
Dual tableau-based decision procedures for some
relational logics⋆

Domenico Cantone1, Marianna Nicolosi Asmundo1, and
Ewa Or lowska2

1 Università di Catania, Dipartimento di Matematica e Informatica
email: cantone@dmi.unict.it, nicolosi@dmi.unict.it

2 National Institute of Telecommunications, Warsaw, Poland
email: orlowska@itl.waw.pl

Abstract. We consider fragments of the relational logic RL(1) obtained
by imposing some constraints on the relational terms involving relations
composition. Such fragments allow to express several non classical logics
such as the multi-modal logic K and the description logic ALC with union
and intersection of roles. We show how relational dual tableaux can be
employed to define decision procedures for each of them.

1 Introduction

In this paper we consider logics of binary relations which may serve as formalisms
for representation of various theories, in particular some non-classical logics.
These relational logics are based on languages whose formulae have the form
xRy, where x and y are object variables and R is a term built from relation
variables with the relational operations typical for binary relations as formalized
in [15] (see also [10]). The semantics of these languages reflects the usual meaning
of xRy as saying that two objects denoted by x and y stand in the relation
denoted by R. The relational logics studied in the paper are fragments of the
relational logic RL(1) presented in [12]. These fragments are obtained from RL(1)
by posing some constraints on the relations involving relational composition. In
particular, the first argument of the composition can only be a relational variable
in the first fragment and a positive Boolean term in the second one. From the
algebraic perspective, these fragments may be seen as the fragments of Peirce
algebras [13]. A modern presentation of Peirce algebras can be found in [4]. A
dual tableau for Peirce algebras is presented in [14].

The representation of non-classical logics with relational logics is based on
the fact that logical formulae may be treated as relations once their Kripke-style
semantics is known. In Kripke-style semantics, formulae are interpreted as sets
of objects which may be identified with what is called right ideal relations, which
in the binary case amounts to saying that the relations satisfy R ; 1 = R, where
“ ; ” is the composition of binary relations and 1 is the universal relation. For
example, since the set of right ideal relations is closed on Boolean operations, the

⋆ Work partially supported by GNCS, Programma Giovani Ricercatori 2009.

propositional connectives of disjunction, conjunction, and negation may be inter-
preted as union, intersection, and complement of relations, respectively. In modal
(resp., description) logics, a possibility operator 〈R〉 (resp., a concept operator
∃R) determined by a relation (resp., role) R acting on a formula α, interpreted
as a right ideal relation, may be understood as R ;α, as observed in [11]. It is
known that the composition of a relation with a right ideal relation returns a
right ideal relation. The relational interpretation of languages preserves validity
of formulae. In [7] an implementation of the translation of modal languages into
relational languages is presented.

Relational logics appear to be an adequate representation means for a great
variety of theories as shown in [12]. Therefore any decision procedure for a rela-
tional logic is not just a single decision method for some theory but it may be
applied to several theories which can be interpreted in this relational logic.

The paper is organized as follows. In Section 2 we recall the logic RL(1) and
its dual tableau. In Sections 3 and 4 we present two fragments of RL(1) and we
develop decision procedures for them based on dual tableaux.

2 The relational logic RL(1) and its dual tableau

2.1 Syntax

Let OV be a countably infinite set of object (individual) variables x, y, z, w . . .,
let RV be a countably infinite set of relational variables p, q, r, s, . . ., and let 1 be
the relational constant. The relational operators are− (complementation), ∩ (in-
tersection), ∪ (union), ; (composition), and −1 (converse). The set of relational
terms RT is the smallest set (with respect to inclusion) such that

(a) RV ⊆ RT,
(b) 1 ∈ RT, and
(c) RT is closed with respect to the relational operators.

Relational terms are indicated with the letters P , Q, R,... Examples of relational
terms are (p∩ q) ; s and −(P ∪Q), where p, q, and s are relational variables and
P,Q are relational terms. RL(1)-formulae have the form xRy, where x, y ∈ OV

and R ∈ RT. The RL(1)-formulae x1y and xry, with r ∈ RV, are called atomic
RL(1)-formulae. A literal is an atomic formula (x1y or xry) or its complementa-
tion (x(−1)y or x(−r)y). RL(1)-formulae are also denoted using as metavariables
the greek letters ϕ and ψ. For a relational operation ♯, by a (♯)-formula we mean
a formula built with a relational term whose principal operation is ♯ whereas
by a (−♯)-formula we denote a formula obtained from a relational term with
principal operation − followed by ♯. A Boolean term is a relational term such
that all the relational operations in it are among the Boolean operations −, ∪,
and ∩.

2.2 Semantics

RL(1)-formulae are interpreted in RL(1)-models. An RL(1)-model is a structure
M = (U,m), where U is a nonempty universe and m : RV → U × U is a given

2

map which is naturally extended to the whole collection RT of relational terms
as follows:

– m(1) = U × U ;
– m(−R) = (U × U) \m(R);
– m(R ∪ S) = m(R) ∪m(S);
– m(R ∩ S) = m(R) ∩m(S);
– m(R ;S) = m(R) ;m(S)

= {(x, y)∈U×U : (x, z)∈m(R) and (z, y)∈m(S), for some z ∈ U};
– m(R−1) = {(y, x) ∈ U × U : (x, y)∈m(R)}.

Let M = (U,m) be an RL(1)-model. An evaluation in M is any function v :
OV → U . Given an object variable z in OV, an evaluation v1 is a z-variant of
an evaluation v if v1(x) = v(x), for every x ∈ OV such that x 6= z. Satisfaction
of an RL(1)-formula xRy by an RL(1)-model M = (U,m) and by an evaluation
v in M is defined as:

M, v |= xRy iff (v(x), v(y)) ∈ m(R).

