Parallel Instantiation in DLV *

Simona Perri, Francesco Ricca, and Marco Sirianni

Dipartimento di Matematica, Univeraitella Calabria, 87030 Rende, Italy
{perri,ricca,sirianni }@mt.unical.it

Abstract. Answer Set Programming (ASP) is a purely-declarative logic pro-
gramming language allowing for disjunction and nonmonotonic negatioae. Th
evaluation of ASP Programs is traditionally carried out in two steps. In the fir
step an input prograr® undergoes the so-called instantiation (or grounding) pro-
cess, which produces a progra?hsemantically equivalent t8, but not contain-

ing any variable; in turrP’ is evaluated by using a backtracking search algorithm
in the second step. This paper presents a new parallel version of thetietsta

of DLV, featuring new load-balancing and granularity control heuristid¢gch is
able to exploit the processing power offered by multi-core/multi-prageSMP
machines.

1 Introduction

Answer Set Programming (ASP) [1, 2] is a purely declaratikegpamming paradigm
based on nonmonotonic reasoning and logic programming.ldiguage of ASP is
based on logic rules; disjunctive rule(rule, for short)r is a formulaa; v --- Vv
Gp = by, -+ ,bg, not bgy1, -, not b,,. whereay,--- ,a,,by,--- b, are atoms
(possibly containing variables) and> 0, m > k > 0. An ASP program is a set of
rules. The semantics of an ASP program was originally givefil] and is based on
the Gelfond-Lifschitz transformation. Basically, the édef answer set programming
is to represent a given computational problem by a logic fanogthe answer sets of
which correspond to solutions, and then, use an answerlget $ofind such solutions
[2]. In the following we assume the reader to be familiar viigsic logic programming
terminology and ASP.

The main advantage of ASP is its high declarative nature aoedlwith a relatively
high expressive power [3, 4]; but this comes at the price dfja homputational cost,
which makes the implementation of efficient ASP systemsfecdif task. Some effort
has been made to this end, and, after some pioneering wate Hre nowadays a
number of systems that support ASP and its variants [3, 5-12]

Traditionally, the kernel modules of such systems opemata ground instantiation
of the input program, i.e. a program that does not containvanable, but is semanti-
cally equivalent to the original input [13]. Therefore, aput progranf” first undergoes
the so-called instantiation process, which produces arpno@’ semantically equiv-
alent to’P, but not containing any variable. This phase is computatlprexpensive

* Partially supported by the Regione Calabria and EU under POR Calabrig P&S7-2013
within the PIA project of DLVSYSTEM s.r.l..

(see [4]); and, nowadays, it is widely recognized that hgnan efficient instantiation
procedure is crucial for the performance of the entire ASResy. Many optimization
techniques have been proposed for this purpose [14-16&rtheless, the performance
of instantiators is still not acceptable in many cases, @afhg when the input data are
significantly large (real-world instances, for exampleyroaunt hundreds of thousands
of tuples).

In this scenario, significant performance improvementsheaabtained by exploit-
ing modern multi-core/multi-processor SMP [17] machirfesturing several CPU in
the same case. In the past only expensive servers and warkstaupported this tech-
nology; whereas, at the time of this writing, most of the paed computers systems and
even laptops, are equipped with (at least one) dual-comepsnr. This means that the
benefits of true parallel processing are enjoyable also frydevel systems and PCs.
However, traditional ASP instantiators were not develowét multi-processor/multi-
core hardware in mind, and are unable to fully exploit the potational power offered
by modern machines.

This paper presents a system for the parallel instantiaiégxSP Programs, which
is able to exploit the computational power offered by matire/multi-processor ma-
chines for obtaining a faster instantiation. The systemaseld on the state-of-the-art
ASP instantiator of the DLV system [3]; moreover it exterks tecently-proposed [18]
techniques for parallel ASP instantiation by introducinguanber of relevant improve-
ments:(i) parallelism is exploited in three different stages of thepatatiort (compo-
nent level, rule level, single rule level); afd) dynamic load balancing and granularity
control strategies based on computationally-cheap hesrsre supported. In this way,
the efficacy of the system is no-more limited to programs witimy rules (as in [18]),
and also the particularly (common and) difficult-to-paghile class of programs with
few rules is handled in an effective way.

An experimental activity is also reported, that was cardetbn a variety of publicly-
available benchmarks already exploited for evaluatingoiréormance of instantiation
systems. The results are very promising: superlinear sgpseare observed in the case
of easy-to-parallelize problem instances; and, nearlinitefficiencies are measured
in the case of hard-to-parallelize problem instances.

The remainder of the paper is structured as follows: Se@iaescribes the em-
ployed parallel instantiation strategies; Section 3 dises the results of the experi-
ments carried out in order to evaluate the performance ofybem; finally, Section 4
is devoted to related works, and Section 5 draws some caaokis

2 Parallel Instantiation of ASP Programs

In this section we briefly describe the employed techniquethie parallel instantiation
of ASP Programs first; and then, we describe the dynamic lakhbing and granular-
ity control strategy employed in the system.

In particular, we show that according to such techniquesgtlevels of parallelism
can be exploited during the instantiation process, nametpponents, rules and single

! Preliminary results have been presented in [19].

rule level. The first level allows for instantiating in pdedkubprograms of the program
in input and it is especially useful when handling prograraataining parts which
are, somehow, independent. The second one, the rules &las for the parallel
evaluation of rules within a given subprogram and it is thesful when the number
of rules in the subprograms is high. The third one, the simgle level, allows for
the parallel evaluation of a single rule and it is thus crufoathe parallelization of
programs with few rules, where the first two levels are almostapplicable.

