
Parallel Instantiation in DLV ⋆

Simona Perri, Francesco Ricca, and Marco Sirianni

Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
{perri,ricca,sirianni}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a purely-declarative logic pro-
gramming language allowing for disjunction and nonmonotonic negation. The
evaluation of ASP Programs is traditionally carried out in two steps. In the first
step an input programP undergoes the so-called instantiation (or grounding) pro-
cess, which produces a programP ′ semantically equivalent toP, but not contain-
ing any variable; in turn,P ′ is evaluated by using a backtracking search algorithm
in the second step. This paper presents a new parallel version of the instantiator
of DLV, featuring new load-balancing and granularity control heuristics, which is
able to exploit the processing power offered by multi-core/multi-processor SMP
machines.

1 Introduction

Answer Set Programming (ASP) [1, 2] is a purely declarative programming paradigm
based on nonmonotonic reasoning and logic programming. Thelanguage of ASP is
based on logic rules; adisjunctive rule(rule, for short)r is a formulaa1 ∨ · · · ∨
an :– b1, · · · , bk, not bk+1, · · · , not bm. wherea1, · · · , an, b1, · · · , bm are atoms
(possibly containing variables) andn ≥ 0, m ≥ k ≥ 0. An ASP program is a set of
rules. The semantics of an ASP program was originally given in [1] and is based on
the Gelfond-Lifschitz transformation. Basically, the idea of answer set programming
is to represent a given computational problem by a logic program the answer sets of
which correspond to solutions, and then, use an answer set solver to find such solutions
[2]. In the following we assume the reader to be familiar withbasic logic programming
terminology and ASP.

The main advantage of ASP is its high declarative nature combined with a relatively
high expressive power [3, 4]; but this comes at the price of a high computational cost,
which makes the implementation of efficient ASP systems a difficult task. Some effort
has been made to this end, and, after some pioneering work, there are nowadays a
number of systems that support ASP and its variants [3, 5–12].

Traditionally, the kernel modules of such systems operate on a ground instantiation
of the input program, i.e. a program that does not contain anyvariable, but is semanti-
cally equivalent to the original input [13]. Therefore, an input programP first undergoes
the so-called instantiation process, which produces a programP ′ semantically equiv-
alent toP, but not containing any variable. This phase is computationally expensive

⋆ Partially supported by the Regione Calabria and EU under POR Calabria FESR 2007-2013
within the PIA project of DLVSYSTEM s.r.l..

(see [4]); and, nowadays, it is widely recognized that having an efficient instantiation
procedure is crucial for the performance of the entire ASP system. Many optimization
techniques have been proposed for this purpose [14–16]; nevertheless, the performance
of instantiators is still not acceptable in many cases, especially when the input data are
significantly large (real-world instances, for example, may count hundreds of thousands
of tuples).

In this scenario, significant performance improvements canbe obtained by exploit-
ing modern multi-core/multi-processor SMP [17] machines,featuring several CPU in
the same case. In the past only expensive servers and workstations supported this tech-
nology; whereas, at the time of this writing, most of the personal computers systems and
even laptops, are equipped with (at least one) dual-core processor. This means that the
benefits of true parallel processing are enjoyable also in entry-level systems and PCs.
However, traditional ASP instantiators were not developedwith multi-processor/multi-
core hardware in mind, and are unable to fully exploit the computational power offered
by modern machines.

This paper presents a system for the parallel instantiationof ASP Programs, which
is able to exploit the computational power offered by multi-core/multi-processor ma-
chines for obtaining a faster instantiation. The system is based on the state-of-the-art
ASP instantiator of the DLV system [3]; moreover it extends the recently-proposed [18]
techniques for parallel ASP instantiation by introducing anumber of relevant improve-
ments:(i) parallelism is exploited in three different stages of the computation1 (compo-
nent level, rule level, single rule level); and(ii) dynamic load balancing and granularity
control strategies based on computationally-cheap heuristics are supported. In this way,
the efficacy of the system is no-more limited to programs withmany rules (as in [18]),
and also the particularly (common and) difficult-to-parallelize class of programs with
few rules is handled in an effective way.

An experimental activity is also reported, that was carriedout on a variety of publicly-
available benchmarks already exploited for evaluating theperformance of instantiation
systems. The results are very promising: superlinear speedups are observed in the case
of easy-to-parallelize problem instances; and, nearly optimal efficiencies are measured
in the case of hard-to-parallelize problem instances.

The remainder of the paper is structured as follows: Section2 describes the em-
ployed parallel instantiation strategies; Section 3 discusses the results of the experi-
ments carried out in order to evaluate the performance of thesystem; finally, Section 4
is devoted to related works, and Section 5 draws some conclusions.

2 Parallel Instantiation of ASP Programs

In this section we briefly describe the employed techniques for the parallel instantiation
of ASP Programs first; and then, we describe the dynamic load balancing and granular-
ity control strategy employed in the system.

In particular, we show that according to such techniques, three levels of parallelism
can be exploited during the instantiation process, namely,components, rules and single

1 Preliminary results have been presented in [19].

rule level. The first level allows for instantiating in parallel subprograms of the program
in input and it is especially useful when handling programs containing parts which
are, somehow, independent. The second one, the rules level,allows for the parallel
evaluation of rules within a given subprogram and it is thus useful when the number
of rules in the subprograms is high. The third one, the singlerule level, allows for
the parallel evaluation of a single rule and it is thus crucial for the parallelization of
programs with few rules, where the first two levels are almostnot applicable.

The first two levels were first employed in [18] while the thirdone was preliminarily
presented in [19]. A detailed description of these techniques is out of the scope of this
paper. For further details, we refer the reader to [18, 19].

