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Abstract. Abductive Logic Programming is a computationally founded
representation of abductive reasoning. In most ALP frameworks, in-
tegrity constraints express domain-specific logical relationships that ab-
ductive answers are required to satisfy.
Integrity constraints are usually known a priori. However, in some ap-
plications (such as interactive abductive logic programming, multi-agent
interactions, contracting) it makes sense to relax this assumption, in or-
der to let the abductive reasoning start with incomplete knowledge of
integrity constraints, and to continue without restarting when new in-
tegrity constraints become known.
In this paper, we propose a declarative semantics for abductive logic
programming with addition of integrity constraints during the abductive
reasoning process.
We propose an operational instantiation (with formal termination, sound-
ness and completeness properties) and an implementation of such a
framework based on the SCIFF language and proof procedure.

1 Introduction

The philosopher Charles Sanders Peirce divides the reasoning schemes of hu-
mans into three types: deduction (reasoning from causes to effects), induction
(synthesizing new rules from examples) and abduction (making hypotheses on
possible causes from known effects).

Abductive Logic Programming [1] is a computational representation of ab-
ductive reasoning that allows to express relationships between effects and possi-
ble causes (by means of a logic program), as well as logical constraints over the
hypotheses (integrity constraints). In ALP possible hypotheses are represented
by special predicates (called abducibles) that are not defined, but can be hy-
pothesized, as long as they satisfy the integrity constraints. A positive answer
to a query posed to an ALP system will typically contain the set of abducibles
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that are hypothesized in order for the query to succeed. Such an answer is called
abductive answer in the ALP literature.

Several instances of ALP have been proposed in the literature [2–6], which
differ for the logic language (and in particular for the type of abducibles and of
integrity constraints that can be expressed).

While in many applications integrity constraints are known at the beginning
of the reasoning process, it is sometimes useful to relax this assumption.

For instance, the classical application field of abductive reasoning is the di-
agnosis. However, in a realistic setting, a doctor does not simply listen to the
patient enumerating all his/her symptoms. Instead, they have a bidirectional and
multi-stage interaction: the doctor asks questions and refines his/her diagnosis
based on the answers of the patient. So, there is the need to add information
dynamically, often in the form of rules, that can rule out unrealistic sets of
explanations.

In multi-agent reasoning, agents that employ abductive reasoning could ex-
change integrity constraints by a communication process, and continue operating
with the newly acquired integrity constraints. In contracting, two agents try to
reach an agreement and each agent tries to reach its goals. For example, one
agent may want to buy a car, and the other wants to sell it; the first tries to get
a price as low as possible, while the second has the opposite aim, and they nego-
tiate on the model, the optionals, etc. Of course, each agent is unwilling to send
all of its own knowledge, because the other would exploit it to get favourable
conditions: if the buyer knew all the constraints of the seller, it would be able
to compute the minimum possible price for the seller, and then propose such
price. On the other hand, it is quite natural to tell some of the constraints only
when needed, in order to speedup the negotiation, and avoid lingering on small
variations of a meaningless solution. For instance, in case the buyer asks for a
seat for children, the seller could reply: “Ok, but you cannot install a children
seat if you have the airbag”, and the client has to take into consideration this
constraint, when making new proposals. On the other hand, there is no reason
for the seller to state such knowledge immediately from the beginning, as it still
does not know if the buyer is interested at all in children seats.

An abductive reasoner might seek additional integrity constraints (possibly
available from public repositories), depending on its current computation; for
example, the number of integrity constraints could be very vast (as if one has
to take into consideration all the EU rules for contracts), so only those strictly
needed should be downloaded. Moreover, depending on the current state of the
derivation one may choose to download regulations from one server or another:
suppose I am deciding whether to buy a good from a service in Italy or in
Portugal; I may first try to get the best price, but then check if the regulations of
that country allow me to do such transaction. I will download the regulations of
such country, check if my transaction is allowed, and, if it is not, I will backtrack
and take the second choice.

Integrity constraints can also be obtained at runtime by means of an au-
tomated computational process; for instance, by inductive reasoning. Recently,
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extensions of Inductive Logic Programming techniques (ILP for short), and the
DPML algorithm in particular [7], have been proposed to learn integrity con-
straints from labelled traces (a database of events recording happened inter-
actions or activities, or a database collecting events at run-time). The DPML
target language is the SCIFF abductive logic language [8], and this inductive
approach has been experimented in various contexts (business processes, among
others; see [9, 10]).