An RL(1)-formula xRy is true in a model M = (U,m) if M, v |= xRy, for every
evaluation v in M. An RL(1)-formula xRy is said valid if it is true in all RL(1)-
models. An RL(1)-formula xRy is falsified by a model M = (U,m) and by an
evaluation v in M if M, v 6|= xRy. It is falsifiable if there are a model M and
an evaluation v in M such that M, v 6|= xRy.

2.3 RL(1)-dual tableau

Proof development in dual tableaux proceeds by systematically decomposing the
(disjunction of) formula(e) to be proved till a validity condition is detected by
means of axiomatic sets. Such an analytic approach is similar to the one adopted
by the tableau method with the difference that the two systems work in a dual
way. Duality of tableaux and of dual tableaux has been deeply analyzed in [9].

RL(1)-dual tableau consists of decomposition rules to analyze the structure
of the formula to be proved valid, and of axiomatic sets which specify the closure
conditions. The decomposition rules for RL(1) are illustrated in Table 1. In these
rules, “,” is interpreted as disjunction and “|” as conjunction.

RL(1)-axiomatic sets are sets of RL(1)-formulae including a subset of one of
the following forms:

(Ax 1) {xRy, x(−R)y},
(Ax 2) {x1y}.

Let xPy be an RL(1)-formula. An RL(1)-proof tree for xPy is an ordered tree
whose nodes are labelled by disjunctive sets of formulae. By a branch of a proof
tree we mean any maximal path in it. We require a proof tree for xPy to satisfy
the following properties:

– the formula xPy is at the root of this tree,

3

Table 1. RL(1) decomposition rules.

(∪)
x(R ∪ S)y

xRy,xSy
(−∪)

x(−(R ∪ S))y

x(−R)y | x(−S)y

(∩)
x(R ∩ S)y

xRy|xSy
(−∩)

x(−(R ∩ S))y

x(−R)y,x(−S)y

(−−)
x(−−R)y

xRy

(−1)
x(R−1)y

yRx
(−−1)

x(−(R−1))y

y(−R)x

(;)
x(R ;S)y

xRz, x(R ;S)y | zSy, x(R ;S)y
z, any object variable

(− ;)
x(−(R ;S))y

x(−R)z, z(−S)y
z, a new object variable

– each node, with the exception of the root, is obtained from its predecessor
node by an application of a decomposition rule of Table 1,

– a node does not have successors (i.e. it is a leaf node) whenever its set of
formulae is an axiomatic set or none of the rules of Table 1 can be applied
to its set of formulae.

A node of an RL(1)-proof tree is closed if its associated set of formulae contains
an axiomatic set. A branch is closed if one of its nodes is closed. A proof tree is
closed if all of its branches are closed. An RL(1)-formula is provable if there is a
closed RL(1)-proof tree for it, referred to as an RL(1)-proof.

A node of an RL(1)-proof tree is falsified by a model M = (U,m) and by
an evaluation v if every formula xRy in its set of formulae is falsified by M and
v. A node is falsifiable if there are a model M and an evaluation v such that it
is falsified by M and v. A branch of an RL(1)-proof tree is falsified by a model
M and by an evaluation v if each node in it is falsified by M and v. A branch
of an RL(1)-proof tree is falsifiable if there is a model and an evaluation which
falsify every node in the branch. An RL(1)-proof tree is falsified by a model
M = (U,m) and by an evaluation v if one of its branches is falsified by M and
v. Finally, an RL(1)-proof tree is falsifiable if one of its branches is falsifiable.

Correctness and completeness of RL(1)-dual tableau are proved in [12]. The
logic RL(1) is undecidable. Such result follows from the undecidability of the
equational theory of representable relation algebras discussed in [16]. In the
following sections we present some of its decidable fragments. Other decidable
fragments of RL(1) can be found in [12].

3 The (r ;)-fragment of RL(1) and its decision procedure

The (r ;)-fragment is the collection of the RL(1)-formulae xPy in which the
composition operator “ ; ” can occur only in the following restricted way. For
each subterm of P of the form R ;S, R must belong to a designated nonempty
proper subset of RV, RV1, whereas S can involve all the relational operators

4

Table 2. (r ;)-fragment decomposition rules.

(;)
x(r ;S)y

zSy, x(r ;S)y
x(−r)z a literal in the current node

(− ;)
x(−(r ;S))y

x(−r)z, z(−S)y
z, a new object variable

used to construct RL(1)-formulae, with the exception of the converse operator
−1. In the relation interpretation of logics, the elements of RV1 are meant to
denote accessibility relations (resp., roles) in modal (resp., description) logics.

A formal description of the set of relational terms RT(r ;) is given in what
follows.

Let RV1 be as above, then we define the set of terms RT(r ;)
1

as the smallest
set of terms containing RV1 which is closed with respect to the complementation
operator “−”.

Likewise, we define RT(r ;)
2

as the smallest set of terms containing the con-
stant 1 and the relational variables in RV\RV1, and such that if R,S ∈ RT(r ;)

2

and r ∈ RV1, then −R,R ∪ S,R ∩ S, r ;S ∈ RT(r ;)
2
. Finally we put

RT(r ;) =
Def

RT(r ;)
1
∪RT(r ;)

2
.

This logic allows to express the multi-modal logic K and, therefore, also the
description logic ALC [2, 1]. The translation of such logics in relational terms
is carried out along the lines of [12], Chapter 7. In particular, the relational
variables in RV1 represent the accessibility relations of the multi-modal logic K

and the roles of the logic ALC. A relational dual tableau style decision procedure
for the logic K can be found in [8]. The procedure defined there is inspired by
[3].