The first two levels were first employed in [18] while the thinae was preliminarily
presented in [19]. A detailed description of these techesge out of the scope of this
paper. For further details, we refer the reader to [18, 19].

2.1 Parallel Instantiation Technigues

Components LevelThe first level of parallelism, calle@omponents Levelssentially
consists on dividing the input prografinto subprograms, according to the dependen-
cies among the IDB predicates BY, and by identifying which of them can be evalu-
ated in parallel. More in detail, each progrémis associated with a graph, called the
Dependency Grapbf P, which, intuitively, describes how IDB predicates Bfde-
pend on each other. For a progrdmthe Dependency Grapbf P is a directed graph
Gp = (N, E), whereN is a set of nodes anfl is a set of arcsV contains a node for
each IDB predicate dP, andE contains an are = (p, q) if there is a ruler in P such
thatq occurs in the head of andp occurs in a positive literal of the body of

The graphG'» induces a subdivision @ into subprograms (also calledodule3
allowing for a modular evaluation. We say that a rule P definesa predicate if p
appears in the head of For each strongly connected component (S&CHf G, the
set of rules defining all the predicatesthis calledmoduleof C. A rule r occurring in
amoduleof a componen€ (i.e., defining some predicate(C) is said to beecursiveif
there is a predicate € C occurring in the positive body of, otherwisey is said to be
an exit rule Moreover, a partial ordering among the SCCs is inducedrpy defined
as follows: for any pair of SCC4, B of Gp, we say thatB directly depends out if
there is an arc from a predicate 4fto a predicate of3; and, B depends o if there
is a path inGp from A to B.

According to such definitions, the instantiation of the inptogram? can be car-
ried out by separately evaluating its modules; if the evadnaorder of the modules re-
spects the above mentioned partial ordering then a smalhgrprogram is produced.
Indeed, this gives the possibility to compute ground instarof rules containing only
atoms which can possibly be derived frdMm(thus, avoiding the combinatorial explo-
sion which can be obtained by naively considering all thenatin the Herbrand Base).

Intuitively, this partial ordering guarantees that a comgrt A precedes a compo-
nent B if the program module corresponding tbhas to be evaluated before the one
of B (because the evaluation of A produces data which are neededd instantia-
tion of B). Moreover, the partial ordering allows for deténing which modules can
be evaluated in parallel. Indeed, if two componeAtand B, do not depend on each

2 A strongly connected component of a directed graph is a maximal sobise vertices, such
that every vertex is reachable from every other vertex.

other, then the instantiation of the corresponding prognamdules can be performed
simultaneously, because the instantiatiomafoes not require the data produced by the
instantiation ofB and vice versa. The dependency among components is thugrhe p
ciple underlying the first level of parallelism. At this ldweibprograms can be evaluated
in parallel, but still the evaluation of each subprograneiguentiaf

Rules Level.The second level of parallelism, called tRales Levelallows for concur-
rently evaluating the rules within each module. Accordiogdhtis technique, rules are
evaluated following a semi-inge schema [20] and the parallelism is exploited for the
evaluation of both exit and recursive rules. More in detailthe instantiation of a mod-
ule M, first all exit rules are processed in parallel by exploiting data (ground atoms)
computed during the instantiation of the modules whi¢hdepends on (according to
the partial ordering induced by the dependency graph). @itgrward, recursive rules
are processed in parallel several times by applying a seimérmvaluation technique.
At each iteratiom, the instantiation of all the recursive rules is performedaurrently
and by exploiting only the significant information derivedrithg iterationn — 1. This

is done by partitioning significant atoms into three sets!, S and NS. NS is filled
with atoms computed during current iteration (3gy AS contains atoms computed
during previous iteration (say— 1); and,S contains the ones previously computed (up
to iterationn — 2).

Initially, AS and NS are empty; whileS contains all the information previously
derived in the instantiation process. At the beginning afhemew iteration,VS is
assigned taAS, i.e. the new information derived during iteratianis considered as
significant information for iteratiom + 1. Then, the recursive rules are processed si-
multaneously and each of them uses the information cordtaimine setAS; at the end
of the iteration, when the evaluation of all rules is terntéuh the setAS is added to
the setS (since it has already been exploited). The evaluation sidEnever no new
information has been derived (i.4.5 = 0).

Single Rule LevelThe techniques described above, concerning the first twaldef
parallelism, were firstly employed in [18] and are very efifex when handling long
programs. However, when the input program consists of fdesruheir efficacy is
drastically reduced, and there are cases where compomehtslas parallelism are not
exploitable at all.

Consider for instance the following progrgfrencoding the well known 3-colorability
problem:

(r) col(X,red) V col(X,yellow) V col(X,green) :— node(X).
(¢) :=edge(X,Y),col(X,C), col(Y,C).

The two levels of parallelism described above have no effentthe evaluation op.
Indeed, this encoding consists of only two rules which haumetevaluated sequentially,
since, intuitively, the instantiation @) produces the ground atoms with predicaté
which are necessary for the evaluation of.

3 Note that, for the sake of clarity, a simplified version of the technique pteden [18] has
been described.

For the instantiation of this kind of programs a third lex&hecessary for the par-
allel evaluation of each single rule, which is therefordezhbingle Rule Levello this
aim, a strategy has been presented in [19] which allows falletizing the evaluation
of a rule on the base of a dynamic rewriting of the program.r€ueplifying, the basic
idea of single rule level parallelism consists in rewritthg program rules into a num-
ber of new rules whose evaluation can be performed simuitastg by applying the
techniques described above.