2.1 Parallel Instantiation Techniques

Components Level.The first level of parallelism, calledComponents Levelessentially
consists on dividing the input programP into subprograms, according to the dependen-
cies among the IDB predicates ofP, and by identifying which of them can be evalu-
ated in parallel. More in detail, each programP is associated with a graph, called the
Dependency Graphof P, which, intuitively, describes how IDB predicates ofP de-
pend on each other. For a programP, theDependency Graphof P is a directed graph
GP = 〈N,E〉, whereN is a set of nodes andE is a set of arcs.N contains a node for
each IDB predicate ofP, andE contains an arce = (p, q) if there is a ruler in P such
thatq occurs in the head ofr andp occurs in a positive literal of the body ofr.

The graphGP induces a subdivision ofP into subprograms (also calledmodules)
allowing for a modular evaluation. We say that a ruler ∈ P definesa predicatep if p
appears in the head ofr. For each strongly connected component (SCC)2C of GP , the
set of rules defining all the predicates inC is calledmoduleof C. A rule r occurring in
amoduleof a componentC (i.e., defining some predicate∈ C) is said to berecursiveif
there is a predicatep ∈ C occurring in the positive body ofr; otherwise,r is said to be
anexit rule. Moreover, a partial ordering among the SCCs is induced byGP , defined
as follows: for any pair of SCCsA, B of GP , we say thatB directly depends onA if
there is an arc from a predicate ofA to a predicate ofB; and,B depends onA if there
is a path inGP fromA toB.

According to such definitions, the instantiation of the input programP can be car-
ried out by separately evaluating its modules; if the evaluation order of the modules re-
spects the above mentioned partial ordering then a small ground program is produced.
Indeed, this gives the possibility to compute ground instances of rules containing only
atoms which can possibly be derived fromP (thus, avoiding the combinatorial explo-
sion which can be obtained by naively considering all the atoms in the Herbrand Base).

Intuitively, this partial ordering guarantees that a componentA precedes a compo-
nentB if the program module corresponding toA has to be evaluated before the one
of B (because the evaluation of A produces data which are needed for the instantia-
tion of B). Moreover, the partial ordering allows for determining which modules can
be evaluated in parallel. Indeed, if two componentsA andB, do not depend on each

2 A strongly connected component of a directed graph is a maximal subset of the vertices, such
that every vertex is reachable from every other vertex.

other, then the instantiation of the corresponding programmodules can be performed
simultaneously, because the instantiation ofA does not require the data produced by the
instantiation ofB and vice versa. The dependency among components is thus the prin-
ciple underlying the first level of parallelism. At this level subprograms can be evaluated
in parallel, but still the evaluation of each subprogram is sequential.3

Rules Level.The second level of parallelism, called theRules Level, allows for concur-
rently evaluating the rules within each module. According to this technique, rules are
evaluated following a semi-naı̈ve schema [20] and the parallelism is exploited for the
evaluation of both exit and recursive rules. More in detail,for the instantiation of a mod-
uleM , first all exit rules are processed in parallel by exploitingthe data (ground atoms)
computed during the instantiation of the modules whichM depends on (according to
the partial ordering induced by the dependency graph). Onlyafterward, recursive rules
are processed in parallel several times by applying a semi-näıve evaluation technique.
At each iterationn, the instantiation of all the recursive rules is performed concurrently
and by exploiting only the significant information derived during iterationn − 1. This
is done by partitioning significant atoms into three sets:∆S, S andNS. NS is filled
with atoms computed during current iteration (sayn); ∆S contains atoms computed
during previous iteration (sayn−1); and,S contains the ones previously computed (up
to iterationn− 2).

Initially, ∆S andNS are empty; whileS contains all the information previously
derived in the instantiation process. At the beginning of each new iteration,NS is
assigned to∆S, i.e. the new information derived during iterationn is considered as
significant information for iterationn + 1. Then, the recursive rules are processed si-
multaneously and each of them uses the information contained in the set∆S; at the end
of the iteration, when the evaluation of all rules is terminated, the set∆S is added to
the setS (since it has already been exploited). The evaluation stopswhenever no new
information has been derived (i.e.NS = ∅).

Single Rule Level.The techniques described above, concerning the first two levels of
parallelism, were firstly employed in [18] and are very effective when handling long
programs. However, when the input program consists of few rules, their efficacy is
drastically reduced, and there are cases where components and rules parallelism are not
exploitable at all.

Consider for instance the following programP encoding the well known 3-colorability
problem:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :– node(X).
(c) :– edge(X,Y), col(X,C), col(Y,C).

The two levels of parallelism described above have no effects on the evaluation ofP.
Indeed, this encoding consists of only two rules which have to be evaluated sequentially,
since, intuitively, the instantiation of(r) produces the ground atoms with predicatecol

which are necessary for the evaluation of(c).

3 Note that, for the sake of clarity, a simplified version of the technique presented in [18] has
been described.

For the instantiation of this kind of programs a third level is necessary for the par-
allel evaluation of each single rule, which is therefore called Single Rule Level. To this
aim, a strategy has been presented in [19] which allows for parallelizing the evaluation
of a rule on the base of a dynamic rewriting of the program. Oversimplifying, the basic
idea of single rule level parallelism consists in rewritingthe program rules into a num-
ber of new rules whose evaluation can be performed simultaneously by applying the
techniques described above.