3.1 A dual tableau decision procedure for the (r ;)-fragment

Dual tableaux for the (r ;)-fragment can be obtained by adapting the system
introduced in Section 2.3 as we describe below.

Axiomatic sets are defined as in Section 2.3. The set of decomposition rules
for the Boolean operators, namely the (∪), (∩), (−∩), (−∪), (−−)-rules, are
identical to the ones presented in Table 1. The other decomposition rules, that
is the (;)-rule and the (− ;)-rule, are displayed in Table 2.3 The notion of proof
tree is identical to the one given in Section 2.3 with the exception that each node
can be obtained from its predecessor (if any) by the application of a Boolean
decomposition rule of Table 1 or a decomposition rule of Table 2. In particular,
the (;)-rule of Table 2 can be applied to a formula x(r ;S)y of a node of a
proof tree only in case the literal x(−r)z occurs in the same node. Such side
condition makes this variant of the (;)-rule less liberal than the corresponding

3 Table 2 does not contain any decomposition rule for the converse operation −1

because it is not a constructor of the terms belonging to the (r ;)-fragment.

5

rule presented in Table 1, since it restricts the choice of the variable which can be
used in the decomposition step. Moreover, such a rule variant does not perform
any branch splitting and therefore the overall number of branches in the proof
tree is generally smaller.

A proof procedure for the dual tableau system just defined, that we call
(r ;)-dual tableau, can be designed by giving a description of the proof tree
construction process together with the constraints which limit the application
of the decomposition rules.

For this purpose, we introduce the notion of deduction tree. As proof trees,
deduction trees are ordered trees whose nodes are labelled with disjunctive sets.
However, deduction trees may have some leaf nodes that do not contain any
axiomatic set and such that decomposition rules can still be applied to them. As
it is clarified below, deduction trees can be seen as “approximations” of proof
trees with the property that they can be completed to proof trees.

Definition 1. Let xPy be a formula of the (r ;)-fragment of RL(1). A deduction
tree T for xPy is recursively defined as follows:

(a) the tree with only one node labelled with {xPy} is a deduction tree for xPy
(initial deduction tree);

(b) let T be a deduction tree for xPy and let θ be a branch of T whose leaf node
N does not contain an axiomatic set.4 The tree obtained from T by applying
one of the Boolean decomposition rules of Table 1 or one of the decomposition
rules of Table 2, as illustrated by items 1-5 below, is a deduction tree for xPy:

1. if any formula of type x(R ∪ S)y (resp., x(−(R ∩ S))y) occurs in N , we
add N ′ = (N \ {x(R ∪ S)y}) ∪ {xRy, xSy} (resp., N ′ = (N \ {x(−(R ∩
Sy))}) ∪ {x(−R)y, x(−S)y}) as the successor of N in θ;

2. if any formula of type x(R ∩ S)y (resp., x(−(R ∪ S))y) occurs in N ,
we simultaneously add N ′ = (N \ {x(R ∩ S)y}) ∪ {xRy} (resp., N ′ =
(N \ {x(−(R ∪ S))y}) ∪ {x(−R)y}) as left successor of N , and N ′′ =
(N \{x(R∩S)y})∪{xSy} (resp., N ′′ = (N \{x(−(R∪S))y})∪{x(−S)y})
as right successor of N in θ;

3. if any formula of type x(−−R)y occurs in N , we add N ′ = (N \ {x(−−
R)y}) ∪ {xRy} as the successor of N in θ;

4. if any formula of type x(−(r ;S))y occurs in N , we add N ′ = (N \
{x(−(r ;S))y}) ∪ {x(−r)z, z(−S)y} as the successor of N in θ;

5. if any formula of type x(r ;S)y occurs in N and a literal x(−r)z occurs
in N we add N ′ = N ∪ {zSy} as the successor of N in θ.

We further require that the following strictness hypotheses are satisfied: on each
branch of a deduction tree

– all the decomposition rules, with the exception of the (;)-rule, can be applied
at most once to the same non-literal formula,

– the (;)-rule can be applied at most once with the same premises.

4 From now on we identify nodes with the (disjunctive) sets labelling them.

6

It is easy to see that if all the branches of a deduction tree T are either closed
or, according to the strictness hypotheses, not further expansible, then T is a
proof tree. The proof construction in Definition 1 is sound and complete even
under the above strictness hypotheses. We will limit ourselves in showing only
its termination, thus obtaining a decision procedure for the (r ;)-fragment.

3.2 Termination

The proof procedure presented in Section 3.1 adds to the current deduction
tree one or two new nodes at each decomposition step. Thus, in order to show
that it always terminates, it is enough to prove that, given a formula xPy of
the (r ;)-fragment, every proof tree for xPy that can be constructed according
to the procedure described in Section 3.1 is finite. Before going into details it
is useful to introduce the notion of open saturated branch. We characterize an
open saturated branch θS of a deduction tree T for a formula xPy of the (r ;)-
fragment as a set of nodes such that:

– x′1y′ /∈ N , for every node N ∈ θS ;
– if x′Ry′, (resp., x′(−R)y′) occurs in a node N ∈ θS , then x′(−R)y′ (resp.,
x′Ry′) does not occur in any other node N ′ ∈ θS ;

– if x′(−− R)y′ occurs in a node N ∈ θS , then there is a node N ′ ∈ θS such
that x′Ry′ ∈ N ′;