For instance, ruléc) in the previous example can be rewritten as follows:

(c1) = edgei(X,Y),col(X,C), col(Y,C).
(c2) = edge2(X,Y),col(X,C), col(Y,C).

(cn) = edgen(X,Y),col(X,C), col(Y,C).

by splitting the set of ground atoms with predicaiéyec (also called thextensiorof
edge), into a number of subsets. The obtained rules can be eedlimparallel and the
instantiation produced is equivalent (modulo renaminghéooriginal one. However, in
general, many ways for rewriting a program may exist (fotanse, in the case @t),
col can be split up instead efige) and the choice of the literal to split has to be carefully
made, since it may strongly affect the cost of the instaotiadf rules. Indeed, a “bad”
split might reduce or neutralize the benefits of paralleigras making the overall time
consumed by the parallel evaluation not optimal (and, inesoorner case, even worse
than the time required to instantiate the original encodiMpreover, if the predicate
to be split is an IDB predicate (as in the casé) a static rewriting would lead to quite
complex encodings possibly requiring a slower instartigtin this case a rewriting
performed at running time is more suitable, since it can lpdieg when the extension
of the IDB predicate has already been computed.

In our system, rules are rewritten at execution time, thugadyically distributing
the workload among processing units, and a heuristics tfaseletermining the literal
to split. More in detail, the strategy works as follows: aertllis rewritten at execution
time by splitting the extension of one single body (eitherBEBr IDB) predicatep
of r (chosen according to a heuristics) in several parts. Eaghipassociated with
a different temporary predicate; and, for each of thoseipagtel, say;, a new rule
called split rule, obtained by replacing with p;, is produced. The so-created rules
will be instantiated in parallel in place of(temporary predicate names are recognized
when output is produced and replaced with original namesderao obtain the same
output of the standard algorithm). Hereafter, we refer ®riimber of split rules as
split number(or, equivalentlyhumber of splits and to the size of the extensions of
each split predicate aplit size

Concerning the selection of the literal to be split, the chdhas to be carefully
made, since it may strongly affect the cost of the instaiotiatf rules; a good heuristics
should minimize it. It is well known that this cost strictlyegends on the order of
evaluation of body literals, since computing all the polesihstantiations of a rule is
equivalent to computing all the answers of a conjunctivergimning the extensions
of literals of the rule body. A pragmatic choice is to selatbatimal ordering and split
the first literal in this order. Note that, since the instatitn of a body rule basically
follows a nested-tuple strategy proceeding from left thtjigplitting on the first literal

minimizes the number of repeated match operations (seéddfirther insights). Since

the ordering problem has already been investigated andfectieé strategy [15] has

already been successfully implemented in DLV, it was detideadopt it. This choice

has also another important consequence: since all thergaitte heuristics is based
on are always already computed during the computationmidementation does not
introduce any overhead.

2.2 Load Balancing and Granularity Control

An advanced implementation of a parallel system has to digaltwo important issues
that strongly affect the performance: load balancing amehgiarity control. Indeed, if
the workload is not uniformly distributed to the availablegessors then the benefits of
parallelization are not fully obtained; moreover, if theamt of work assigned to each
parallel processing unit is too small then the (unavoidablerheads due to creation
and scheduling of parallel tasks might overcome the adgastaf parallel evaluation
(in a corner case, adopting a sequential evaluation migptdferable).

In this respect, the number of splits allowed for each rutedaiy determines the
split size and, thus the “amount of work” assigned to diffethreads. As an example,
consider the case in which we are running on a two processchimathe instantiation
of a ruler and that, by applying dynamic rewriting,is rewritten into two split rules.
Assume also that the extension of the split predicate isfdivided into two subsets
with, approximatively, the same size. Then, each splitwilebe processed by a thread;
and the two threads will possibly run separately on the twailalle processors. For
limiting the inactivity time of the processors, it would besirable that the threads
terminate their execution almost at the same time. Unfattieli, this is not always the
case, because subdividing the extension of the split palio equal parts does not
ensure that the workload is equally spread between thresmgever, if we consider a
larger number of split, a further subdivision of the worldoaill be implied, and, the
inactivity time would be more likely limited.

Clearly, it is crucial to guarantee that the parallel ins&ion of a rule is not more
time-consuming than its serial instantiation; and that mipalanced workload distribu-
tion does not introduce significant delays and limits theraV@erformance. Neverthe-
less, it is necessary to control the number of threads, iardodsave system resources.
In order to satisfy all these requiremen(ts, we imposed a limit to the number of con-
currently running threads which is user-defined (an adegsetting is a multiple of
the number of available CPUs); ar(@;) we devised and tuned a heuristics that selects
dynamically the size of the split depending on the rule aidh@md different rules in
the same programs may be assigned to different split sizes).

In detail, our method computes a heuristic valtiér) that acts as a litmus paper in-
dicating the amount of work required for evaluating eack rubf the program, and so,
its “hardness”, just before its instantiation; then, its¥g(r) to decide an appropriate
split size. In particular, the size of the split should bdfisigntly large to avoid thread
management overhead (granularity control); and suffiliesthall to exploit the pre-
emptive multitasking scheduler of the operating systenofitaining a good workload
distribution (load balancing).

Granularity Control is obtained by comparing, before instantiating each ruld/(r)
to an empirically-determined threshald.,; if W(r) > wse, then the rule is scheduled
for parallel instantiation, otherwise a sequential ingédion is performed. The idea is
that: it is more convenient to perform a sequential insgdiotih of “very easy” rules
since the overhead introduced by threads might be largarthedr expected evaluation
time.

