
An Extended Semantics for Logic Programs with
Annotated Disjunctions and its Efficient Implementation

Fabrizio Riguzzi1 and Terrance Swift2

1 ENDIF – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy
fabrizio.riguzzi@unife.it

2 CENTRIA – Universidade Nova de Lisboa
tswift@cs.suysb.edu

Abstract. Logic Programming with Annotated Disjunctions (LPADs) is a for-
malism for modeling probabilistic information that has recently received increased
attention. The LPAD semantics, while being simple and clear, suffers fromthe re-
quirement of having function free-programs, which is a strong limitation.In this
paper we present an extension of the semantics that removes this restriction and
allows us to write programs modeling infinite domains, such as Hidden Markov
Models. We show that the semantics is well-defined for a large class of programs.
Moreover, we present the algorithm “Probabilistic Inference with Tablingand
Answer subsumption” (PITA) for computing the probability of queries to pro-
grams according to the extended semantics. Tabling and answer subsumption not
only ensure the correctness of the algorithm with respect to the semantics but also
make it very efficient on programs without function symbols.
PITA has been implemented in XSB and tested on six domains: two with func-
tion symbols and four without. The execution times are compared with those of
ProbLog,cplint and CVE. PITA was almost always able to solve larger prob-
lems in a shorter time on both type of domains.

1 Introduction

Many real world domains only can be represented effectivelyif we are able to model
uncertainty. Recently, there has been an increased interest in logic languages represent-
ing probabilistic information due to their succesful use inMachine Learning.

Logic Programs with Annotated Disjunction (LPADs) [21] have attracted the atten-
tion of various researchers due to their clarity, simplicity, modeling power and ability
to model causation. Their semantics is an instance of the distribution semantics [17]:
a theory defines a probability distribution over logic programs and the probability of a
query is obtained by summing the probabilities of the programs where the query is true.
The semantics of LPADs proposed in [21] requires the programs to be function-free,
which is a strong requirement ruling out many interesting programs. Thus, we propose
a version of the semantics that allows function symbols, along the lines of [17,12].

The new semantics is based on a program transformation technique that not only
allows proving the correctness the semantics but also provides an efficient procedure
for computing the probability of queries from LPADs. The algorithm “Probabilistic In-
ference with Tabling and Answer subsumption” (PITA) buildsexplanations for every

subgoal encountered during a derivation of the query. The explanations are compactly
represented using Binary Decision Diagrams (BDDs) that also allow an efficient com-
putation of the probability. Since all the explanations fora subgoal must be found,
tabling is very useful for storing such information. Tabling has already been shown use-
ful for probabilistic logic programming in [6,14,7]. PITA transforms the input LPAD
into a normal logic programs in which the subgoals have an extra argument storing a
BDD that represents the explanations for its answers. Moreover, we also exploit answer
subsumption to combine explanations coming from differentclauses.

PITA draws inspiration from [5] that first proposed to use BDDs for computing the
probability of queries for the Problog language, a minimalistic probabilistic extension
of Prolog, and from [15] that applied BDDs to the more generalLPAD syntax. Other
approaches for reasoning on LPADs include [14], where SLG resolution is extended
by repeatedly branching on disjunctive clauses, and [10], where CVE is presented that
transforms an LPAD into an equivalent Bayesian network and then performs inference
on the network using the variable elimination algorithm.

PITA was tested on a number of datasets, both with and withoutfunction symbols,
in order to evaluate its efficiency. The execution times of PITA were compared with
those ofcplint [15], CVE [10] and ProbLog [8]. PITA was able to successfullysolve
more complex queries than the other algorithms in most casesand it was also almost
always faster both on datasets with and without function symbols.

The paper is organized as follows. Section 2 illustrates thesyntax and semantics of
LPADs. Section 3 discusses the semantics of LPADs with function symbols. Section
4 gives an introduction to BDDs. Section 5 defines dynamic stratification for LPADs.
Section 6 briefly recalls tabling and answer subsumption. Section 7 presents PITA and
shows its correctness. Section 8 describes the experimentsand Section 9 concludes the
paper and presents directions for future works.

2 Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions[21] consists of a finite set of annotated
disjunctive clauses of the formh1 : α1 ∨ . . . ∨ hn : αn ← b1, . . . , bm. In such a clause
h1, . . . hn are logical atoms,b1, . . . , bm logical literals, and{α1, . . . , αn} real numbers
in the interval[0, 1] such that

∑n
j=1 αj ≤ 1. h1 : α1 ∨ . . . ∨ hn : αn is called thehead

andb1, . . . , bm is called thebody. Note that ifn = 1 andα1 = 1 a clause corresponds
to a normal program clause, sometimes called anon-disjunctiveclause. If

∑n
j=1 αj <

1, the head of the annotated disjunctive clause implicitly contains an extra atomnull
that does not appear in the body of any clause and whose annotation is 1 −

∑n
j=1 αj .