For instance, rule(c) in the previous example can be rewritten as follows:

(c1) :– edge1(X,Y), col(X,C), col(Y,C).
(c2) :– edge2(X,Y), col(X,C), col(Y,C).
. . .
(cn) :– edgen(X,Y), col(X,C), col(Y,C).

by splitting the set of ground atoms with predicateedge (also called theextensionof
edge), into a number of subsets. The obtained rules can be evaluated in parallel and the
instantiation produced is equivalent (modulo renaming) tothe original one. However, in
general, many ways for rewriting a program may exist (for instance, in the case of(c),
col can be split up instead ofedge) and the choice of the literal to split has to be carefully
made, since it may strongly affect the cost of the instantiation of rules. Indeed, a “bad”
split might reduce or neutralize the benefits of parallelism, thus making the overall time
consumed by the parallel evaluation not optimal (and, in some corner case, even worse
than the time required to instantiate the original encoding). Moreover, if the predicate
to be split is an IDB predicate (as in the casecol) a static rewriting would lead to quite
complex encodings possibly requiring a slower instantiation; in this case a rewriting
performed at running time is more suitable, since it can be applied when the extension
of the IDB predicate has already been computed.

In our system, rules are rewritten at execution time, thus dynamically distributing
the workload among processing units, and a heuristics is used for determining the literal
to split. More in detail, the strategy works as follows: a rule r is rewritten at execution
time by splitting the extension of one single body (either EDB or IDB) predicatep
of r (chosen according to a heuristics) in several parts. Each part is associated with
a different temporary predicate; and, for each of those predicates, saypi, a new rule
called split rule, obtained by replacingp with pi, is produced. The so-created rules
will be instantiated in parallel in place ofr (temporary predicate names are recognized
when output is produced and replaced with original names in order to obtain the same
output of the standard algorithm). Hereafter, we refer to the number of split rules as
split number(or, equivalently,number of splits), and to the size of the extensions of
each split predicate assplit size.

Concerning the selection of the literal to be split, the choice has to be carefully
made, since it may strongly affect the cost of the instantiation of rules; a good heuristics
should minimize it. It is well known that this cost strictly depends on the order of
evaluation of body literals, since computing all the possible instantiations of a rule is
equivalent to computing all the answers of a conjunctive query joining the extensions
of literals of the rule body. A pragmatic choice is to select an optimal ordering and split
the first literal in this order. Note that, since the instantiation of a body rule basically
follows a nested-tuple strategy proceeding from left to right, splitting on the first literal

minimizes the number of repeated match operations (see [19]for further insights). Since
the ordering problem has already been investigated and an effective strategy [15] has
already been successfully implemented in DLV, it was decided to adopt it. This choice
has also another important consequence: since all the factors the heuristics is based
on are always already computed during the computation, its implementation does not
introduce any overhead.

2.2 Load Balancing and Granularity Control

An advanced implementation of a parallel system has to deal with two important issues
that strongly affect the performance: load balancing and granularity control. Indeed, if
the workload is not uniformly distributed to the available processors then the benefits of
parallelization are not fully obtained; moreover, if the amount of work assigned to each
parallel processing unit is too small then the (unavoidable) overheads due to creation
and scheduling of parallel tasks might overcome the advantages of parallel evaluation
(in a corner case, adopting a sequential evaluation might bepreferable).

In this respect, the number of splits allowed for each rule directly determines the
split size and, thus the “amount of work” assigned to different threads. As an example,
consider the case in which we are running on a two processor machine the instantiation
of a ruler and that, by applying dynamic rewriting,r is rewritten into two split rules.
Assume also that the extension of the split predicate ofr is divided into two subsets
with, approximatively, the same size. Then, each split rulewill be processed by a thread;
and the two threads will possibly run separately on the two available processors. For
limiting the inactivity time of the processors, it would be desirable that the threads
terminate their execution almost at the same time. Unfortunately, this is not always the
case, because subdividing the extension of the split predicate in equal parts does not
ensure that the workload is equally spread between threads.However, if we consider a
larger number of split, a further subdivision of the workload will be implied, and, the
inactivity time would be more likely limited.

Clearly, it is crucial to guarantee that the parallel instantiation of a rule is not more
time-consuming than its serial instantiation; and that an unbalanced workload distribu-
tion does not introduce significant delays and limits the overall performance. Neverthe-
less, it is necessary to control the number of threads, in order to save system resources.
In order to satisfy all these requirements,(i) we imposed a limit to the number of con-
currently running threads which is user-defined (an adequate setting is a multiple of
the number of available CPUs); and,(ii) we devised and tuned a heuristics that selects
dynamically the size of the split depending on the rule at hand (and different rules in
the same programs may be assigned to different split sizes).

In detail, our method computes a heuristic valueW(r) that acts as a litmus paper in-
dicating the amount of work required for evaluating each ruler of the program, and so,
its “hardness”, just before its instantiation; then, it usesW(r) to decide an appropriate
split size. In particular, the size of the split should be sufficiently large to avoid thread
management overhead (granularity control); and sufficiently small to exploit the pre-
emptive multitasking scheduler of the operating system forobtaining a good workload
distribution (load balancing).

Granularity Control is obtained by comparing, before instantiating each ruler, W(r)
to an empirically-determined thresholdwseq; if W(r) > wseq then the rule is scheduled
for parallel instantiation, otherwise a sequential instantiation is performed. The idea is
that: it is more convenient to perform a sequential instantiation of “very easy” rules
since the overhead introduced by threads might be larger than their expected evaluation
time.

