
Multiple
Ontologies

Object Property
Restrictions

Expressions in
Manchester Syntax

Forks Reduce the Number
of Incoming Lines

Superproperties
Disjoint
Classes

OWL is gradually becoming the most widely used knowledge
representation language that has been successfully deployed in a
number of applications. Due to formal semantics and availability of
reasoners for OWL, it is gaining popularity also in the software
engineering community so far largely dominated by UML. Many
newcomers have a background in software engineering where
UML diagrams are the prevalent form of data modeling and they
share many characteristics with OWL ontologies. Although the two
languages are similar and it would be natural to reuse the existing
familiarity, the UML notation cannot be used as is, because some
OWL constructs have no equivalents in UML. We have designed
an extended UML notation for OWL that has additional symbols
and textual expressions for missing constructs. To make the
notation usable in practice we have built a graphical tool that can
be used to edit ontologies in a WYSIWYG fashion as well as
visualize existing ontologies using a number of layout algorithms.

The editor is implemented using transformation driven architecture
(TDA) technology. TDA stores its information in the form of MDA-
style models that are connected by model transformations. The
user interface in TDA is implemented by means of universal
engines (e.g. a graph diagramming engine, a property editor
engine, etc.). Each individual tool (e.g. OWLGrEd) is created
through a tool definition configurator that creates instances of Tool
Definition Model storing all meta information about an individual
tool – element types, element styles, constraints and relationships
among element types.

The Tool Definition Model instances are then interpreted by a
universal interpreter that in cooperation with other TDA engines
processes all end-userʼs actions. Furthermore, for OWLGrEd, as
for other tools, specific transformations can be created to support
domain specific needs. In our case, only transformations
supporting interoperability with Protégé, and specific attribute and
annotation parsers had to be created.

Introduction OWLGrEd Implementation

OWLGrED: a UML Style Graphical Editor for OWL
Jānis Bārzdiņš, Guntis Bārzdiņš, Kārlis Čerāns, Renārs Liepiņš and Artūrs Sproģis

Institute of Mathematics and Computer Science, University of Latvia

Extended UML Notation for
OWL
The proposed graphical notation is based on UML class diagrams.
For most features there is one to one mapping from OWL to UML
concepts, e.g. ontologies to packages, OWL classes to UML
classes, data properties to class attributes, object properties to
associations, individuals to objects, etc. Meanwhile for OWL
concepts not having a good UML equivalent, the following new
extension notations are added:

a field in classes for equivalent class, superclass and disjoint
class expressions written in Manchester OWL syntax

a field in associations and attributes for specifying equivalent,
disjoint and super properties as well as a field for specifying
property characteristics, e.g., functional, transitive, etc.

anonymous classes containing equivalent class expression but
no name

connectors for visualizing disjoint, equivalent, etc. axioms

boxes with connectors for n-ary disjoint, equivalent, etc. axioms

connectors for visualizing data property restrictions some, only,
exactly, etc.

The main advantage of these extensions is the option to specify
class expressions in compact textual form rather than using
separate graphical element for each logical class, constructor (and,
or, not) and restriction. If the expression is referenced multiple
times, it can optionally be shown as an anonymous class.

More Information

http://OWLGrEd.lumii.lv

Interoperation with Protégé
We are planning to add a number of features:

an option to store graphic layout information inside ontologies
(we consider adding it as a special kind of annotations)

improve integration with Protégé, in particular, synchronize
ontologies in both tools after every editing step - current
implementation allows exchanging only whole ontologies

an option to save export preferences

Future Work

The editor has a number of features to ease
ontology development:

a number of layout algorithms

undo/redo

search

zoom

change visual appearance of graphical
elements, e.g. fill and stroke color, hide
or show textual fields

splitting of ontologies into sub-diagrams

working simultaneously with multiple
ontologies

The editor has support for interoperation
with Protégé ontology editor, i.e. active
ontology can be sent to Protégé for
reasoning and serialization and ontologies
can be received from Protégé for
visual izat ion. The interoperat ion is
implemented as a Protégé plugin that
communicates with OWLGrEd through
TCP/IP.

When exporting ontology from Protégé to
OWLGrEd for visualization one can select:

what kinds of axioms to export, e.g. only
object properties with referenced
classes

what kinds of reductions to perform, e.g.
merge subclass-off lines with forks

!

!

Chose what to export

Partial pizza ontology (only object properties)

Full pizza ontology

Pizza ontology in Protégé