– if x′(R ∩ S)y′ occurs in a node N ∈ θS , then there is a node N ′ ∈ θS such
that either x′Ry′ ∈ N ′ or x′Sy′ ∈ N ′;

– if x′(R ∪ S)y′ occurs in a node N ∈ θS , then there is a node N ′ ∈ θS such
that x′Ry′ ∈ N ′ and x′Sy′ ∈ N ′;

– if x′(−(R∩S))y′ occurs in a node N ∈ θS , then there is a node N ′ ∈ θS such
that x′(−R)y′, x′(−S)y′ ∈ N ′;

– if x′(−(R∪S))y′ occurs in a node N ∈ θS , then there is a node N ′ ∈ θS such
that either x′(−R)y′, or x′(−S)y′ ∈ N ′;

– if x′(r ;S)y′ occurs in a node N ∈ θS , then for every z such that x′(−r)z ∈ N ′,
for some N ′ ∈ θS , there is an N ′′ ∈ θS such that zSy′ ∈ N ′′;

– if x′(−(r ;S))y′ occurs in a node N ∈ θS , then there is a node N ′ ∈ θS such
that x′(−r)z, z(−S)y′ ∈ N ′, for some object variable z.

The proof can be carried out by contradiction, assuming that one can con-
struct an infinite proof tree for xPy under the strictness hypotheses. By König’s
Lemma, such a proof tree must have an infinite branch. This branch cannot be
closed because once a branch is closed, it cannot be further expanded. Thus it
can be embedded in an open saturated branch.

We devote the rest of this section to proving that under the strictness hy-
potheses every open saturated branch of a proof tree for xPy has to be finite.
This result is sufficient to assert, in contradiction with our hypothesis, that each
branch of a proof tree for a formula xPy has to be finite. Thus, each proof tree
for xPy has to be finite and therefore the proof procedure of Section 3.1 always
terminates.

7

To carry out our proof, it is useful to consider that since nodes of a proof
tree are finite sets of formulae, a branch containing a finite number of nodes is
finite.

Let θS be a saturated branch of a proof tree T for a formula xPy. We define
a total order <θS on WθS \ {y} as follows: for z, w ∈WθS \ {y} we let z <θS w if
and only if z has been introduced before w in the construction of the branch θS .

Lemma 1. The number of formulae in
⋃
θS with left variable w is finite, for

every w ∈ WθS .

Proof: The lemma is trivially true for the variable y, since
⋃
θS contains no

formula with left variable y. Concerning the variables in
⋃
θS , we proceed by

induction over the ordered set (WθS \ {y}, <θS).

– Base case. The initial formula xPy can generate, by Boolean decompo-
sition, a finite number of subformulae with left variable x. Moreover, each
application of the (− ;)-decomposition rule introduces a literal of type x(−r)z
that, however, cannot be further decomposed, and every application of the
(;)-rule does not increase the number of formulae with left variable x. Thus
the number of formulae in

⋃
θS with left variable x is finite.

– Inductive step. By inductive hypothesis, the number of formulae in
⋃
θS

with left variable z is finite, for z <θS w. We prove that this holds for w as
well.
The variablew has been introduced by the application of the (− ;)-decomposition
rule to a formula z(−(r ;S))y. The decomposition of w(−S)y by means of the
Boolean rules can introduce in

⋃
θS a finite number of subformulae with left

variable w. Application of the (− ;)-rule to each of these formulae only adds
a literal with left variable w.
Formulae with left variable w can also be obtained by applying the (;)-
decomposition rule to every formula of type z(r ;Q)y (notice that by the (- ;)-
decomposition of z(−(r ;S))y, the literal z(−r)w occurs in θS). By inductive
hypothesis the number of such z(r ;Q)y has to be finite, thus the number of
the wQy formulae resulting from the (;)-decomposition is also finite. Finally,
applying the Boolean rules and the (− ;)-rule to each of the wQy formulae
obtained before, we get a finite number of formulae with left variable w.
Summing up, the number of formulae with left variable w is finite. ⊓⊔

Lemma 2. Any (;)-formula in
⋃
θS can be decomposed a finite number of

times.

Proof: Let z(r ;Q)y be a (;)-formula in
⋃
θS . Clearly, it can be decomposed as

many times as the number of literals z(−r)w in
⋃
θS , for any w ∈ WθS . This

number is in turn bounded by the number of (− ;)-formulae z(−(r ;P))y in
⋃
θS ,

for any relational term P . Since by Lemma 1 this number is finite, the lemma
follows. ⊓⊔

Let us define recursively the weight of a formula as follows:

– weight(xry) = weight(x(−r)y) = weight(x1y) = 0

8

– weight(x(A ∩ P)y) = weight(xAy) + weight(xPy) + 1
– weight(x(−(A ∩ P))y) = weight(x(−A)y) + weight(x(−P)y) + 1
– weight(x(−− P)y) = weight(P) + 1
– weight(x(−(r ;P))y) = weight(z(−P)y) + 1
– weight(x(r ;P)y) = weight(zPy) + 1.

We define the weight of a node N as the sum of the weights of the formulae
in N . In particular, the weight of the (;)-formulae that cannot be decomposed
anymore in N is set to 0. Analogously we set to 0 the weights of those non literal
formulae in N that are not of type (;) which have been already decomposed in
a previous step because they also occur in some ancestors of N . It is easy to
check that the weight of a node N is 0 if and only if it contains only literals,
(;)-formulae that cannot be expanded anymore, and non literal formulae that
are not of type (;) already decomposed by some previous inference steps.

Lemma 3. Let T0 be an initial deduction tree for xPy. After a finite number of
steps a proof tree T can be constructed such that each of its leaf nodes have all
weight 0.

