
A Complete Definition of the Inheritance Construct in i*

Lidia López

Universitat Politècnica de Catalunya (UPC)
Jordi Girona 1-3 (Campus Nord, Omega building), 08034 Barcelona, Catalunya, Spain

llopez@lsi.upc.edu

Abstract. The is-a relationship among actors has been introduced in the i*
framework since its definition. However, its effect at the level of intentional
elements and dependencies is not always clear. The main goal of this thesis is
presenting a complete and non-ambiguous definition of inheritance for the i*
framework. With this aim, it is necessary to define the modelling operations

that make use of inheritance, explain how inheritance affects i* treatments and
properties, and how the inherited elements can be represented graphically.

Keywords: i* framework, inheritance, agent-oriented modeling.

1 Introduction

Goal- and agent-oriented models are widely used in many fields like business process

modeling, requirements engineering and others. The i* framework is one of the most

widespread approaches supporting these paradigms. It focuses mainly on representing

strategic concerns by means of intentional elements and their relationships.

Inheritance is defined in i* using an “is-a” link between actors. Although this

construct already appeared in the seminal version of the framework (1995) [1], its

semantics has not been completely defined neither in that original version nor in other
existing i* dialects.

2 Proposal and Research Method

Due to the lack of formalisation about the use of inheritance in the i* approach, the

purpose of my thesis is “Presenting a complete and non-ambiguous definition of

inheritance for the i* framework”. This raises the following research questions:

 Which are the modelling operations that make use of inheritance?

 How does inheritance affect i* treatments and properties?

 How can we represent graphically the inherited elements result of
inheritance operations?

To provide a comprehensive approach to inheritance in i*, I need to provide the
semantics and syntax of inheritance.

For accomplishing the thesis objective, I have identified some milestones.

Regarding the semantics definition I need to:

(1) define i* models in a formal way (algebraic-based);

(2) define the rules which provide the inheritance definition (a list of rules and

forbidden “situations”);

(3) include inheritance in the i* metamodel; and

(4) explore how inheritance affects typical i* properties and treatments (used to
analyse models).

For the syntax definition, I need to:

(5) define the rules for representing inheritance graphically;

(6) provide a tool for supporting inheritance modelling; and

(7) define the needed tags for iStarML (a Mark-up Language for i* recently
defined to share models between i* tools [2]).

I have grouped all these tasks in a 3-phase planning. These phases were preceded
by the problem identification and the study of the related work. In Table 1, the tasks

mentioned above are distributed into the different phases of my research. The last

phase consists on consolidating my research work by means of a complete validation

of the proposal, as well as the thesis writing and final documentation.

Table 1. Research Planning

 Phase 1 Phase 2 Phase 3

Semantics Rules definition

Rules formalisation

Metamodel extension

Treatments and rules analysis

Packaging

Syntax Rules definition Packaging

Tool Existing tools analysis

Tool specification

Tool design

iStarML extension development
Packaging

Validation Case studies definition Case studies execution Packaging

3 i* Inheritance Basis

The is-a relationship has been used by several teams in several contexts, in the same

way as Yu did in his PhD thesis, see [3] and [4] for some illustrative examples. The

reference model presented in [5] does not include inheritance. The main i* dialects

GRL and Tropos do not include inheritance as part of their approach neither. A

comparative analysis of i* dialects can be found in [6].

To avoid defining inheritance from scratch, I have taken the object-oriented (OO)

paradigm as the basis of my proposal. OO inheritance consists on grouping all
common functionality in a generic class. Classes that have this functionality

(descendants) inherit from the general one (ancestor). The common functionality

included in the ancestor class is not present on the descendants, but the descendants

inherit it from the ancestor.

4 Research Performed

At this point, I am developing the second phase of my research. All information about

the state of the art (corresponding to the previous research), the tool existing analysis

and the validation cases definition were presented in my thesis project on June 2007.