Such applications motivate an abductive logic programming framework where
some of the integrity constraints are known in advance, and some are added to
the abductive logic program during the computation.

In this paper we propose such an extension, and a declarative semantics for
it.

We describe the instantiation and implementation of the extension in the
SCIFF abductive logic language [8]. SCIFF is implemented using Constraint
Handling Rules [11]; in particular, integrity constraints are mapped to CHR
constraints. Thanks to the properties of CHR, adding a new constraint at run-
time amounts to the single operation of calling the new constraint, i.e., it can
be delegated to the CHR solver.

The paper is structured as follows. In section 2, we propose a declarative
semantics of ALPs with dynamic addition of integrity constraints based on the
SCIFF language, and we show that it exhibits properties of termination, sound-
ness and completeness. In section 3 we discuss some possible applications. Dis-
cussion of related work and conclusions follow.

2 Runtime addition of integrity constraints in SCIFF

In this section, we give a semantics for the runtime addition of integrity con-
straints for the SCIFF abductive logic language; however, the definitions can be
easily generalized for other abductive logic languages.

2.1 SCIFF language

In the following, we provide a brief introduction to the SCIFF language, and,
in particular, on how the knowledge base, integrity constraints and goals are
expressed. A complete definition of the language is available in [8].

A SCIFF program P is composed of

– a knowledge base KB;
– a set ICS of static integrity constraints.

Predicates In SCIFF, predicates can be defined or abducibles, and can contain
variables. Variables can be constrained as in Constraint Logic Programming [12].

Knowledge base In SCIFF, the knowledge base is a set of clauses of the form

Head← Body

where Head is an atom built on a defined predicate, and body is a conjunction
of literals (built on defined predicates or abducibles) and CLP constraints.
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Integrity constraints In SCIFF, integrity constraints have the form

Body→ Head

where Body is a conjunction of abducible atoms, defined atoms and constraints,
and Head is a disjunction of conjunctions of abducible atoms and CLP con-
straints, or false.

The allowed integrity constraints vary in ALP languages. For instance, they
can state that a given conjunction of literals implies false (as in the Kakas-
Mancarella [2] language); or that a conjunction of atoms implies a disjunction
of atoms (as in the IFF language [3]).

Goal In SCIFF, a Goal has the same syntax of the body of a clause in the
knowledge base.

2.2 Declarative semantics

A declarative semantics for runtime addition of integrity constraints can be given
as follows.

Given a program P = 〈KB, ICS〉 and a goal G, a pair 〈∆, θ〉, where ∆ is a
set of abducibles and θ is a substitution, is an abductive explanation for G with
additional integrity constraints ICD iff

1. KB ∪∆ |= Gθ
2. KB ∪∆ |= ICS ∪ ICD

where the symbol |= is interpreted, in SCIFF, as the 3-valued completion se-
mantics [13]. If such conditions hold, we write 〈KB, ICS〉�∆ICD

G.

Example 1.

p(X)← q(X,Y ), a(Y )
q(X,Y )← r(Y ), d(Y )

r(2)
(1)

a(X)→ b(X) ∨ c(X) (2)

Given the knowledge base in equation (1) and the integrity constraint in
equation (2), where a/1, b/1, c/1, and d/1 are abducibles, two abductive answers
are possible for the query p(1): {a(2), b(2), d(2)} and {a(2), c(2), d(2)}.

However, with the additional integrity constraint

c(X), d(X)→ false,

only {a(2), b(2), d(2)} is an abductive answer.
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2.3 Operational semantics

The SCIFF proof-procedure is a rewriting system that defines a proof tree, whose
nodes represents states of the computation. A set of transitions that rewrite a
node into one or more children nodes. SCIFF inherits the transitions of the IFF
proof-procedure [3], and extends it in various directions. We recall the basics of
SCIFF; a complete description is in [8], with proofs of soundness, completeness,
and termination.