Load Balancing is obtained by splitting rules in equally-sized splits. lartcular,
each rule is split by dividing the extension of the first poadé by a number which
is multiple of the number of processors. This strategy teduio be sufficient in most
cases, but required a refinement in the case of “very hardsruh particular, when a
rule is assessed to be “hard” by comparing the estimated witinkanother empirically-
determined threshold/¥(r) > w.,), a finer work distribution (exploiting a unary split
size) is performed for the last— n,, splits, wheres is the number of split and,, is the
number of processors. The intuition here is that, if a ruleaisd to instantiate then it is
more likely that its splits are also hard, and thus an uneva&rnilaition of the splits to
the available processors in the last part of the computatigit cause a sensible loss
of efficiency. Thus, further subdividing the last “hard” il may help to distribute in
a finer way the workload in the last part of the computation.

Computation of heuristic valuesW(r) is obtained by combining two estimations:
J(r) andC(r). First, note that computing all the possible instantiagionf a rule is
equivalent to calculate all the answers of a conjunctiveryjuehus, we considered
J(r) that is an estimation of the size of the join correspondinghto evaluation of
the body ofr. Moreover, since in the instantiation of rules with sevgoal variables
the running time is mostly due to variable matching, we adergdC(r) that is an es-
timation of the number of comparisons made by the instaotialgorithm (roughly,
we considered (r) because even producing a small output might require a censid
able amount of time due to many matching failures). The twomeonents ofV(r) are
estimated as follows:

— Size of the jointhe size of the join between two relatioRsand.S with one or more
common variables can be estimated, according to [20] e/l

T(R)-T(S)

T(RXS)=
() HXEU(J,T(R)ﬁvar(S) max {V (X’ R) 7V(X? S)}

whereT (R) is the number of tuples iR, andV (X, R) (called selectivity) is
the number of distinct values assumed by the variabia R. For joins with more
relations one can repeatedly apply this formula to pair afygaredicates according
to a given evaluation order for computirgg(r). The interested reader can find a
more detailed discussion on this estimation in [20].

— Number of comparisonsin approximation of the number of comparisons done for
instantiating a rule is:

cry= > [v

XeX(r) LEL(r,X)

whereX(r) is the set of variables that appear in at least two literathénbody
of r, L(R,X) is the set of body literals in whiclX occurs; andV (X, L) is the
selectivity of X in the extension ofL. Roughly, the number of comparisons is
approximated by the sum of the product of the number of disiialues assumed
by each join variable im.

3 Experiments

In order to assess the performance of our parallel instantiee carried out an experi-
mental activity, reported in this section.

The machine used for the experiments is a two-processdrieten “Woodcrest”
(quad core) 3GHz machine with 4MB of L2 Cache and 4GB of RAMyning Debian
GNU Linux 4.0. We measured the efficiency of the instantjaaod test its behavior
when the number of available CPUs is between 2 and 8. To do s@xploited the
available hardware, enabling several fixed numbers of CRlédsenabled/disabled the
CPUs by running the following bash Linux commands:

echo 0>> /sys/devices/system/cpu/cpa/online

that disables thepu — n CPU; and

echo 1>> /sys/devices/system/cpu/cpa/online

to re-enable the same CPU.

Since our techniques focus on instantiation, all the regflthe experimental anal-
ysis refer only to the instantiation process rather thanathele process of computing
answer sets; in addition, the time spent before the grogrstimge (parser and prelim-
inary operations) is obviously the same both for parallel aan-parallel version. In
order to obtain more trustworthy results, each single erpmt has been repeated five
times.

In the following, we briefly describe both benchmark prolbdeamd data. In order
to meet space constraints, encodings are not presentelddyuarte available, together
with the employed instances, and the binariestatp: / / www. mat . uni cal . it/
ri cca/ downl oads/ par al | el ground09. zi p. Rather, to help the understand-
ing of the results, some information is given on the numbeules of each program.

3.1 Benchmark Problems and Data

The benchmark problems can be grouped into two differerssels the first class is
composed of some well know combinatorial problems, namelpng&ey Numbers, 3-
Colorability, Hamiltonian Path, Reachability, and N-QoeeThese benchmark prob-
lems have been already used for assessing ASP instantformpance ([3, 21]). Prob-
lems belonging to this class are, indeed, particularlydiffito parallelize due to the
compactness of their encodings; note also that, such kiqnlogframs are quite com-
mon given the declarative nature of the ASP language whicwslto compactly en-
code even very hard problems. About data, we considerednfstarices of increasing
difficulty for each problem, except for the Hamiltonian Ppatbblem, for which we con-
sidered thirteen instances of increasing size; and, f@&ioioty more significant results,
we considered instances where the instantiation time iswegligible.