Load Balancing is obtained by splitting rules in equally-sized splits. In particular,
each rule is split by dividing the extension of the first predicate by a number which
is multiple of the number of processors. This strategy resulted to be sufficient in most
cases, but required a refinement in the case of “very hard” rules. In particular, when a
rule is assessed to be “hard” by comparing the estimated workwith another empirically-
determined threshold (W(r) > weq), a finer work distribution (exploiting a unary split
size) is performed for the lasts− np splits, wheres is the number of split andnp is the
number of processors. The intuition here is that, if a rule ishard to instantiate then it is
more likely that its splits are also hard, and thus an uneven distribution of the splits to
the available processors in the last part of the computationmight cause a sensible loss
of efficiency. Thus, further subdividing the last “hard” splits, may help to distribute in
a finer way the workload in the last part of the computation.

Computation of heuristic values.W(r) is obtained by combining two estimations:
J (r) andC(r). First, note that computing all the possible instantiations of a rule is
equivalent to calculate all the answers of a conjunctive query. Thus, we considered
J (r) that is an estimation of the size of the join corresponding tothe evaluation of
the body ofr. Moreover, since in the instantiation of rules with severaljoin variables
the running time is mostly due to variable matching, we consideredC(r) that is an es-
timation of the number of comparisons made by the instantiation algorithm (roughly,
we consideredC(r) because even producing a small output might require a consider-
able amount of time due to many matching failures). The two components ofW(r) are
estimated as follows:

– Size of the join:the size of the join between two relationsR andS with one or more
common variables can be estimated, according to [20] as follows:

T (R 1 S) =
T (R) ·T (S)∏

X∈var(R)∩var(S) max {V (X,R) , V (X,S)}

whereT (R) is the number of tuples inR, andV (X,R) (called selectivity) is
the number of distinct values assumed by the variableX in R. For joins with more
relations one can repeatedly apply this formula to pair of body predicates according
to a given evaluation order for computingJ (r). The interested reader can find a
more detailed discussion on this estimation in [20].

– Number of comparisons:an approximation of the number of comparisons done for
instantiating a ruler is:

C(r) =
∑

X∈X (r)

∏

L∈L(r,X)

V (X,L)

whereX (r) is the set of variables that appear in at least two literals inthe body
of r, L(R,X) is the set of body literals in whichX occurs; andV (X,L) is the
selectivity ofX in the extension ofL. Roughly, the number of comparisons is
approximated by the sum of the product of the number of distinct values assumed
by each join variable inr.

3 Experiments

In order to assess the performance of our parallel instantiator we carried out an experi-
mental activity, reported in this section.

The machine used for the experiments is a two-processor Intel Xeon “Woodcrest”
(quad core) 3GHz machine with 4MB of L2 Cache and 4GB of RAM, running Debian
GNU Linux 4.0. We measured the efficiency of the instantiator, and test its behavior
when the number of available CPUs is between 2 and 8. To do so, we exploited the
available hardware, enabling several fixed numbers of CPUs.We enabled/disabled the
CPUs by running the following bash Linux commands:

echo 0>> / sys / d e v i c e s / sys tem / cpu / cpu−n / o n l i n e

that disables thecpu− n CPU; and
echo 1>> / sys / d e v i c e s / sys tem / cpu / cpu−n / o n l i n e

to re-enable the same CPU.
Since our techniques focus on instantiation, all the results of the experimental anal-

ysis refer only to the instantiation process rather than thewhole process of computing
answer sets; in addition, the time spent before the grounding stage (parser and prelim-
inary operations) is obviously the same both for parallel and non-parallel version. In
order to obtain more trustworthy results, each single experiment has been repeated five
times.

In the following, we briefly describe both benchmark problems and data. In order
to meet space constraints, encodings are not presented but they are available, together
with the employed instances, and the binaries, athttp://www.mat.unical.it/
ricca/downloads/parallelground09.zip. Rather, to help the understand-
ing of the results, some information is given on the number ofrules of each program.

3.1 Benchmark Problems and Data

The benchmark problems can be grouped into two different classes: the first class is
composed of some well know combinatorial problems, namely Ramsey Numbers, 3-
Colorability, Hamiltonian Path, Reachability, and N-Queens. These benchmark prob-
lems have been already used for assessing ASP instantiator performance ([3, 21]). Prob-
lems belonging to this class are, indeed, particularly difficult to parallelize due to the
compactness of their encodings; note also that, such kind ofprograms are quite com-
mon given the declarative nature of the ASP language which allows to compactly en-
code even very hard problems. About data, we considered five instances of increasing
difficulty for each problem, except for the Hamiltonian Pathproblem, for which we con-
sidered thirteen instances of increasing size; and, for obtaining more significant results,
we considered instances where the instantiation time is nonnegligible.