Each node of the proof is a tuple T ≡ 〈R,CS, PSIC,∆〉, where R is the
resolvent, CS is the CLP constraint store, PSIC is a set of implications (called
Partially Solved Integrity Constraints) derived from propagation of integrity con-
straints, and ∆ is the current set of abduced literals. The main transitions,
inherited from the IFF are:

Unfolding replaces a (non abducible) atom with its definitions;
Propagation if an abduced atom a(X) occurs in the condition of an IC (e.g.,

a(Y )→ p), the atom is removed from the condition (generatingX = Y → p);
Case Analysis given an implication containing an equality in the condition

(e.g., X = Y → p), generates two children in logical or (in the example,
either X = Y and p, or X 6= Y );

Equality rewriting rewrites equalities as in the Clark’s equality theory;
Logical simplifications other simplifications like (true→ A)⇔ A, etc.

SCIFF includes also the transitions of CLP [12, 14] for constraint solving.
We extend SCIFF with an additional transition defined as follows, and we

call the resulting proof procedure SCIFFD.

Add IC Given a node T ≡ 〈R,CS, PSIC,∆〉 and an integrity constraint ic,
transition addIC generates one node T ′ ≡ 〈R,CS, PSIC ∪ {ic}, ∆〉.

This transition picks integrity constraints from a queue of dynamic integrity
constraints. The transition is applicable to any node in the proof tree, and it can
be executed whenever the queue is not empty. More integrity constraints can be
added to the queue during the computation.

Successful derivation A successful SCIFFD derivation for an ALP 〈KB, ICS〉,
with additional integrity constraints ICD and a goal G is a sequence of nodes
where

– the root node is 〈G, ∅, ICS , ∅〉
– each node is generated from the previous one by a SCIFFD transition
– the leaf node is N ≡ 〈true, CS, PSIC,∆〉

From the leaf node, a substitution θ is derived, that

– replaces all variables in N that are not universally quantified by a ground
term;

– satisfies all the constraints in the store CS and the implications in PSIC.

If such a derivation exists, we write 〈KB, ICS〉`〈∆,θ〉ICD
G.
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2.4 Properties

SCIFFD properties can be derived from SCIFF properties, by showing that a
SCIFFD derivation (successful or not) for the program 〈KB, ICS〉 with a finite
set of additional integrity constraints ICD can be transformed in an equiva-
lent one, where a node is the root node of a SCIFF derivation for the ALP
〈KB, ICS ∪ ICD〉.

Due to how the addIC transition operates, the number of addIC transitions
in a derivation is finite, if the set of additional integrity constraints is finite,
because each addIC transition removes one integrity constraint from the queue,
and the transition is not applicable when the queue is empty.

Proposition 1. Let N2 be the node generated from node N1 by transition T1,
and N3 be the node generated from node N2 by addIC. Then, if N4 is the node
generated from node N1 by addIC, transition T1 is applicable to N4, and the
node N5 generated from N4 by T1 is equal to N3, modulo renaming of variables.

N1
T1−→ N2

addIC−→ N3

N1
addIC−→ N4

T1−→ N5

Proof. Let N1 ≡ 〈R1, CS1, PSIC1, ∆1〉.
From the statement of the proposition, we can write the other nodes as:
N2 ≡ 〈R2, CS2, PSIC2, ∆2〉
N3 ≡ 〈R2, CS2, PSIC2 ∪ {ic}, ∆2〉
N4 ≡ 〈R1, CS1, PSIC1 ∪ {ic}, ∆1〉
Since N4 only differs from N1 for the presence of an additional IC, T1 is

applicable on N4, and it produces the same elements in the resulting node N5,
with an additional integrity constraint. That is, modulo renamings of variables,

N5 ≡ 〈R2, CS2, PSIC2 ∪ {ic}, ∆2〉

Proposition 2. Let D be a SCIFFD derivation that has k applications of the
addIC transition. Then there exists a derivation D′ that has the following prop-
erties:

– the first k transitions of D′ are the same applications of addIC;
– each node of D′, starting the transitions from k + 1 is equal to the corre-

sponding node of D.

Proof. Trivially, by proposition 1, D′ is obtained from D by moving the addIC
transition to the beginning.

Termination Being SCIFF based on the 3-valued completion semantics, its
termination is proven, as for SLDNF resolution [15], for acyclic knowledge bases
and bounded goals and implications. Of course, programs may also terminate
in other cases as well. Other abductive proof-procedures are based on other
semantics and can address also non-stratified programs [16].