Instantiation time
Problem serial 2 prod 3 prod 4 prod 5 prod 6 prod 7 prod 8 prog
queensi 431(0,03) 2.28(0.01) 1.55(0.04) 1.18(0.01) 0.97(0.02) 0.81(0.01) 0.71(0.01) 0.63(0.01
queenss 5.43(0,01) 2.80(0.01) 1.89(0.00) 1.44(0.01) 1.17(0.01) 1.00(0.01) 0.87(0.01) 0.78(0.02
queenss 6.66 (0,05) 3.40(0.01) 2.29(0.01) 1.76(0.01) 1.45(0.07) 1.20(0.01) 1.04(0.01) 0.93(0.02
queensy 7.96 (0,03) 4.25(0.26) 2.83(0.12) 2.10(0.02) 1.70(0.01) 1.43(0.01) 1.26(0.00) 1.11 (0.00
queenss 9.48 (0,04) 4.87(0.01) 3.30(0.03) 2.48(0.01) 2.02(0.01) 1.70(0.01) 1.48(0.02) 1.32(0.01
ramseyi 377.36 (0.05) 194.20 (0.48)129.61 (0.22) 97.95 (0.48) 78.37 (0.15) 65.85 (0.15) 56.91 (0.26) 50.44 (0.20
ramseys 485.88 (0.13) 251.09 (0.49)167.49 (0.30)126.34 (0.25)101.47 (0.31) 85.07 (0.23) 73.48 (0.40) 65.27 (0.85
ramseys 616.81 (0.21) 319.17 (0.59)212.29 (0.41)159.95 (0.31)129.00 (0.73)107.96 (0.28) 93.21 (0.35) 82.07 (0.18
ramseys 790.51 (0.17) 405.63 (0.73)270.15 (0.64)203.77 (0.24)163.75 (0.32)137.36 (0.67)118.94 (0.42)104.31 (0.25|
ramseys 944.18 (0.09) 485.88 (0.74)323.48 (0.25)243.63 (0.60)195.89 (0.24)164.51 (0.46)141.69 (0.48)124.76 (0.45|
3coly 87.29 (0.08) 40.65 (0.28) 27.30 (0.52) 21.14 (0.18) 17.03 (0.14) 14.52 (0.04) 12.74 (0.09) 11.41 (0.10
3cola 145.50 (0.10) 67.61 (1.56) 45.15 (0.77) 35.47 (1.01) 27.59 (0.30) 23.75(0.32) 20.37 (0.42) 18.45 (0.28|
3cols 247.71 (0.23) 114.08 (3.72) 73.12 (2.56)) 56.85 (1.46) 43.90 (0.66) 38.31 (1.14) 33.08 (0.95) 29.06 (0.43
3coly 375.72 (0.15) 171.26 (5.87)112.64 (1.74) 87.46 (2.09) 70.94 (1.00) 59.82 (1.33) 50.83 (0.55) 45.16 (0.53
3cols 612.98 (0.19)270.80 (14.10)174.56 (3.44)133.72 (2.43)106.02 (0.87) 90.48 (3.39) 79.32(1.82) 68.60 (1.85
reachi 74.30 (0.10) 32.05 (0.22) 21.29 (0.05) 16.27 (0.09) 13.24 (0.13) 11.17 (0.08) 9.69 (0.06) 8.55 (0.02
reachs 224.52 (0.37) 93.69 (0.35) 62.60 (0.06) 47.35 (0.04) 38.02 (0.22) 32.10 (0.21) 27.64 (0.05) 24.44 (0.12
reachs 325.58 (0.18) 137.52 (0.30) 92.00 (0.16) 69.18 (0.09) 55.80 (0.04) 46.82 (0.19) 40.38 (0.08) 35.63 (0.17
reachy 731.09 (0.32) 306.14 (1.12)203.63 (0.17)153.39 (0.49)123.02 (0.34)103.12 (0.31) 89.30 (0.29) 78.25 (0.15
reachs 1431.54 (0.66) 591.13 (1.62)393.29 (0.34)295.59 (0.32)237.49 (0.61)197.96 (0.38)170.79 (0.49)149.70 (0.40
timetabling, 46.80 (0.23) 20.99 (0.37) 14.03 (0.19) 10.63 (0.14) 8.55(0.05) 7.22(0.10) 6.33(0.03) 5.59 (0.03
timetablings 58.93 (0.39) 26.15 (0.25) 17.40(0.28) 13.32(0.20) 10.83 (0.11) 8.99 (0.11) 7.87 (0.09) 6.96 (0.07
Work flowRepair| 684.95(1.19) 0.22(0.15) 0.08 (0.01) 0.07 (0.01) 0.06 (0.01) 0.06 (0.00) 0.06 (0.00) 0.07 (0.00

Table 1.Benchmark Results: instantiation times in seconds (standard deviation)

In the following we briefly describe the benchmark problerakbhging to the first
class, and report quantitative information on the encagliagd the size of the bench-
marks data. In particular:

— the encoding oRamsey Numbeinsists of one rule and two constraints; for the
experiments, the problem was considered of deciding whefttrek = 7, m = 7,
andn € {31, 32,33, 34,35}, n is the Ramsey numbetimsey(k, m).

— The encoding oB-Colorability consists of one rule and one constraint; three sim-
plex graphs were generated with the Stanford GraphBas#Vif22], by using the
function simplexz(n,n, —2,0, 0,0,0), (n € {150,170, 190, 210, 230}).

— The encoding oReachabilityconsists of one exit rule and a recursive one; three
trees were generated [23] having pair (number of levels basmof siblings): (9,3),(7,5),
(14,2), (10,3) and (15,2), respectively.

— The encoding oHamiltonian Pathconsists of several rules, one of these is recur-
sive; instances were generated, by using a tool by Patriloisn(cf. [24]), having
100, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 90@MCLA 1000 and
12000 nodes, respectively.

— The encoding oh-Queengonsists of one rule and four constraints; instances were
considered having € {37,39,41,43,45}.