Instantiation time
Problem serial 2 proc 3 proc 4 proc 5 proc 6 proc 7 proc 8 proc
queens1 4.31 (0,03) 2.28 (0.01) 1.55 (0.04) 1.18 (0.01) 0.97 (0.02) 0.81 (0.01) 0.71 (0.01) 0.63 (0.01)
queens2 5.43 (0,01) 2.80 (0.01) 1.89 (0.00) 1.44 (0.01) 1.17 (0.01) 1.00 (0.01) 0.87 (0.01) 0.78 (0.02)
queens3 6.66 (0,05) 3.40 (0.01) 2.29 (0.01) 1.76 (0.01) 1.45 (0.07) 1.20 (0.01) 1.04 (0.01) 0.93 (0.02)
queens4 7.96 (0,03) 4.25 (0.26) 2.83 (0.12) 2.10 (0.02) 1.70 (0.01) 1.43 (0.01) 1.26 (0.00) 1.11 (0.00)
queens5 9.48 (0,04) 4.87 (0.01) 3.30 (0.03) 2.48 (0.01) 2.02 (0.01) 1.70 (0.01) 1.48 (0.02) 1.32 (0.01)
ramsey1 377.36 (0.05) 194.20 (0.48)129.61 (0.22) 97.95 (0.48) 78.37 (0.15) 65.85 (0.15) 56.91 (0.26) 50.44 (0.20)
ramsey2 485.88 (0.13) 251.09 (0.49)167.49 (0.30)126.34 (0.25)101.47 (0.31) 85.07 (0.23) 73.48 (0.40) 65.27 (0.85)
ramsey3 616.81 (0.21) 319.17 (0.59)212.29 (0.41)159.95 (0.31)129.00 (0.73)107.96 (0.28) 93.21 (0.35) 82.07 (0.18)
ramsey4 790.51 (0.17) 405.63 (0.73)270.15 (0.64)203.77 (0.24)163.75 (0.32)137.36 (0.67)118.94 (0.42)104.31 (0.25)
ramsey5 944.18 (0.09) 485.88 (0.74)323.48 (0.25)243.63 (0.60)195.89 (0.24)164.51 (0.46)141.69 (0.48)124.76 (0.45)
3col1 87.29 (0.08) 40.65 (0.28) 27.30 (0.52) 21.14 (0.18) 17.03 (0.14) 14.52 (0.04) 12.74 (0.09) 11.41 (0.10)
3col2 145.50 (0.10) 67.61 (1.56) 45.15 (0.77) 35.47 (1.01) 27.59 (0.30) 23.75 (0.32) 20.37 (0.42) 18.45 (0.28)
3col3 247.71 (0.23) 114.08 (3.72) 73.12 (2.56) 56.85 (1.46) 43.90 (0.66) 38.31 (1.14) 33.08 (0.95) 29.06 (0.43)
3col4 375.72 (0.15) 171.26 (5.87)112.64 (1.74) 87.46 (2.09) 70.94 (1.00) 59.82 (1.33) 50.83 (0.55) 45.16 (0.53)
3col5 612.98 (0.19)270.80 (14.10)174.56 (3.44)133.72 (2.43)106.02 (0.87) 90.48 (3.39) 79.32 (1.82) 68.60 (1.85)
reach1 74.30 (0.10) 32.05 (0.22) 21.29 (0.05) 16.27 (0.09) 13.24 (0.13) 11.17 (0.08) 9.69 (0.06) 8.55 (0.02)
reach2 224.52 (0.37) 93.69 (0.35) 62.60 (0.06) 47.35 (0.04) 38.02 (0.22) 32.10 (0.21) 27.64 (0.05) 24.44 (0.12)
reach3 325.58 (0.18) 137.52 (0.30) 92.00 (0.16) 69.18 (0.09) 55.80 (0.04) 46.82 (0.19) 40.38 (0.08) 35.63 (0.17)
reach4 731.09 (0.32) 306.14 (1.12)203.63 (0.17)153.39 (0.49)123.02 (0.34)103.12 (0.31) 89.30 (0.29) 78.25 (0.15)
reach5 1431.54 (0.66) 591.13 (1.62)393.29 (0.34)295.59 (0.32)237.49 (0.61)197.96 (0.38)170.79 (0.49)149.70 (0.40)

timetabling1 46.80 (0.23) 20.99 (0.37) 14.03 (0.19) 10.63 (0.14) 8.55 (0.05) 7.22 (0.10) 6.33 (0.03) 5.59 (0.03)
timetabling2 58.93 (0.39) 26.15 (0.25) 17.40 (0.28) 13.32 (0.20) 10.83 (0.11) 8.99 (0.11) 7.87 (0.09) 6.96 (0.07)

WorkflowRepair 684.95 (1.19) 0.22 (0.15) 0.08 (0.01) 0.07 (0.01) 0.06 (0.01) 0.06 (0.00) 0.06 (0.00) 0.07 (0.00)

Table 1.Benchmark Results: instantiation times in seconds (standard deviation)

In the following we briefly describe the benchmark problems belonging to the first
class, and report quantitative information on the encodings, and the size of the bench-
marks data. In particular:

– the encoding ofRamsey Numbersconsists of one rule and two constraints; for the
experiments, the problem was considered of deciding whether, for k = 7, m = 7,
andn ∈ {31, 32, 33, 34, 35}, n is the Ramsey numberramsey(k,m).

– The encoding of3-Colorability consists of one rule and one constraint; three sim-
plex graphs were generated with the Stanford GraphBase library [22], by using the
functionsimplex(n, n,−2, 0, 0, 0, 0), (n ∈ {150, 170, 190, 210, 230}).

– The encoding ofReachabilityconsists of one exit rule and a recursive one; three
trees were generated [23] having pair (number of levels, number of siblings): (9,3),(7,5),
(14,2), (10,3) and (15,2), respectively.

– The encoding ofHamiltonian Pathconsists of several rules, one of these is recur-
sive; instances were generated, by using a tool by Patrik Simons (cf. [24]), having
100, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000 and
12000 nodes, respectively.

– The encoding ofn-Queensconsists of one rule and four constraints; instances were
considered havingn ∈ {37, 39, 41, 43, 45}.

The second class of problems is composed of problems taken from some practical
application of ASP, namelyTimetabling, andWorkflowRepair. Timetabling is the prob-
lem of determining a timetable for some university lecturesthat have to be given in a
week to some groups of students (the considered instances were provided by the Uni-
versity of Calabria); WorkflowRepair is the problem of generating plans for repairing

faulty workflows. Workflows may comprise many activities. Repair actions are com-
pensation, (re)do and replacement of activities (the considered instance contains 63
predicates, 56 components and 116 rules).