6



Intuitively, for SLD resolution a level mapping must be defined, such that
the head of each clause has a higher level than the body. For SCIFF, as well as
for the IFF, since it contains integrity constraints that are propagated forward,
the level mapping should also map atoms in the body of an integrity constraint
to higher levels than the atoms in the head; moreover, this should also hold
considering possible unfoldings of literals in the body of an integrity constraint
[17]. An atom is bounded w.r.t. a level mapping if the level mapping is bounded
over the ground instances of that atom; an implication is bounded if all its literals
are. The following proposition is the SCIFF termination result [8].

Proposition 3. Let G be a query to an ALP 〈KB, ICS〉, where KBS, ICS and
G are acyclic w.r.t. some level mapping, and G and all implications in ICS
are bounded w.r.t. the level-mapping. Then, every SCIFF derivation for each
instance of G is finite.

Termination is not affected in SCIFFD, as long as the newly added integrity
constraints do not violate the termination conditions.

Proposition 4. Let G be a query to an ALP 〈KB, ICS〉, with additional integrity
constraints ICD, where KBS, ICS ∪ ICD and G are acyclic w.r.t. some level
mapping, and G and all implications in ICS ∪ ICD are bounded w.r.t. the level-
mapping. Then, every SCIFFD derivation for each instance of G is finite.

Proof. Consider a SCIFFD derivation D, with root node 〈G, ∅, ICS , ∅〉. Then
consider a derivation D′, equal to D, except that all the addIC transitions are
applied at the beginning. The node resulting from the last addIC transition is
〈G, ∅, ICS ∪ ICD, ∅〉. With the given hypotheses, such node is the initial node of
a SCIFF derivation that is finite, by the SCIFF termination result (proposition
3). Since, by proposition 2, D is equal to D′ for the part that follows the last
addIC transition, D is also finite.

Soundness Since SCIFFD only differs from SCIFF for the presence of addIC
transitions, and addIC is only applicable for a non-empty set of additional in-
tegrity constraints, a SCIFFD derivation for an empty set of additional integrity
constraints is a SCIFF derivation for the same ALP.

Therefore, the SCIFF soundness result [8] can be expressed as follows.

Proposition 5. Given an ALP 〈KB, ICS〉, if

〈KB, ICS〉`〈∆,θ〉∅ G
then
〈KB, ICS〉�∆∅ Gθ

We now extend it to the case with a (non-empty) set of additional integrity
constraints ICD:

Proposition 6. Given an ALP 〈KB, ICS〉, if

〈KB, ICS〉`〈∆,θ〉ICD
G

then
〈KB, ICS〉�∆ICD

Gθ
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Proof. Let D be a successful SCIFFD derivation. By proposition 2, for the part
after the last addIC transition, D is equal to a derivation D′ where all the addIC
transitions are applied at the beginning. The node after the last addIC transition
in D′ is 〈G, ∅, ICS ∪ ICD, ∅〉. The rest of the D′ transition is a SCIFF derivation.
By the SCIFF soundness result (proposition 5),
〈KB, ICS〉�∆ICD

Gθ

Completeness Due to the fact that, as explained earlier, a SCIFFD derivation
for an empty set of additional integrity constraint is also a SCIFF derivation for
the same ALP, the SCIFF completeness result [8] can be expressed as follows.

Proposition 7. Given an ALP 〈KB, ICS〉 and, for any ground set ∆ such that

〈KB, ICS〉�∆∅ G there exists ∆’ such that 〈KB, ICS〉`〈∆
′,θ〉

∅ G, and ∆′θ ⊆ ∆

The corresponding result for SCIFFD, with non-empty set ICD is as follows.

Proposition 8. Given an ALP 〈KB, ICS〉 and a set ICD of integrity con-
straints, for any ground set ∆ such that 〈KB, ICS〉�∆ICD

G there exists ∆’ such

that 〈KB, ICS〉`〈∆
′,θ〉

ICD
G and ∆′θ ⊆ ∆.

Proof. By the SCIFF completeness result (proposition 7), there exists a SCIFF
derivation whose root node is N = 〈G, ∅, ICS ∪ ICD, ∅〉, and whose abductive
answer is 〈∆, θ〉.

But N is a node in a successful SCIFFD derivation, whose root node is
〈G, ∅, ICS , ∅〉, and addIC is applied for all ICs in ICD.

2.5 Implementation

The SCIFF abductive proof procedure was implemented in Prolog, using exten-
sively the Constraint Handling Rules [11, 18] library. The implementation can be
downloaded from the SCIFF web site [19] and runs on SICStus and SWI Prolog.

