wiki/SPARQLAS
http://subversion.tigris.org/
http://owlapi.sourceforge.net
http://kwarc.info/kohlhase/papers/balisage10.pdf
http://trac.mathweb.org/tntbase/wiki/VD
http://trac.mathweb.org/tntbase/wiki/VD