The second class of problems is composed of problems takenfome practical
application of ASP, namelyimetabling andWorkflowRepairTimetabling is the prob-
lem of determining a timetable for some university lectutest have to be given in a
week to some groups of students (the considered instanaespravided by the Uni-
versity of Calabria); WorkflowRepair is the problem of geaterg plans for repairing

faulty workflows. Workflows may comprise many activities.fRe actions are com-
pensation, (re)do and replacement of activities (the damsd instance contains 63
predicates, 56 components and 116 rules).

3.2 Experimental Results

The results of the experimental activities on the benchmasklems presented above
are summarized in Table 1-2, and Figure 1-2. In order to stindyerformance of the
system when the number of available processors increasgsnswas run on our 8-
core machine in eight different settings where 2,3,4,556d 8 CPU were respectively
enabled. The instantiation times were measured and rejiarf@able 1 and Figure 2(b);
whereas the (relative) efficiency of the system is repori@iéble 2 and Figure 2(a). The
results obtained in the case of Hamiltonian Path, whichesathly problem for which
we considered more than five instances, are reported selyaiatFigure 2. Finally,
Figure 1 reports the average efficiency of the system for tbelems of Table 1.

The overall picture is very positive: the performance ofgiistem is nearly optimal
in most cases and efficiencies above 1 are measured in fouidsmut of seven. As
one would expect, the efficiency of the system both slightigrdases when the number
of processors increases -still remaining at a good leval, rapidly increases going
from very small instances (execution times below 2s) todaanes (see Figure 1 and
Figure 2).

A special case is the WorkflowRepair problem, showing an é&sgive efficiency
(always above 3200), which revealed to be a case very easgrédlgdize. This be-
havior can be explained by a different scheduling of the wairgs performed by the
serial version and the parallel one. In particular, thiganse is inconsistent (there is
a constraint always violated) and both versions stop thepodation as soon as they
recognize this fact. The scheduling performed by the palradirsion allows the identi-
fication of this situation before the serial one since caists are evaluated in parallel,
while the serial version evaluates the inconsistent camtttater on. The super-linear
speedup is already evident with two processors and effigipeaks when three proces-
sors are enabled, after the execution times remain almestime (see the last row of
Table 1) since the execution is stopped basically at the siamee

The granularity control mechanism resulted to be effedtiie Queens problem,
where all the considered instances required less than Hhdeof serial execution
time. Indeed, the “very easy” disjunctive rule was alwaygusmtially-evaluated in all
the instances. Since the remaining constraints stricthedd on the result of the eval-
uation of the disjunctive rule, the unavoidable presence s#quential part limited the
final efficiency to a still acceptable 0.9 in the case of 8 pssoes.

A similar scenario can be observed in the case of Ramsey Numbv&ere the
positive impact of the load balancing heuristics becomeyg egident. In fact, since
the encoding is composed of few “very easy” rules and twoy\ard” constraints,
the heuristics selects a sequential evaluation for thes raled dynamically applies the

4 We did not report here the size of the ground programs producedebgaimpared imple-
mentations because we verified that they are basically the same (for dratlepand serial
version).

Efficienc!

Problem 2prod 3prod 4prod 5prod 6prod 7prod 8 proc
queens; 0.95 093 091 089 089 0.87] 0.86
queenss 097 096 094 093 091 0.89 0.87
queenss 097 096 094 091 092 0.91 0.89
queensy 0.94 094 095 094 093 0.90 0.90
queenss 0971 096 096 094 093 0.92 0.90
ramseyi 0.977 097 096 0.9¢6 096 0.95 0.94
ramseys 0971 097 096 096 095 0.94 0.93
ramseys 0971 097 096 096 095 0.95 0.94
ramseys 0971 098 097 097 096 0.95 0.95
ramseys 0.971 097 097 096 096 0.95 0.95

3coly 1.07 1.077 103 1.03 1.00 0.98 0.96|
3cols 1.08 1.07 103 1.05 1.02 102 0.99
3cols 109 113 109 113 1.08 107 1.07
3coly 110 1113 107 1.06 1.05 106 1.04
3cols 1.13 117 115 1.16 113 110 1.12

reachi 116 1.16 114 1.12 1.11 1.100 1.09

reachs 120 120 119 1.1 1.17 116 1.15

reachs 118 118 118 1.17 1.16 1.15 1.14

reachy 119 120 119 119 118 117 1.17

reachs 121 121 1211 121 1213 120 1.20

timetabling, 111 1113 110 1.09 1.08 1.06 1.05
timetablings 113 113 111 1.09 1.09 107, 1.0
Work flowRepair|4119.597552.586473.646042.075035.064315.763236.82

Table 2. Benchmark Results: efficiency

finer distribution of the last splits for the constraints. #sesult, the system produces a
well-balanced work subdivision, that allows for obtaingtgady results with an average
efficiency greater than 0.9 in all tested configurations [&gare 1).

The very good performance (by looking at Figure 1 it can beddthat the average
efficiency is always greater than 1 in this case) obtainetiencese of Reachability is
due to the dynamic workload distribution made in case ofnsiee rules.

Here the system benefits of the fact that instances are niedistd (with possibly
different split sizes) at each different iteration of thensaaive algorithm, and, still, the
granularity control has some positive effect when the ftereof recursive rules has to
compute very little domains. The load balancing method destrated to be effective
also for 3-Colorability and the real-world Timetabling ptem, where the performance
of the system results to be good and stable thanks to a wialivxd distribution of the
work.