Constraint Handling Rules (CHR) is a logic language devoted to define new
constraint solvers; however, it has been used as a general language for many
different applications, not all strictly related to constraints.

A new solver is defined in CHR by means of rules. There exist two main types
of rules: propagation and simplification3. A propagation rule is of the form

label@ Head1, . . . ,Headn ⇒ Guard|Body

and means that, if the optional Guard and the Heads are true, then the Body
must be true. Operationally, whenever a set of constraints are in the store,
matching Head1, . . . , Headn, the Guard is checked; if it evaluates to true, the
Body is executed (as a Prolog goal). The label is optional and serves only as an
identifier of the rule.

3 There are also simpagation rules, that are not logically necessary, but are important
for efficiency; we will not go into details for lack of space.
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Simplification rules have a similar syntax:

label@ Head1, . . . ,Headn ⇔ Guard|Body

They state that if the Guard is true, then the conjunction Head1, . . . , Headn
is equivalent to Body. Operationally, if Head1, . . . , Headn are in the store (and
Guard is true), they are removed and substituted by Body.
SCIFF represents most of its data structures as CHR constraints:

– an abducible atom a(X) is represented with the CHR constraint abd(a(X))
– a (partially solved) integrity constraint a(Y ), q(Y ) → p(Y ) ∨ c(Y ) is repre-

sented as the CHR constraint

psic( [abd(a(Y)),q(Y)]︸ ︷︷ ︸
Body

, ( p(Y) ; abd(c(Y)) )︸ ︷︷ ︸
Head

)

The Head can be any Prolog goal (it has the same syntax).

The proof tree is explored in a depth-first fashion, using the Prolog stack for
this purpose. Transitions are implemented as CHR rules; for example, transition
Propagation is implemented with the following propagation CHR:

propagation @

abd(A1),

psic([abd(A2)|More],Head)

==> psic([A1=A2|More],Head).

Case Analysis handles the equality in the body of a PSIC

case_analysis @

psic([A=B|More],Head)

==> impose A=B

psic(More,Head)

; % Open choice point

impose A and B do not unify

and the logical simplification (true→ A)⇔ A manages implications with empty
body:

logic_simplification @ psic([],Head) <=> call(Head).

Thanks to this implementation, adding a new integrity constraint is just a
matter of calling the corresponding CHR constraint: if we want to dynamically
add the integrity constraint (2) we execute the goal:

psic( [abd(a(X))], (abd(b(X));abd(c(X))) ).

In this way, the newly added integrity constraint is automatically subject to
all the applicable transitions. Consider rule propagation: whenever two con-
straints matching the rule head (e.g., abd(a(1)) and psic([a(X)],b(X))) are
present in the CHR constraint store, the rule is fired, it generates psic([a(X)=a(1)],b(X)),
that triggers case analysis, which in its turn generates two children nodes:
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– one where unification is imposed between the abducible in the CHR con-
straint store and the abducible in the partially solved integrity constraint,
and a new partially solved integrity constraint is imposed, with the abducible
removed from the body.

– one where disunification between the abducible in the CHR constraint store
and the abducible in the partially solved integrity constraint is imposed.

In the previous example, psic([a(X)=a(1)],b(X)) is rewritten in the first case
as X = 1 and b(X) is executed; in the second case by imposing the CLP con-
straint X 6= 1.

The relevant point, here, is that rule propagation is fired whenever both
the constraints (the abducible and the psic) are in the CHR store, regardless
of which one entered the store first. So, if a partially solved integrity constraint
is added by addIC , and some abducible in its body is already in the store,
propagation will occur, as if the partially solved integrity constraint had been in
the constraint store from the beginning of the computation.

3 Applications

In this section, we show some typical applications of abductive reasoning where
runtime addition of integrity constraints can be of use.

3.1 A diagnosis scenario

Traditionally, diagnosis has been one of the most natural applications of abduc-
tive reasoning, as it amounts at making hypotheses about the possible causes of
given symptoms. However, usually a diagnosis is not just a matter of listing all
symptoms, and finding any explanation, but the doctor can ask questions, and
refine his/her idea based on the received answers. In the same way, an expert
system based on abductive reasoning should be able to receive more informa-
tion dynamically, and continue its computation based on the new information
available.