Sketch of the proof: Each time a rule (∩), (∪), (−−), or (− ;) is applied to a
formula on a leaf node of a deduction tree, the new nodes have a lower weight.
If a decomposition step yields a non literal formula that is not of type (;),
that already occurs in some ancestor nodes and that has been decomposed in
a previous step, the weight of that formula is set to 0 and by the strictness
hypotheses it is not decomposed anymore. Each time a (;)-formula is expanded,
the weight of the node is incremented. However, by Lemma 2 this may happen
only a finite number of times. After that, the (;)-formula gets the weight 0 for
ever. Notice also that every (;)-decomposition introduces a formula of a lower
weight. ⊓⊔

Clearly each branch of the proof tree T of Lemma 3 is saturated and finite.
Thus every proof tree for xPy, constructed according to the procedure described
in Section 3.1, is finite. Hence we can state the following theorem.

Theorem 1 (Termination). The dual tableau proof procedure for the (r ;)-
fragment described in Section 3.1 always terminates.

4 The (∪,∩ ;)-fragment of RL(1) and its decision
procedure

The (∪,∩ ;)-fragment of RL(1) is an extension of the (r ;)-fragment in which
the constraints on the composition operator “ ; ” are more relaxed. In particular,
the first argument in a term of type R ;S of the (∪,∩ ;)-fragment can be any
term constructed from the relational variables of a proper nonempty subset of
RV, say RV1, by applying only the ∪ and ∩ operators. The restriction on the
second argument is the same of the (r ;)-fragment: thus S can involve all the
relational operators used in RL(1)-formulae except the converse operator −1.

9

More precisely, we put

RT(∪,∩ ;) =
Def

RT(∪,∩ ;)
1
∪ RT(∪,∩ ;)

2
,

where RT(∪,∩ ;)
1

and RT(∪,∩ ;)
1

are defined as follows. RT(∪,∩ ;)
1

is the small-
est set of terms which contains the relational variables of RV1 and is closed with
respect to the operators −, ∪, and ∩, whereas RT(∪,∩ ;)

2
is the smallest set of

terms involving only the constant 1 and the relational variables RV \ RV1 and
such that if P, S ∈ RT(∪,∩ ;)

2
and R ∈ PRT(∪,∩ ;)

1
, where PRT(∪,∩ ;)

1
is the

subset of RT(∪,∩ ;)
1

whose elements do not contain complemented relational
terms, then −P, P ∪ S, P ∩ S, and R ;P ∈ RT(∪,∩ ;)

2
.

The (∪,∩ ;)-fragment of RL(1) can express the description logic ALC(∪,∩)
[2]. Intuitively speaking, formulae of ALC(∪,∩) can be embedded into the re-
lational framework by mapping role names into the variables in RV1, concept
names into the variables in RV \ RV1, and the operator of existential concept
restriction “∃”, into the composition operator “ ; ”.

4.1 A dual tableau procedure for the (∪,∩ ;)-fragment

We define a dual tableau system for the (∪,∩ ;)-fragment of the relational logic
RL(1) as follows. Axiomatic sets are defined as in Section 2.3. Concerning the
decomposition rules for Boolean formulae and formulae of type (− ;), we adopt
the ones displayed in Table 1.

The (;)-rule deserves a separate treatment. We begin by observing that
the (;)-rule of Table 1 is too liberal in the choice of the object variable to be
used in the (;)-decomposition and does not allow to define a terminating proof
procedure for the (∪,∩ ;)-fragment. On the other hand the variant of (;)-rule
of Table 2 turns out to be too restrictive to define a complete system for the
(∪,∩ ;)-fragment.

In order to define a (;)-rule that is adequate for our purposes, it is convenient
to introduce the following auxiliary notions.

– Let xRy be a Boolean formula of the (∪,∩ ;)-fragment. We define nnf(xRy)
to be the formula obtained from xRy by moving all the occurrences of the
complement operator in R as inward as possible. Formally we put nnf(xRy) =
x nnt(R)y, where:
• if R is an atomic formula or its complementation, then nnt(R) = R;
• if R = (S ∩H), then nnt((S ∩H)) = (nnt(S) ∩ nnt(H));
• if R = (S ∪H), then nnt((S ∪H)) = (nnt(S) ∪ nnt(H));
• if R = (−(S ∩H)), then nnt((−(S ∩H))) = nnt((−S)) ∪ nnt((−H));
• if R = (−(S ∪H)), then nnt((−(S ∪H))) = nnt((−S)) ∩ nnt((−H));
• if R = (−− S), then nnt((−− S)) = nnt(S).

Clearly xRy and nnf(xRy) are logically equivalent, that is for every model
M = (U,m), and every evaluation v, M, v |= xRy if and only if M, v |=
nnf(xRy).

– Let N be a set of formulae. We characterize the notion of BoolN -formulae
as follows:

10

• every literal in N is a BoolN -formula;

• every formula of type x(R∩S)y is a BoolN -formula if either xRy or xSy
is a BoolN -formula;

• every formula of type x(R∪S)y is a BoolN -formula if both xRy and xSy
are BoolN -formulae.

It easy to check that if xSy is a BoolN -formula, then xSy = nnf(xSy).

We say that a formula xRy has a Boolean construction from N if there is a
BoolN -formula xSy such that xSy = nnf(xRy).

– Let R be a Boolean term of RT(∪,∩ ;), x an object variable, F a set of
formulae. Then we define V (R, x, F) to be the set of object variables z such
that xRz has a Boolean construction from F .