The behavior of the system for instances of varying sizes avadyzed in more
detail in the case of Hamiltonian Path. This was made pas&iplthe availability of
a generator (cf. [24]) that allowed for controlling the sizethe generated instances.
Looking at Figure 2(a) it is evident that the efficiency of testem rapidly reaches
a good level (greater than 0.9) moving from small instanceguiring less that 2s of
execution) to larger ones, and remains stable (the surfatteghin Figure 2(a) forms a
sort of plateau). The corresponding gains are visible bkitapat Figure 2(b), where,
e.g. an instance of 10000 nodes is instantiated in 638.2dhdsdy the serial system
and in 87.11 seconds by the parallel one with 8-processdremha

Summarizing, the parallel instantiator behaved very wehli the considered in-
stances. It showed superlinear speedups in the case ofepsyallelize instances and,

Efficiency

Number of processors

Fig. 1. Average Efficiency

in the other cases its efficiency rapidly reaches good lemetsremains stable when
the sizes of the input problem grow. Importantly, the systdf@rs a very good perfor-
mance already when only two CPUs were enabled (i.e. for tlygesa majority of the
commercially-available hardware at the time of this wgjimnd efficiency remains at
a very good level when up to 8 CPUs are available.

4 Related Work

Several works about parallel techniques for the evaluatfdhSP programs have been
proposed, focusing on both the propositional (model s¢aghhse [25-29], and the
instantiation phase [29, 18]. Model generation is a distoiase of ASP computation,
carried out after the instantiation, and thus, the first groftiproposals is not directly
related to our setting. Concerning the parallelizationh&f instantiation phase, some
preliminary studies were carried out in [29]. However, thare crucial differences
with our system regarding both the employed technology bedtupported paralleliza-
tion strategy. Indeed, our system is implemented by usin§IR@hreads APIs, and
works in a shared memory architecture [17], while the onemdesd in [29] is actually
a Beowulf [30] cluster working in local memory. Moreovergtparallel instantiation
strategy of [29] is applicable only to a subset of the progrates (those not defining
domain predicates), and is, in general, unable to fruitfeidploit parallelism in case of
programs with a small number of rules. Importantly, the peliaation strategy of [29]
statically assigns a rule per processing unit; whereas, in our apprbati the exten-
sion of predicates and “split sizes” are dynamically corepufand updated at different
iterations of the semi-rfige) while the instantiation process is running. Note alst t
our parallelization techniques and heuristics could be attapted for improving the
other ASP instantiators like Lparse [31] and Gringo [32].

Concerning other related works, it is worth remembering, thee dynamic rewrit-
ing technique employed in our system is related tacibygy and constraitechnique for
parallelizing the evaluation of deductive databases [3R-48 many of the mentioned
works (dating back to 90's), only restricted classes of gtprograms are parallelized;
whereas, the most general ones (reported in [34, 36]) alecaple to normal Datalog
programs. Clearly, none of them consider the peculiarifedisjunctive programs and
unstratified negation. The technique employed in our systeares the idea of splitting
the instantiation of each rule, but has several differernbat allow for obtaining an
effective implementation. Indeed, in [34, 36] copied rudes generated and statically

1000

800

12
Effficiencyl
08

0.6

04
0.2

Time in seconds

T e e . .
Number of processors e 60! 0 2000 4000 6000 8000 10000 12000

(b) Executig;mtsimes (s)

(a) Efficiency

Fig. 2. Efficiency results for Hamiltonian path

associated to instantiators according to a hash functiaohaik independent from the
current instance in input. Conversely, in our technique distribution of predicate ex-
tensions is performed dynamically, before assigning thesro instantiators, by taking
into account the “actual” predicate extensions. In this,wlag non-trivial problem [36]
of choosing an hash function that properly distributes tiaellis completely avoided in
our approach. Moreover, the evaluation of conditions attddo the rule bodies during
the instantiation phase would require to either modify ttemdard instantiation pro-
cedure (for efficiently selecting the tuples from the praticextensions according to
added constraints) or to incur in a possible non negligibkrlead due to their evalua-
tion.

Focusing on théneuristicsemployed on parallel databases, we mention [37] and
[38]. In both cases, the proposed heuristics were devisddared for dealing with
data distributed in several sites and their applicationtheioarchitectures might be
neither viable nor straightforward.

5 Conclusions

In this paper, we presented a parallel ASP instantiatordbasehe DLV system which
is able to profitably exploit state-of-the-art commercialltiacore/multi-processor hard-
ware. The system employs several parallelization straseghd dynamic techniques
for load balancing and granularity control specificallyzceived for parallel ASP in-
stantiation. An experimental analysis has been conduatedoth easy and hard-to-
parallelize problem instances for assessing system peafuice. The results confirm
that multi-core/multi-processor technology can be effety exploited for ASP instan-
tiation; indeed, the parallel system showed a nearly-agitiefficiency in the case of
hard-to-parallelize problem instances, and superlineeedups in other cases.

As far as future work is concerned, we are studying otherrtigeies for further
improving the single rule level parallelism. Moreover, we assessing system perfor-
mance on a larger set of benchmarks.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs Bigjunctive Databases.

NGC9 (1991) 365-385

. Lifschitz, V.: Answer Set Planning. In: Proceedings of the 16thrhational Conference on

Logic Programming (ICLP’99) 23-37

. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S8arcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TQB)(2006) 499-562

. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Eegsive Power of Logic

Programming. ACM Computing Surve®8(3) (2001) 374-425

. Janhunen, T., Nienm&l I.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7.

LNCS 2923, (2004) 331-335

. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. LRNMR’05. LNCS

3662, (2005) 447-451

. Simons, P., Niemél I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. Al 138(2002) 181234

. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Cordlig'en answer set solving.