Consider a patient that shows up at the doctor’s with stomach ache and
spots on his face.

The abduction-based diagnosis system used by the doctor has the follow-
ing relevant clauses in the knowledge base, where flu, ulcera, some drug, and
some food are abducibles:

stomach ache ← flu
stomach ache ← ulcera
spots ← some drug
spots ← some food
The query posed by the doctor is stomach ache, spots. The abductive an-

swers, equally plausible at this stage, are {flu, some drug}, {flu, some food},
{ulcera, some drug}, and {ulcera, some food}. To further investigate, the doctor
asks the patient if he ate some food, or he is being treated with some drug. The
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patient says that he does not eat some food, but he is taking some pills; however
he knows that some drug gives him ulcera. The doctor now has two pieces of
information that are relevant for this patient only: she adds dynamically the
integrity constraints

some food → false
some drug → ulcera

to the abductive logic program.
The abductive answers are now {flu, some drug , ulcera}, and {ulcera, some drug}.

The doctor may prefer the latter, for minimality.

3.2 Contracting in Service-Oriented Architectures

In [20], we (with co-authors) proposed an automated contracting system for
service-oriented architectures. In our architecture, a number of service providers
expose their policies, expressed in the SCIFF language: in particular, integrity
constraints represent pieces of policies in form of rules (for instance, if a cus-
tomer wants to pay by bank transfer, the amount is expected to be credited by
one week after the order), and domain-specific knowledge is expressed as SCIFF
knowledge base clauses and, where appropriate, by ontologies (such as the con-
cept of accepted customer). A user will also have policies expressed in the SCIFF
language. In this application, abducibles represent actions by the users or the
service providers (such as a message containing the credit card number, or the
delivery of digital content).

The heart of the system is the SCIFF Reasoning Engine (SRE). It receives
as input a service provider’s and a user’s policies, as well as a user goal (such
as the expectation to receive an ebook by one week). The system queries the
SCIFF proof procedure with the goal, using the union of the policies as the ab-
ductive program. The abductive answer, if one exists, is a sequence of abducibles
that represent service provider’s and user’s actions, that achieve the goal while
complying with the service provider’s and the user’s policies.

Runtime addition of integrity constraints would allow starting the reasoning
with a subset of the policies, and to incrementally add policies. The benefit is
twofold: first, not to waste computational resources to search for solutions that
are already ruled out by partial policies; second, the user or service providers may
not want to disclose all of their policies unnecessarily, but only when potential
contractors (based on partial policies) have been identified. In Protune [21],
provisional predicates are ground atoms that can change their values as result of
actions carried out by a peer (e.g., providing a credential). In our framework, it
would be possible for agents to exchange (partial) policies expressed in the rich
SCIFF language.

3.3 Abductive reasoning on the Web

Many problems in constraint programming require a very large set of constraints,
that cannot be propagated efficiently all at once. For example, integer linear pro-
gramming relies on a linear solver, that solves very efficiently linear constraints
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(in some cases, with polynomial algorithms), but cannot handle natively the in-
tegrality constraints (i.e., the fact that some of the variables are required to have
integer values). Integrality can be dealt with by adding more linear constraints
(for example, Gomory cuts), but the number of such constraints can be expo-
nential. The usually adopted solution is to add those constraints during search:
if in the current candidate solution some variable X is not integer, only those
constraints that remove the non-integral value of X are imposed.

In the same way, the SCIFF proof-procedure can deal with problems with a
very large number of integrity constraints. For example, laws or regulations can
be expressed in the SCIFF language, and published on a web site, in some web-
friendly format (like RuleML or the RIF). SCIFF is currently able to download
web content through the PiLLoW library [22] and interpret data published in
RuleML, so it can download from web servers a set of rules, interpret them
as integrity constraints, and produce abductive answers that satisfy them. On
the other hand, the set of regulations could be very wide, and downloading
all of them could be a waste of time and bandwidth. Thanks to the dynamic
addition of integrity constraints, SCIFF could download only those rules that
involve the current set of abduced literals, impose them to rule out inconsistent
explanations, and iteratively provide more and more refined solutions, in an
interactive procedure.

3.4 Experiments

To show the effectiveness of the approach, we tested a simple benchmark prob-
lem, that is a simplified version of a contracting scenario of Section 3.2. One
agent needs to interact with some web service, and choose one that is able to
provide the expected reply. In this example, the agent will tell message m and
will expect n as reply. The agent knows the address of a series of web services,
given as facts:

known service(http : //web.address.one/folder1/policy.ruleml).
known service(http : //web.address.two/folder2/policy.ruleml).