For a clauseC of the form above, we definehead(C) as{(hi : αi)|1 ≤ i ≤ n} if∑n
i=1 αi = 1 and as{(hi : αi)|1 ≤ i ≤ n} ∪ {(null : 1 −

∑n
i=1 αi)} otherwise.

Moreover, we definebody(C) as{bi|1 ≤ i ≤ m}, hi(C) ashi andαi(C) asαi.
If the LPAD is ground, a clause represents a probabilistic choice between the non-

disjunctive clauses obtained by selecting only one atom in the head. As usual, if the
LPAD T is not ground,T can be assigned a meaning by computing its grounding,
ground(T). The semantics of LPADs, given in [21], requires the ground program to be
finite, so the program must not contain function symbols if itcontains variables.

2

By choosing a head atom for each ground clause of an LPAD we geta normal logic
program called apossible worldof the LPAD (called aninstanceof the LPAD in [21]).
A probability distribution is defined over the space of possible worlds by assuming
independence between the choices made for each clause.

More specifically, anatomic choiceis a triple(C, θ, i) whereC ∈ T , θ is a substi-
tution that groundsC and i ∈ {1, . . . , |head(C)|}. (C, θ, i) means that, for ground
clauseCθ, the headhi(C) was chosen. A set of atomic choicesκ is consistentif
(C, θ, i) ∈ κ, (C, θ, j) ∈ κ⇒ i = j, i.e., only one head is selected for a ground clause.
A composite choiceκ is a consistent set of atomic choices. TheprobabilityP (κ) of a
composite choiceκ is the product of the probabilities of the individual atomicchoices,
i.e.P (κ) =

∏
(C,θ,i)∈κ αi(C).

A selectionσ is a composite choice that, for each clauseCθ in ground(T), con-
tains an atomic choice(C, θ, i) in σ. We denote the set of all selectionsσ of a pro-
gramT by ST . A selectionσ identifies a normal logic programwσ defined as follows
wσ = {(hi(C)θ ← body(C))θ|(C, θ, i) ∈ σ}. wσ is called apossible world(or simply
world) of T .WT denotes the set of all the possible worlds ofT . Since selections are
composite choices, we can assign a probability to possible worlds:P (wσ) = P (σ) =∏

(C,θ,i)∈σ αi(C).
We consider onlysoundLPADs, in which every possible world has a total model

according to the Well-Founded Semantics (WFS) [20]. In this way, the uncertainty is
modeled only by means of the disjunctions in the head and not by the features of the
semantics. In the following,wσ |= φ means that the atomφ is true in the well-founded
model of the programwσ.

The probability of a ground atomφ according to an LPADT is given by the sum of
the probabilities of the possible worlds where the atom is true under the WFS:P (φ) =∑

σ∈ST ,wσ|=φ P (σ). It is easy to see thatP satisfies the axioms of probability.

Example 1.Consider the dependency of sneezing on having the flu or hay fever:
C1 = strong sneezing(X) : 0.3 ∨moderate sneezing(X) : 0.5 ← flu(X).
C2 = strong sneezing(X) : 0.2 ∨moderate sneezing(X) : 0.6 ← hay fever(X).
C3 = flu(david).
C4 = hay fever(david).

This program models the fact that sneezing can be caused by fluor hay fever. The
querystrong sneezing(david) is true in 5 of the 9 instances of the program and its
probability is
PT (strong sneezing(david)) = 0.3·0.2+0.3·0.6+0.3·0.2+0.5·0.2+0.2·0.2 = 0.44

Even if we assumed independence between the choices for individual ground clauses,
this does not represents a restriction, in the sense that this still allow to represent all the
joint distributions of atoms of the Herbrand base that are representable with a Bayesian
network over those variables. Details of the proof are omitted for lack of space.

LPADs can be written by the user or learned from data. When written by the user,
the best approach is to write each clause so that it models a causal mechanism of the
domain and to choose the parameters on the basis of his knowledge of the mechanism.

3

3 A Semantics for LPADs with Function Symbols

If a non-ground LPADT contains function symbols, then the semantics given in Section
2 is not well-defined. In this case, each possible worldwσ is the result of an infinite
number of choices and the probabilityP (wσ) of wσ is 0 since it is given by the product
of an infinite number of factors all smaller than 1. Thus, the probability of a formula is
0 as well, since it is a sum of terms all equal to 0.

Therefore a new definition of the LPAD semantics is necessary. We provide such
a definition following the approach in [12] for assigning a semantics to ICL programs
with function symbols. A similar result can be obtained using [17].