3.2 Experimental Results

The results of the experimental activities on the benchmarkproblems presented above
are summarized in Table 1-2, and Figure 1-2. In order to studythe performance of the
system when the number of available processors increases, system was run on our 8-
core machine in eight different settings where 2,3,4,5,6,7and 8 CPU were respectively
enabled. The instantiation times were measured and reported in Table 1 and Figure 2(b);
whereas the (relative) efficiency of the system is reported in Table 2 and Figure 2(a). The
results obtained in the case of Hamiltonian Path, which is the only problem for which
we considered more than five instances, are reported separately in Figure 2. Finally,
Figure 1 reports the average efficiency of the system for the problems of Table 1.4

The overall picture is very positive: the performance of thesystem is nearly optimal
in most cases and efficiencies above 1 are measured in four domains out of seven. As
one would expect, the efficiency of the system both slightly decreases when the number
of processors increases -still remaining at a good level-, and rapidly increases going
from very small instances (execution times below 2s) to larger ones (see Figure 1 and
Figure 2).

A special case is the WorkflowRepair problem, showing an impressive efficiency
(always above 3200), which revealed to be a case very easy to parallelize. This be-
havior can be explained by a different scheduling of the constraints performed by the
serial version and the parallel one. In particular, this instance is inconsistent (there is
a constraint always violated) and both versions stop the computation as soon as they
recognize this fact. The scheduling performed by the parallel version allows the identi-
fication of this situation before the serial one since constraints are evaluated in parallel,
while the serial version evaluates the inconsistent constraint later on. The super-linear
speedup is already evident with two processors and efficiency peaks when three proces-
sors are enabled, after the execution times remain almost the same (see the last row of
Table 1) since the execution is stopped basically at the sametime.

The granularity control mechanism resulted to be effectivein the Queens problem,
where all the considered instances required less than 10 seconds of serial execution
time. Indeed, the “very easy” disjunctive rule was always sequentially-evaluated in all
the instances. Since the remaining constraints strictly depend on the result of the eval-
uation of the disjunctive rule, the unavoidable presence ofa sequential part limited the
final efficiency to a still acceptable 0.9 in the case of 8 processors.

A similar scenario can be observed in the case of Ramsey Numbers, where the
positive impact of the load balancing heuristics becomes very evident. In fact, since
the encoding is composed of few “very easy” rules and two “very hard” constraints,
the heuristics selects a sequential evaluation for the rules, and dynamically applies the

4 We did not report here the size of the ground programs produced by the compared imple-
mentations because we verified that they are basically the same (for both parallel and serial
version).

Efficiency
Problem 2 proc 3 proc 4 proc 5 proc 6 proc 7 proc 8 proc
queens1 0.95 0.93 0.91 0.89 0.89 0.87 0.86
queens2 0.97 0.96 0.94 0.93 0.91 0.89 0.87
queens3 0.97 0.96 0.94 0.91 0.92 0.91 0.89
queens4 0.94 0.94 0.95 0.94 0.93 0.90 0.90
queens5 0.97 0.96 0.96 0.94 0.93 0.92 0.90
ramsey1 0.97 0.97 0.96 0.96 0.96 0.95 0.94
ramsey2 0.97 0.97 0.96 0.96 0.95 0.94 0.93
ramsey3 0.97 0.97 0.96 0.96 0.95 0.95 0.94
ramsey4 0.97 0.98 0.97 0.97 0.96 0.95 0.95
ramsey5 0.97 0.97 0.97 0.96 0.96 0.95 0.95
3col1 1.07 1.07 1.03 1.03 1.00 0.98 0.96
3col2 1.08 1.07 1.03 1.05 1.02 1.02 0.99
3col3 1.09 1.13 1.09 1.13 1.08 1.07 1.07
3col4 1.10 1.11 1.07 1.06 1.05 1.06 1.04
3col5 1.13 1.17 1.15 1.16 1.13 1.10 1.12
reach1 1.16 1.16 1.14 1.12 1.11 1.10 1.09
reach2 1.20 1.20 1.19 1.18 1.17 1.16 1.15
reach3 1.18 1.18 1.18 1.17 1.16 1.15 1.14
reach4 1.19 1.20 1.19 1.19 1.18 1.17 1.17
reach5 1.21 1.21 1.21 1.21 1.21 1.20 1.20

timetabling1 1.11 1.11 1.10 1.09 1.08 1.06 1.05
timetabling2 1.13 1.13 1.11 1.09 1.09 1.07 1.06

WorkflowRepair 4119.597552.586473.646042.075035.064315.763236.82

Table 2.Benchmark Results: efficiency

finer distribution of the last splits for the constraints. Asa result, the system produces a
well-balanced work subdivision, that allows for obtainingsteady results with an average
efficiency greater than 0.9 in all tested configurations (seeFigure 1).

The very good performance (by looking at Figure 1 it can be noted that the average
efficiency is always greater than 1 in this case) obtained in the case of Reachability is
due to the dynamic workload distribution made in case of recursive rules.

Here the system benefits of the fact that instances are redistributed (with possibly
different split sizes) at each different iteration of the semi näıve algorithm, and, still, the
granularity control has some positive effect when the iteration of recursive rules has to
compute very little domains. The load balancing method demonstrated to be effective
also for 3-Colorability and the real-world Timetabling problem, where the performance
of the system results to be good and stable thanks to a well-balanced distribution of the
work.