In order to find the right service, the agent executes the following goal, where
tell is abducible:

known service(Addr), download ic(Addr), tell(me, S,m), not(tell(S,me,A), A 6= n)

meaning that it will non-deterministically choose a service, download its integrity
constraints, and then tell message m; it will fail if it gets any reply that is not
n.

We generated 252 services, each with one integrity constraint

tell(Client, s, letter1)→ tell(s, Client, letter2)

where letter1 and letter2 are substituted with a ground term corresponding to
one of the 25 letters of the alphabet.

We tried the goal on a slow network (mobile phone) and it took 173.350s to
find the right service. As a comparison, a solution that first downloads the IC of
all possible services before starting the solution takes 319.005s.
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4 Related work

Among the many works on abduction in CHR by Christiansen and colleagues [23,
24], we emphasize an inspiring position paper [25], in which preliminary experi-
ments are shown with integrity constraints mapped to CHR rules. In that work,
Christiansen points out that through meta-rules it is possible to dynamically
add integrity constraints. Here we extend the idea within the SCIFF frame-
work, which gives us a set of properties deemed crucial in the computational
logic community. The operational semantics of SCIFF is not based on that of
CHR, but on the sound and complete semantics of the IFF [3]: this allowed us
to prove those properties also for SCIFF. In this paper, we extend these proofs
for the dynamic addition of integrity constraints, reaching the objective pointed
out by Christiansen, but with soundness and completeness results.

EVOLP [26] is a language to define logic programs able to evolve. A special
atom assert(Rule) can occur in the head or in the body of clauses; in case the
stable model semantics assigns value true to some of these literals, the clause
Rule is added to the program. Our instance can be considered as an evolving
abductive program, in which only integrity constraints (and not clauses in the
KB) can be added, and based on the three-valued completion semantics, instead
of the stable model semantics. Our language also features CLP constraints and,
as the general CLP framework [12], it is parametric with respect to the specific
sort. The proof procedure lets the user choose the associated solver, and two
state-of-the-art solvers are available in the current implementation: CLP(R), on
the real values, and CLP(FD), on finite domains. EVOLP is a component of
the ACORDA prospective logic programming system [16], which also integrates
abductive reasoning and preferences, to support interactive abductive logic pro-
gramming, among other applications.

We can also easily extend the language in order to incorporate dynamic in-
tegrity constraints in the body of clauses, or in queries. Operationally, whenever
an integrity constraint is part of the resolvent, the addIC transition would be
applied. However, the impact of such extension on termination must be studied
in future work. With reference to nested, dynamic ICs, and this extension of
the SCIFF language, it is worth to mention that in the literature, a lot of work
was devoted to the treatment of embedded implications (due to Miller, et al. see
[27, 28] and McCarty, see [29]) based on the logic of Higher-Order Hereditary
Harrop Formulas, a fragment of Intuitionistic logic. In this logic, and the λ sys-
tem implemented [30], they allow arbitrary lambda terms with full higher-order
unification, and extend the formula language with arbitrarily nested universal
quantifiers and implications. In our case, we can add integrity constraints at
runtime, rather than program clauses as they do. We can therefore support ab-
ductive reasoning in an extended set of constraints.

In CR-Prolog [31], new (consistency-restoring) rules can be added dynam-
ically, as a part of Observe-Think-Act loop of an agent; if some inconsistency
is detected then these constraints can be considered, according to their prefer-
ences. The semantics of CR-Prolog programs is defined as a transformation into
abductive logic programs, where each consistency-restore rule has an abducible
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associated with it, and holds (only) if such abducible is abduced. In our frame-
work, dynamically added integrity constraints must be satisfied, independently
of the abductive answer.

5 Conclusions

In this paper we proposed a declarative semantics for abductive logic programs
where additional integrity constraints can be added at runtime. Such an ex-
tension can support interesting applications such as interactive abductive logic
programming and contracting in service-oriented architecture.

We proposed an operational instantiation of such a framework as the SCIFFD
proof procedure, an extension of the SCIFF abductive proof procedure, and we
proved formal results of termination, soundness, and completeness for SCIFFD.
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