Our variant of the (;)-rule is formalized as follows:

x(R ;P)y
zPy, x(R ;P)y

,

where:

– x(R ;P)y is a formula of the (∪,∩ ;)-fragment occurring on the leaf node
N of a branch θ of a deduction tree, and

– z is an object variable belonging to V (−R, x,
⋃
θ).

It is easy to see that V (−R, x,
⋃
θ) = V (−R, x,N) (such identity will be helpful

below). Indeed, since N is the leaf node of θ, the set of literals in N is the same as
the set of literals in

⋃
θ, so that a formula is a BoolN -formula if and only if it is

a Bool⋃ θS -formula. Hence, the set of formulae that have a Boolean construction
from N is identical to the set of formulae having a Boolean construction from⋃
θ, and the identity V (−R, x,

⋃
θ) = V (−R, x,N) follows.

If x(−R)z is a literal, then V (−R, x,
⋃
θ) is the collection of object variables z

such that x(−R)z is in N , and therefore, in this case, such variant of the (;)-rule
coincides with the version presented in Section 3.1.

The (;)-rule given above can be obtained from the (;)-rule in Table 1 by
requiring that the variable z used to decompose x(R ;P)y on the leaf node N of
a branch θ can only be selected from the set V (−R, x,

⋃
θ) (that is from the set

V (−R, x,N)).

In fact, let us assume that we are using the (;)-rule of Table 1 to decompose
x(R ;P)y: we construct the proof tree by adding as a left successor of N the
node N ′ = N ∪{xRz} and as a right successor of N the node N ′′ = N ∪{zPy}.
Since x(−R)z has a Boolean construction from the literals of N ′ (notice that N ′

contains all the literals in N and recall also that z ∈ V (−R, x,N)), the subproof
tree originated from N ′ (which contains xRz) is closed. Consequently we can
get rid of the subtree proof originated from N ′ and concentrate on the subtree
proof originated from N ′′ only.

Dual tableaux for the (∪,∩ ;)-fragment are provided with a procedure for
constructing proof trees along the lines described in Section 3.1.

11

4.2 Soundness

The proof of soundness of the dual tableaux system for the (∪,∩ ;)-fragment
can be carried out by showing that each step of the construction process of a
proof tree for a formula xPy of the (∪,∩ ;)-fragment preserves falsifiability.

Lemma 4. Let T be a falsifiable deduction tree and let T ′ be obtained from T
by a step of the proof procedure described in Section 4.1. Then T ′ is a falsifiable
deduction tree.

Proof. Since T is falsifiable, there is a branch θ of T that is falsifiable. Let
M = (U,m) and v be respectively a model and an evaluation falsifying each
node of θ. If T ′ is obtained from T by expanding a branch different from θ,
we are done. Otherwise, suppose that T ′ is obtained from T by decomposing a
non-literal formula x′Ex′′ occurring on the leaf node N of θ. The proof that T ′

is falsifiable can be carried out according to the type of the formula x′Ex′′. We
consider in detail only the case in which x′Ex′′ is a (;)-formula. Thus, suppose
that x′Ex′′ = x′(R ;P)x′′ occurs on the leaf node N of a branch θ and that z ∈
V (−R, x′,

⋃
θ). Then T ′ contains the branch θ′ = θN ′, with N ′ = N ∪ {zPx′′}.

Since M, v 6|= x′(R ;P)x′′, we can write M, v |= x′(−(R ;P))x′′. That is, for
every u ∈ U either (v(x′), u) ∈ m(−R) or (u, v(x′′)) ∈ m(−P). This holds true
in particular for the element ū ∈ U such that ū = v(z) and therefore either
M, v |= x′(−R)z or M, v |= z(−P)x′′ holds.

We now show that M, v 6|= x′(−R)z. Since M and v falsify N , they falsify
each literal in it and, in particular, the literals used to construct x′(−R)z. We
show by induction over the structure of x′(−R)z that, if a model M and an
evaluation v falsify all the literals in N employed for the Boolean construction
of x′(−R)z, then M and v falsify x′(−R)z. If x′(−R)z is itself a literal, then
it is clearly falsified by M and v. Next, suppose that x′(−R)z is such that
nnf(x′(−R)z) = x′(S ∪ T)z, where x′(S ∪ T)z is a BoolN -formula. Then, by
definition of BoolN -formula, x′Sz and x′Tz are BoolN -formulae too. Thus they
trivially have a Boolean construction from the literals in N and, by inductive
hypothesis they are falsified by M and v. Consequently, M and v falsify x′(S ∪
T)z and x′(−R)z. Finally, let x′(−R)z be such that nnf(x′(−R)z) = x′(S ∩ T)z,
with x′(S ∩ T)z a BoolN -formula. Then, by definition of BoolN -formula, either
x′Sz or x′Tz is a BoolN -formula. Thus, either x′Sz or x′Tz has a Boolean
construction from the literals in N and, by inductive hypothesis, either x′Sz or
x′Tz is falsified by M and v. This is enough to deduce that M and v falsify
x′(−R)z as well.

Thus, M, v 6|= zPx′′ holds and hence M, v 6|= N ′, M, v 6|= θ′, and M, v 6|= T ′.
⊓⊔

The preceding lemma yields immediately the soundness of our dual tableau
system.

Theorem 2. Let xPy be a relational formula of the (∪,∩ ;)-fragment. If there
is a closed proof tree for xPy, then xPy is valid.

12

4.3 Completeness

The notion of open saturated branch θS of a deduction tree T for a formula xPy
is defined as in Section 3.2 with the exception of the item relative to (;)-formulae
that here is formalized as follows:

– if x′(R ;P)y′ ∈ N , with N a node of θS , there is an N ′ ∈ θS such that
zPy′ ∈ N ′, for every z ∈ V (−R, x′,

⋃
θS).