The behavior of the system for instances of varying sizes wasanalyzed in more
detail in the case of Hamiltonian Path. This was made possible by the availability of
a generator (cf. [24]) that allowed for controlling the sizeof the generated instances.
Looking at Figure 2(a) it is evident that the efficiency of thesystem rapidly reaches
a good level (greater than 0.9) moving from small instances (requiring less that 2s of
execution) to larger ones, and remains stable (the surface plotted in Figure 2(a) forms a
sort of plateau). The corresponding gains are visible by looking at Figure 2(b), where,
e.g. an instance of 10000 nodes is instantiated in 638.27 seconds by the serial system
and in 87.11 seconds by the parallel one with 8-processor enabled.

Summarizing, the parallel instantiator behaved very well in all the considered in-
stances. It showed superlinear speedups in the case of easy-to-parallelize instances and,

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy

Number of processors

ramsey
3col

reach
queens

timetabling

Fig. 1.Average Efficiency

in the other cases its efficiency rapidly reaches good levelsand remains stable when
the sizes of the input problem grow. Importantly, the systemoffers a very good perfor-
mance already when only two CPUs were enabled (i.e. for the largest majority of the
commercially-available hardware at the time of this writing) and efficiency remains at
a very good level when up to 8 CPUs are available.

4 Related Work

Several works about parallel techniques for the evaluationof ASP programs have been
proposed, focusing on both the propositional (model search) phase [25–29], and the
instantiation phase [29, 18]. Model generation is a distinct phase of ASP computation,
carried out after the instantiation, and thus, the first group of proposals is not directly
related to our setting. Concerning the parallelization of the instantiation phase, some
preliminary studies were carried out in [29]. However, there are crucial differences
with our system regarding both the employed technology and the supported paralleliza-
tion strategy. Indeed, our system is implemented by using POSIX threads APIs, and
works in a shared memory architecture [17], while the one described in [29] is actually
a Beowulf [30] cluster working in local memory. Moreover, the parallel instantiation
strategy of [29] is applicable only to a subset of the programrules (those not defining
domain predicates), and is, in general, unable to fruitfully exploit parallelism in case of
programs with a small number of rules. Importantly, the parallelization strategy of [29]
staticallyassigns a rule per processing unit; whereas, in our approach, both the exten-
sion of predicates and “split sizes” are dynamically computed (and updated at different
iterations of the semi-naı̈ve) while the instantiation process is running. Note also that
our parallelization techniques and heuristics could be also adapted for improving the
other ASP instantiators like Lparse [31] and Gringo [32].

Concerning other related works, it is worth remembering that, the dynamic rewrit-
ing technique employed in our system is related to thecopy and constraintechnique for
parallelizing the evaluation of deductive databases [33–37]. In many of the mentioned
works (dating back to 90’s), only restricted classes of Datalog programs are parallelized;
whereas, the most general ones (reported in [34, 36]) are applicable to normal Datalog
programs. Clearly, none of them consider the peculiaritiesof disjunctive programs and
unstratified negation. The technique employed in our systemshares the idea of splitting
the instantiation of each rule, but has several differencesthat allow for obtaining an
effective implementation. Indeed, in [34, 36] copied rulesare generated and statically

Efficiency => 0.9

time_8proc > 2 sec

Efficiency <= 0.9

time_8proc < 2 sec

 2

 3

 4

 5

 6

 7

 8

Number of processors

 0
 2000

 4000
 6000

 8000
 10000

 12000

Instances

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Effficiency

(a) Efficiency

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000 12000

T
im

e
in

 s
ec

on
ds

Instances

Efficiency => 0.9
time_8proc > 2 sec

Efficiency <= 0.9
time_8proc < 2 sec

serial
2 processors
4 processors
8 processors

(b) Execution times (s)

Fig. 2.Efficiency results for Hamiltonian path

associated to instantiators according to a hash function which is independent from the
current instance in input. Conversely, in our technique, the distribution of predicate ex-
tensions is performed dynamically, before assigning the rules to instantiators, by taking
into account the “actual” predicate extensions. In this way, the non-trivial problem [36]
of choosing an hash function that properly distributes the load is completely avoided in
our approach. Moreover, the evaluation of conditions attached to the rule bodies during
the instantiation phase would require to either modify the standard instantiation pro-
cedure (for efficiently selecting the tuples from the predicate extensions according to
added constraints) or to incur in a possible non negligible overhead due to their evalua-
tion.

Focusing on theheuristicsemployed on parallel databases, we mention [37] and
[38]. In both cases, the proposed heuristics were devised and tuned for dealing with
data distributed in several sites and their application to other architectures might be
neither viable nor straightforward.

5 Conclusions

In this paper, we presented a parallel ASP instantiator based on the DLV system which
is able to profitably exploit state-of-the-art commercial multi-core/multi-processor hard-
ware. The system employs several parallelization strategies and dynamic techniques
for load balancing and granularity control specifically-conceived for parallel ASP in-
stantiation. An experimental analysis has been conducted on both easy and hard-to-
parallelize problem instances for assessing system performance. The results confirm
that multi-core/multi-processor technology can be effectively exploited for ASP instan-
tiation; indeed, the parallel system showed a nearly-optimal efficiency in the case of
hard-to-parallelize problem instances, and superlinear speedups in other cases.