An initial work about the rules definition (semantic and syntax) was presented in

[7] and [8]. These papers presented the semantic and syntax rules for the

modifications allowed on the inherited intentional element for heirs. When one actor
(subactor1) is linked to another (superactor) using the is-a link, I have identified 3

operations that can be performed on superactor’s IE for having the subactor’s IE. For

this operation identification, I have used the “Taxomania rule” from the OO

paradigm, where “taxomania” is the contraction of “taxonomy” and “mania”. It states

that: “Every heir must introduce a feature, redeclare an inherited feature, or add an

invariant clause.” [9] (pg. 820). These operations are:

 Extension: a subactor can add its own intentional elements and link them to
the existing or new ones.

 Redefinition: a subactor can redefine an inherited IE. Inheritance must not
change the semantics, so it is only in the way to achieve this IE.

 Refinement: a subactor can change the IE’s meaning. It is only allowed when
the IE meaning on subactor is a specialisation of the IE superactor.

This is an initial set of operations, a deeper revision of bibliography (e.g., [10]) is

still ongoing to get the definitive set of operations. These operations were presented

along with their syntax. Syntax is an important issue for i* because of its highly
graphical nature. Due to the usual complexity of i* models, the inheritance syntax will

be defined thinking about information economy, trying to add as few shapes and lines

as possible to models. The general idea is including only the new IEs in subactors, the

new elements will be used and shown as normal IEs. But, when the new IEs are

linked to superactors’ IEs, these ones appear inside the subactors’ boundary in a

different style (we have chosen to represent those using doted lines).

I already have some work done in phase 2, mainly the model and operations

formalisation. This formalisation corresponds to a model definition in an algebraic

style and the definition of rules to ensure model correctness. Now, I am formally

proving that the operations definition, with the proper restrictions, maintain the model

correctness. This verification consists on proving that using the defined operations,

subactor’s satisfaction implies superactor’s satisfaction. For proving that, I defined
the satisfaction of an actor as the satisfaction of all its objectives. I also have an

initial proposal for including the inheritance in the metamodel presented in [5]. A new

class to represent instances is needed in order to avoid inheritance between them.

Regarding the tool, there was not a complete specification at the end of the first

phase. The reason is that I am not developing a tool from scratch; I am adding

inheritance functionality to an existing one. After the study of the existing tools, I

decided to add inheritance functionality in the editor component of the J-PRiM tool

[11]. The result is a new editor that we call HiME (Hierarchical i* Modeling Editor)

[12]. My specification-design-development process is iterative, for each new

1 I have adopted the “subclass” and “superclass” terms used in the OO paradigm.

operation that I am including on the tool. At this point there are the specification,

design and development for the 3 operations previously defined. News tags on

iStarML are also included incrementally at the same time the tool grows up.

The remaining research for second phase is: completing the proof of correctness of

model definition, analysing the inheritance behaviour for properties and treatments,

and finishing the tool development.

5 Consolidation and Validation

Besides the formal definition verification, I also need to validate the viability of my

proposal. For the validation, I am going to execute the case studies defined in the first

phase. These cases are oriented to academic research. I have chosen two of the most

popular examples used in i* community: the meeting scheduler, presented in Yu’s
thesis, and a conference management system, widely known by the multi-agent sys-

tems community. Whilst running these examples using inheritance by myself, I would

like to collect information about my proposal from two separate groups of users:

 Non-expert users. I will supervise some PhD/Master students that will
develop some examples that need inheritance. Working with this kind of

users, I will be able to know if my proposal is easy to learn.

 Expert users. The i* community created the i* wiki [13], where there is an i*
quick guide, information about events, publications, tools, etc. I will use this

wiki to publish my proposal and invite i* experts to give me some feedback.

For both user groups I will also ask them to answer a survey previously designed to

gather their impressions. At this stage, I do not want to get opinions only for the
proposal, but also about the tool. For this reason, the survey will contain questions

related with the proposal and the tool features.

Even succeeding in collecting this information, for having a complete validation I

need to test this proposal in a real case. I can take advantage of the fact that the

research group I belong to, is involved in agreements with companies for

collaborating in their projects (the group has followed this schema in previous PhD

thesis) (see [14] for a recent case study). On the other hand, we are going to contact

with a significant part of the i* community that is using i* in industrial experiences.