Lemma 5. Let T be a deduction tree for a formula xPy of the (∪,∩ ;)-fragment
of RL(1). If θS is a saturated open branch of T , then there exist a model M =
(U,m) and an evaluation v that falsify θS.

Proof: Let us construct a model M = (U,m) and an evaluation v falsifying every
node of the branch θS . Let WθS be the collection of all the variables occurring
in the formulae of the nodes of θS . Then we put U =

Def
WθS and v(x) =

Def
x,

for every x ∈ U .
Let LitθS be the set of all literals occurring in the nodes of θS . The inter-

pretation m is defined by (x′, y′) /∈ m(R) if and only if x′Ry′ ∈ LitθS . m is well
defined since, by definition of open saturated branch, if x′Ry′ (resp., x′(−R)y′)
occurs in a node of θS , then x′(−R)y′ (resp., x′Ry′) does not occur in any other
node of θS . Next, we prove that M and v falsify each formula in the nodes of θS .
For this purpose, it is convenient to introduce the set

⋃
θS of all the formulae

contained in the nodes of θS , and show that M and v falsify each formula in⋃
θS . Then, since each node N of θS is a subset of

⋃
θS , M and v falsify N as

well.
Let ϕ be a formula of

⋃
θS . The proof is carried out by induction over the

structure of ϕ.

– Base case. ϕ is a literal. Clearly, by definition, M and v falsify all the
literals in

⋃
θS (in fact they falsify all the literals in the nodes of θS).

– Inductive step. For simplicity, we report the proof only for the case ϕ =
x′(R ;Q)y′, in which case x′(R ;Q)y′ ∈ N , for some node N of θS . To prove
that M, v 6|= x′(R ;Q)y′, we have to show that for every z ∈ U (that is,
z ∈ WθS)

M, v |= x′(−R)z or M, v |= z(−Q)y′ (1)

holds (recall that v(x) = x, for every x ∈ WθS).
By a repeated application of the (;)-rule, all the formulae zQy′, with z ∈
V (−R, x′, θS) occur in

⋃
θS . In particular, each of them belongs to a node

of the branch and, by inductive hypothesis, M and v do not satisfy all of
them. Thus (1) is satisfied for every z ∈ V (−R, x′,

⋃
θS). We have to prove

that it holds also for every z ∈ WθS \V (−R, x′,
⋃
θS). In fact we show that if

z ∈ WθS \V (−R, x′,
⋃
θS), then M, v |= x′(−R)z. The proof is by induction

over the structure of x′(−R)z.
• Base case: x′(−R)z is a literal. Then, x′(−R)z /∈

⋃
θS . Indeed, if x′(−R)z ∈⋃

θS then z has to be a member of V (−R, x′,
⋃
θS) contradicting our hy-

pothesis. Thus M, v |= x′(−R)z.

13

• Inductive step: we distinguish the following two cases.
∗ Let nnf(x′(−R)z) = x′(S ∪H)z. Then x′(S ∪H)z has been obtained

from the union of x′Sz and of x′Hz. At least one of them, say x′Sz
(without loss of generality), is not a Bool⋃ θS -formula, because oth-
erwise z would belong to V (−R, x′,

⋃
θS). Thus x′Sz does not have a

Boolean construction from
⋃
θS , z ∈WθS \V (S, x′,

⋃
θS) and there-

fore, by inductive hypothesis, M, v |= x′Sz. Thus M, v |= x′(R∪S)z,
and hence M, v |= x′(−R)z.

∗ Let nnf(x′(−R)z) = x′(S ∩ H)z. Then none of x′Sz and x′Hz are
Bool⋃ θS -formulae, because otherwise z would belong to V (−R, x′,

⋃
θS).

Thus, x′Sz and x′Hz do not have a Boolean construction from
⋃
θS

and z ∈ (WθS \ V (S, x′,
⋃
θS)) ∩ (WθS \ V (H,x′,

⋃
θS)). Therefore,

by inductive hypothesis, M, v |= x′Sz and M, v |= x′Hz, so that
M, v |= x′(R ∩ S)z, and hence M, v |= x′(−R)z.

We have shown that M, v |= x′(−R)z, for every z ∈ WθS \ V (−R, x′,
⋃
θS),

and that M, v |= z(−Q)y, for every z ∈ V (−R, x′,
⋃
θS). Consequently, for

every z ∈ WθS either M, v |= x′(−R)z or M, v |= z(−Q)y′ and therefore
M, v 6|= x′(R ;Q)y′, as we wished to prove. ⊓⊔

Theorem 3 (Completeness). If xPy is a valid formula of the (∪,∩ ;)-fragment
of RL(1) then there is a closed proof tree for xPy.

Proof: Suppose by way of contradiction that there is no closed proof tree for
xPy. Let TS a proof tree produced by the procedure described above, such that
all leaves are closed or not further expandible. Since TS is not closed, there must
be a branch θS of TS that is not closed. Thus θS is an open, saturated branch,
since it is not further expandible. Thus, by Lemma 5, there is a model M and
an evaluation v falsifying each node of θS . This holds in particular for the root
{xPy}, thus contradicting the hypothesis. ⊓⊔

4.4 Termination

The proof of termination of the proof procedure described in Section 4.1 can be
carried out as in Section 3.2. The proof of Lemma 1 can be easily adapted to
this context by observing that:

(a) in formulae of type x(−(R ;S))y, the term −R is always a Boolean term.
Consequently the formula x(−R)z originated by the (− ;)-decomposition of
x(−(R ;S))y can be decomposed only a finite number of times.