As far as future work is concerned, we are studying other techniques for further
improving the single rule level parallelism. Moreover, we are assessing system perfor-
mance on a larger set of benchmarks.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
NGC 9 (1991) 365–385

2. Lifschitz, V.: Answer Set Planning. In: Proceedings of the 16th International Conference on
Logic Programming (ICLP’99) 23–37

3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL7(3) (2006) 499–562

4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys33(3) (2001) 374–425

5. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7.
LNCS 2923, (2004) 331–335

6. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In:LPNMR’05. LNCS
3662, (2005) 447–451

7. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. AI 138(2002) 181–234

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: IJCAI 2007,(2007) 386–392

9. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic programby SAT solvers. AI
157(1–2) (2004) 115–137

10. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight
Programs. In: LPNMR-7. LNCS 2923, (2004) 346–350

11. Anger, C., Konczak, K., Linke, T.:NoMoRe: A System for Non-Monotonic Reasoning. In:
LPNMR’01. LNCS 2173, (2001) 406–410

12. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.:The nomore++ Approach to
Answer Set Solving. In: Logic for Programming, Artificial Intelligence,and Reasoning,
12th International Conference, LPAR 2005. LNCS 3835, (2005) 95–109

13. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A Deductive System for Nonmono-
tonic Reasoning. In: LPNMR’97. LNCS 1265, Dagstuhl, Germany, (1997) 363–374

14. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques for
Nonmonotonic Reasoning. In: DDLP’99, Prolog Association of Japan (1999) 135–139

15. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiatorsby Join-Ordering Methods.
In: LPNMR’01. LNCS 2173, (2001) 280–294

16. Leone, N., Perri, S., Scarcello, F.: BackJumping Techniques for Rules Instantiation in the
DLV System. In: NMR 2004. (2004) 258–266

17. Stallings, W.: Operating systems (3rd ed.): internals and design principles. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1998)

18. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instantiation of
ASP Programs. Journal of Algorithms in Cognition, Informatics and Logics 63(1–3) (2008)
34–54

19. Perri, S., Ricca, F., Vescio, S.: Efficient Parallel ASP Instantiation via Dynamic Rewriting.
In: Proceedings of the First Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP 2008), Udine, Italy (2008)

20. Ullman, J.D.: Principles of Database and Knowledge Base Systems.Computer Science Press
(1989)

21. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczýnski, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17

22. Knuth, D.E.: The Stanford GraphBase : A Platform for Combinatorial Computing. ACM
Press, New York (1994)

23. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting withrecursive queries in
database and logic programming systems. TPLP8 (2008) 129–165

24. Simons, P.: Extending and Implementing the Stable Model Semantics. PhD thesis, Helsinki
University of Technology, Finland (2000)

25. Finkel, R.A., Marek, V.W., Moore, N., Truszczynski, M.: Computing stable models in paral-
lel. In: Answer Set Programming, Towards Efficient and Scalable Knowledge Representation
and Reasoning, Proceedings of the 1st Intl. ASP’01 Workshop, Stanford (2001) 72–76

26. Ellguth, E., Gebser, M., Gusowski, M., Kaufmann, B., Kaminski,R., Liske, S., Schaub, T.,
Schneidenbach, L., Schnor, B.: A simple distributed conflict-driven answer set solver. In:
LPNMR. LNCS 5753, (2009) 490–495

27. Gressmann, J., Janhunen, T., Mercer, R.E., Schaub, T., Thiele, S., Tichy, R.: Platypus: A
Platform for Distributed Answer Set Solving. In: Proceedings of Logic Programming and
Nonmonotonic Reasoning, 8th International Conference (LPNMR), Diamante, Italy (2005)
227–239

28. Pontelli, E., El-Khatib, O.: Exploiting Vertical Parallelism from Answer Set Programs. In:
Answer Set Programming, Towards Efficient and Scalable KnowledgeRepresentation and
Reasoning, Proceedings of the 1st Intl. ASP’01 Workshop, Stanford(2001) 174–180

29. Balduccini, M., Pontelli, E., Elkhatib, O., Le, H.: Issues in parallel execution of non-
monotonic reasoning systems. Parallel Computing31(6) (2005) 608–647

30. : The Beowulf Cluster Site<URL:http://www.beowulf.org>.
31. Niemel̈a, I., Simons, P.: Smodels – An Implementation of the Stable Model and Well-

founded Semantics for Normal Logic Programs. In: LPNMR’97. LNCS 1265, Dagstuhl,
Germany, (1997) 420–429

32. Gebser, M., Schaub, T., Thiele, S.: GrinGo : A New Grounder for Answer Set Program-
ming. In: Logic Programming and Nonmonotonic Reasoning, 9th International Conference,
LPNMR 2007, 15-17, 2007, Proceedings. LNCS 4483, (2007) 266–271

33. Wolfson, O., Silberschatz, A.: Distributed Processing of Logic Programs. In: Proceedings
of the 1988 ACM SIGMOD International Conference on Management ofData, Chicago,
Illinois, USA (1988) 329–336

34. Wolfson, O., Ozeri, A.: A new paradigm for parallel and distributedrule-processing. In:
SIGMOD Conference 1990, New York, USA (1990) 133–142

35. Ganguly, S., Silberschatz, A., Tsur, S.: A Framework for the Parallel Processing of Datalog
Queries. In: SIGMOD Conference 1990, Atlantic City, NJ, 23-25, 1990. (1990) 143–152

36. Zhang, W., Wang, K., Chau, S.C.: Data Partition and Parallel Evaluation of Datalog Pro-
grams. IEEE TKDE7(1) (1995) 163–176

37. Dewan, H.M., Stolfo, S.J., Hernández, M., Hwang, J.J.: Predictive dynamic load balancing
of parallel and distributed rule and query processing. In: Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, New York,USA, ACM (1994)
277–288

38. Carey, M.J., Lu, H.: Load balancing in a locally distributed db system. SIGMOD Rec.15(2)
(1986) 108–119