6 Contributions

The expected results of my thesis are the formal definition for inheritance (verified

and validated) and a tool supporting all inheritance functionality defined.

Apart from testing the inheritance on academic and industrial case, I want to

identify some areas where inheritance can be useful. I missed the inheritance

definition when I was involved in a research project on multi-stakeholders distributed
systems modeling: we found that inheritance helped us to model variability [15].

References

1. Yu., E.: Modelling strategic relationships for process reengineering. Ph.D.

dissertation, Univ. Toronto, 1995.

2. Cares C., Franch X., Perini A., Susi A.: “iStarML Reference's Guide”. Technical

Report LSI-07-46-R, UPC, Barcelona (2007).

3. Mouratidis H., Jürjens J., Fox J.: “Towards a Comprehensive Framework for

Secure Systems Development”. In Proceedings of the 18th Conference on
Advanced Information Systems Engineering (CAiSE). Luxembourg June 2006.

4. OME tool website: http://www.cs.toronto.edu/km/ome/. Last accessed June 2009.

5. Cares, C., Franch, X., Mayol, E., Quer, C.: “A Reference Model for i*”. Book

chapter in Socio-technical systems specification in i*, E. Yu (ed.), The MIT

Press, in press.

6. Ayala, C., Cares, C., Carvallo, J.P, Grau, G., Haya, M., Salazar, G., Franch, X.,

Mayol, E., Quer, C.: “A Comparative Analysis of i*-Based Agent-Ariented

Modeling Languages”. In Proceedings of the 17th International Conference on

Software Engineering and Knowledge Engineering (SEKE). Taipei, Taiwan, July

2005.

7. Clotet, R., Franch, X., López, L., Marco, J., Seyff, N., Grünbacher, P.: “The

Meaning of Inheritance in i*”. In Proceedings of the 17th International Workshop
on Agent-Oriented Information Systems (AOIS) at CAiSE. Trondheim, Norway,

June 2007.

8. López, L., Franch, X., Marco, J.: “Defining Inheritance in i* at the Level of SR

Intentional Elements”. In Proceedings of the 3rd International i* Workshop,

CEUR Workshop Series 322, Recife, Brazil, February 2008.

9. Meyer B.: Object-Oriented Software Construction. Prentice Hall, 1997.

10. Guizzardi, G., Wagner, G., Guarino, N. van Sinderen, M.: “Ontological Well-

Founded Profile for UML Conceptual Models”. In Proceedings of the 16th

International Conference Advanced Information Systems Engineering

(CAiSE’04), LNCS 3084, Springer-Verlag, Riga (Latvia), 2004.

11. Grau, G., Franch, X., Ávila, S.: “J-PRiM: A Java Tool for a Process
Reengineering i* Methodology”. In Proceedings of the 14th IEEE International

Requirements Engineering Conference (RE), IEEE Computer Society,

Minneapolis, USA, Sept. 2006.

12. López, L., Franch, X., Marco, J.: “Hierarchical i* Modeling Editor”. To be

published in Revista de Informática Teórica e Aplicada (RITA), 2010.

13. i* Wiki website: http://istar.rwth-aachen.de/tiki-index.php.

14. Carvallo, J.P., Franch, X.: “On the use of i* for Architecting Hybrid Systems: A

Method and an Evaluation Report”. To be published in Proceedings of the 2nd

Working Conference on the Practice of Enterprise Modeling (POEM’09),

LNBIP, Springer-Verlag, Stockholm (Sweden), 2009.

15. Grünbacher, P., Dhungana, D., Seyff, N., Quintus, M., Clotet, R., Franch, X.,
López, L., Marco, J.: “Goal and Variability Modelling for Service-oriented

Systems: Integrating i* with Decision Models”. In Proceedings of the Software

and Services Variability Management Workshop, Helsinki, April 2007.

http://www.cs.toronto.edu/km/ome/
http://istar.rwth-aachen.de/tiki-index.php