In: 13CAI 2007,(2007) 386-392

. Lin, F,, Zhao, Y.: ASSAT: computing answer sets of a logic progbgnSAT solvers. Al

157(1-2) (2004) 115-137

Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Séte3dnhanced to Non-tight
Programs. In: LPNMR-7. LNCS 2923, (2004) 346—-350

Anger, C., Konczak, K., Linke, TNoMoRe: A System for Non-Monotonic Reasoning. In:
LPNMR’01. LNCS 2173, (2001) 406-410

Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, The nomore++ Approach to
Answer Set Solving. In: Logic for Programming, Artificial Intelligen@d Reasoning,
12th International Conference, LPAR 2005. LNCS 3835, (2005109—

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: Axive System for Nonmono-
tonic Reasoning. In: LPNMR’97. LNCS 1265, Dagstuhl, Germany9(}®863-374

Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Databgserration Techniques for
Nonmonotonic Reasoning. In: DDLP’99, Prolog Association of Jap809) 135-139
Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantidigr3oin-Ordering Methods.
In: LPNMR’01. LNCS 2173, (2001) 280-294

Leone, N., Perri, S., Scarcello, F.: BackJumping TechniqueRiles Instantiation in the
DLV System. In: NMR 2004. (2004) 258—-266

Stallings, W.: Operating systems (3rd ed.): internals and desigaiglas. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1998)

Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism fer Itistantiation of
ASP Programs. Journal of Algorithms in Cognition, Informatics andit®§3(1—-3) (2008)
34-54

Perri, S., Ricca, F., Vescio, S.: Efficient Parallel ASP Instantiatia Dynamic Rewriting.
In: Proceedings of the First Workshop on Answer Set ProgrammidgCther Computing
Paradigms (ASPOCP 2008), Udine, Italy (2008)

Ullman, J.D.: Principles of Database and Knowledge Base Sys@angputer Science Press
(1989)

Gebser, M., Liy, L., Namasivayam, G., Neumann, A., SchauyBruszczyski, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS3448007) 3-17
Knuth, D.E.: The Stanford GraphBase : A Platform for Combinat@omputing. ACM
Press, New York (1994)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting wattursive queries in
database and logic programming systems. TBI(#008) 129-165

Simons, P.: Extending and Implementing the Stable Model SemantibBsthesis, Helsinki
University of Technology, Finland (2000)

Finkel, R.A., Marek, V.W., Moore, N., Truszczynski, M.: Cpuating stable models in paral-
lel. In: Answer Set Programming, Towards Efficient and Scalableiexge Representation
and Reasoning, Proceedings of the 1st Intl. ASP’01 Workshop,@th(#001) 72—-76
Ellguth, E., Gebser, M., Gusowski, M., Kaufmann, B., KaminBkj,Liske, S., Schaub, T.,
Schneidenbach, L., Schnor, B.: A simple distributed conflict-driveswer set solver. In:
LPNMR. LNCS 5753, (2009) 490-495

Gressmann, J., Janhunen, T., Mercer, R.E., Schaubhi€leTS., Tichy, R.: Platypus: A
Platform for Distributed Answer Set Solving. In: Proceedings of LogimgPamming and
Nonmonotonic Reasoning, 8th International Conference (LPNMR)nBirse, Italy (2005)
227-239

Pontelli, E., EI-Khatib, O.: Exploiting Vertical Parallelism from Answet 8rograms. In:
Answer Set Programming, Towards Efficient and Scalable Knowl&&m@esentation and
Reasoning, Proceedings of the 1st Intl. ASP’01 Workshop, Sta(20@fl) 174-180
Balduccini, M., Pontelli, E., Elkhatib, O., Le, H.: Issues in paralletcaition of non-
monotonic reasoning systems. Parallel CompuBi@) (2005) 608-647

: The Beowulf Cluster SiteURL: htt p: / / ww. beowul f. or g>.

Niemed, I., Simons, P.. Smodels — An Implementation of the Stable Model arld We
founded Semantics for Normal Logic Programs. In: LPNMR'97. LNC265, Dagstuhl,
Germany, (1997) 420-429

Gebser, M., Schaub, T., Thiele, S.: GrinGo : A New Grounde’ftswer Set Program-
ming. In: Logic Programming and Nonmonotonic Reasoning, 9th Intienma Conference,
LPNMR 2007, 15-17, 2007, Proceedings. LNCS 4483, (2007) 266

Wolfson, O., Silberschatz, A.: Distributed Processing of LogigRums. In: Proceedings
of the 1988 ACM SIGMOD International Conference on Managemeratf, Chicago,
lllinois, USA (1988) 329-336

Wolfson, O., Ozeri, A.: A new paradigm for parallel and distributelé-processing. In:
SIGMOD Conference 1990, New York, USA (1990) 133-142

Ganguly, S., Silberschatz, A., Tsur, S.: A Framework for thralRéd Processing of Datalog
Queries. In: SIGMOD Conference 1990, Atlantic City, NJ, 23-25, 199990) 143—-152
Zhang, W., Wang, K., Chau, S.C.: Data Partition and Parallel Btialuof Datalog Pro-
grams. |IEEE TKDE/(1) (1995) 163-176

Dewan, H.M., Stolfo, S.J., Heandez, M., Hwang, J.J.: Predictive dynamic load balancing
of parallel and distributed rule and query processing. In: Procesdifighe 1994 ACM
SIGMOD international conference on Management of data, New Yd84, ACM (1994)
277-288

Carey, M.J., Lu, H.: Load balancing in a locally distributed db sys®i8MOD Rec15(2)
(1986) 108-119