(b) There is a finite number of formulae with left variable w that are obtained by
applications of the (;)-decomposition rule: we observe that the variable w
has been introduced by the (− ;)-decomposition of a formula z(−(R ;H))y.
By the side conditions of the (− ;)-decomposition rule, the literals on the
branch θS with right variable w can only have z as the left variable. Thus,
the formulae of type (;) that can be decomposed using the variable w must
have z as the left variable and therefore, by the inductive hypothesis they
have to be finite in number. By the strictness hypotheses it follows that the
number of formulae with left variable w originated from (;)-decomposition
is finite.

14

5 Conclusions and future work

We have presented decision procedures based on the method of dual tableaux for
two fragments of the relational logic RL(1). These fragments, called the (r ;)-
and the (∪,∩ ;)-fragments, are characterized by the fact that they allow only
a restricted application of the composition operator “ ; ”. In particular, in every
term of type R ;S, the left argument R can be either a relational variable (for
the (r ;)-fragment) or a positive Boolean term (for the (∪,∩ ;)-fragment).

The decision procedures have been drawn from the dual tableau system
for RL(1) presented in [12] by strengthening the side conditions of the (;)-
decomposition rule in such a way as to reduce the collection of object variables
that can be used at each decomposition step.

In a forthcoming paper we present the detailed proofs of soundness and com-
pleteness of the (r ;)-fragment and decision procedures for some other fragments
of RL(1), in particular for a fragment that admits terms of type R;S, where R
can be any Boolean term with converse operation.

We plan to provide the complexity analysis for the decision procedures pre-
sented in the paper. Our aim is also to check the possibility of improving them by
introducing, for instance, a more liberal application of the (− ;)-decomposition
rule, or by adding further strictness hypotheses to the proof tree construction
process.

We also intend to investigate other extensions of the fragments considered
here which allow relational terms containing constant relations with properties
such as reflexivity, transitivity, symmetry, and so on. This will permit the def-
inition of dual tableau-based decision procedures for the relational renderings
of modal logics such as B, T, S4, of intuitionistic logics, information logics, and
context logics, such as the ones reported in [12]. We also plan to explore the pos-
sibility of importing into the relational context techniques and strategies used
to prove and optimize decidability results in the field of computable set the-
ory, such as the model checking technique introduced in [5] or the small model
construction approach described in [6].

References

1. F. Baader. Description logics. In: Reasoning Web: Semantic Technologies for In-
formation Systems, 5th International Summer School. Lecture Notes in Computer
Science 5689, 2009, pp. 1–39.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. Patel-Schneider. The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

3. D. Bresolin, private communication, 2007.
4. C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal Aspects of Com-

puting, 6(3):339-358, 1994.
5. D. Cantone. A fast saturation strategy for set-theoretic tableaux. In: TABLEAUX

’97: Proceedings of the International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, pp. 122–137, London, UK, 1997. Springer-
Verlag.

15

6. D. Cantone, M. Nicolosi Asmundo. On the satisfiability problem for a 3-level
quantified syllogistic. In: Proceedings of CEDAR’08, Sydney, Australia, 11 August,
2008, pp. 1–16.

7. A. Formisano, E. Omodeo, E. Or lowska. A PROLOG tool for relational trans-
lation of modal logics: A front-end for relational proof systems. In: B. Beck-
ert (ed) TABLEAUX 2005 Position Papers and Tutorial Descriptions, Universität
Koblenz-Landau, Fachberichte Informatik No 12, 2005, pp. 1–10.

8. J. Golińska-Pilarek, E. Munoz-Velasco, and A. Mora. A new decision procedure for
modal logic K. In: Proceedings of the International Conference on Computational
and Mathematical Methods in Science and Engineering, CMMSE 2009, pp. 537–
548.

9. J. Golińska-Pilarek, E. Or lowska. Tableaux and dual tableaux: Transformation of
proofs. Studia Logica, 85(3):283-302, 2007.

10. R. Maddux. Relation algebras. In: C. Brink, W. Kahl and G. Schmidt (eds.)
Relational Methods in Computer Science. Advances in Computer Science. Springer:
Wien, New York (1997).

11. E. Or lowska. Relational interpretation of modal logics. In: H. Andreka, D.
Monk, and I. Nemeti eds., Algebraic Logic. Colloquia Mathematica Societatis Janos
Bolyai, vol. 54, pp. 443–471, North Holland, 1988.

12. E. Or lowska, J. Golińska-Pilarek. Dual Tableaux: Foundations, Methodology, Case
Studies. Book submitted.

13. C. S. Peirce. Note B: the logic of relatives. In: C. S. Peirce (ed) Studies in Logic
by Members of the Johns Hopkins University, Little, Brown, and Co., Boston, pp.
187–203 (1883).

14. R. A. Schmidt, E. Or lowska, and U. Hustadt. Two proof systems for Peirce alge-
bras. In: R. Berghammer, B. Möller, and G. Struth, (eds.). Relational and Kleene-
Algebraic Methods in Computer Science: 7th International Seminar on Relational
Methods in Computer Science and 2nd International Workshop on Applications of
Kleene Algebra, Bad Malente, Germany, May 12-17, 2003, Revised Selected Pa-
pers, Lecture Notes in Computer Sciencce 3051, Springer, 2004, pp. 238–251.

15. A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73-89,
1941.

16. A. Tarski, S. Givant. A Formalization of Set Theory without Variables. American
Mathematical Society Colloquium Publications, Providence, Rhode Island, 1987.

16