A composite choiceκ identifies a set of possible worldsωκ that contains all the
worlds relative to a selection that is a superset ofκ, i.e.,ωκ = {wσ|σ ∈ ST , σ ⊇ κ}
We define the set of possible worlds associated to a set of composite choicesK: ωK =⋃

κ∈K ωκ

Given a ground atomφ, we define the notion of explanation, covering set of com-
posite choices and mutually incompatible set of explanations. A finite composite choice
κ is anexplanationfor φ if φ is true in every world ofωκ. In Example 1, the composite
choice{(C1, {X/david}, 1)} is an explanation forstrong sneezing(david). A set of
composite choicesK is coveringwith respect toφ if every worldwσ in whichφ is true
is such thatwσ ∈ ωK . In Example 1, the set of composite choices

K1 = {{(C1, {X/david}, 1)}, {(C2, {X/david}, 1)}} (1)

is covering forstrong sneezing(david). Two composite choicesκ1 andκ2 areincom-
patible if their union is inconsistent, i.e., if there exists a clauseC and a substitutionθ
groundingC such that(C, θ, j) ∈ κ1, (C, θ, k) ∈ κ2 andj 6= k. A setK of composite
choices ismutually incompatibleif for all κ1 ∈ K,κ2 ∈ K,κ1 6= κ2 ⇒ κ1 andκ2 are
incompatible. The set of composite choices

K2 = {{(C1, {X/david}, 1), (C2, {X/david}, 2)},

{(C1, {X/david}, 1), (C2, {X/david}, 3)}, (2)

{(C2, {X/david}, 1)}}

is mutually incompatible for the theory of Example 1. The following results of [12]
hold also for LPADs.

– Given a finite setK of finite composite choices, there exists a finite setK ′ of
mutually incompatible finite composite choices such thatωK = ωK′ .

– If K1 andK2 are both mutually incompatible sets of composite choices such that
ωK1

= ωK2
then

∑
κ∈K1

P (κ) =
∑

κ∈K2
P (κ)

Thus, we can define a unique probability measureµ : ΩT → [0, 1] whereΩT is defined
as the set of sets of worlds identified by finite sets of finite composite choices:ΩT =
{ωK |K is a finite set of finite composite choices}. It is easy to see thatΩT is an algebra
overWT . Thenµ is defined byµ(ωK) =

∑
κ∈K′ P (κ) whereK ′ is a finite set of finite

composite choices that is mutually incompatible and such thatωK = ωK′ . As for ICL,
〈WT , ΩT , µ〉 is a probability space [9].

4

Definition 1. The probability of a ground atomφ is given byP (φ) = µ({wσ|wσ ∈
WT ∧ wσ |= φ}

Theorem 2 in Section 7 shows that, ifT is a sound LPAD with bounded term-size and
φ is a ground atom, there is a finite setK of explanations ofφ such thatK is covering.
ThereforeP (φ) is well-defined.

In the case of Example 1,K2 shown in equation 2 is a covering set of explanations
for sneezing(david, strong) that is mutually incompatible, so

P (sneezing(david, strong)) = 0.3 · 0.6 + 0.3 · 0.2 + 0.2 = 0.44

4 Representing Explanations by Means of Decision Diagrams

In order to represent explanations we can use Multivalued Decision Diagrams [19].
An MDD represents a functionf(X) taking Boolean values on a set of multivalued
variablesX by means of a rooted graph that has one level for each variable. Each node
has one child for each possible value of the multivalued variable associated to the level
of the node. The leaves store either 0 or 1. Given values for all the variablesX, an
MDD can compute the value off(X) by traversing the graph starting from the root and
returning the value associated to the leaf that is reached.

Given a set of explanationsK, we obtain a Boolean functionfK in the following
way. Each ground clauseCθ appearing inK is associated to a multivalued variable
XCθ with as many values as atoms in the head ofC. Each atomic choice(C, θ, i) is
represented by the propositional equationXCθ = i. Equations for a single explanation
are conjoined and the conjunctions for the different explanations are disjoined.

The set of explanations in Equation (1) can be represented bythe functionfK1
(X) =

(XC1∅ = 1) ∨ (XC2∅ = 1). An MDD can be obtained from a Boolean function: from
fK1

th MDD shown in Figure 1(a) is obtained.

�� ���� ��ciao

3

2

1

a0a
�� ���� ��ciao

1

3

2

a1a
XC1∅

XC2∅

(a) MDD.

�� ���� ��ciao

0

1

a0a
�� ���� ��ciao

1

0

a1a
XC1∅1

XC2∅1

(b) BDD.

Fig. 1.Decision diagrams for Example 1.
Given a MDDM , we can identify a set of explanationsKM associated toM that is

obtained by considering each path from the root to a 1 leaf as an explanation. If is easy
to see thatK is a set of explanations andM is obtained fromfK , K andKM represent
the same set of worlds, i.e., thatωK = ωKM

.
The important role of MDDs is thatKM is mutually incompatible because at each

level we branch on a variable and the explanations associated to the leaves that are
below a child of a node are incompatible with those of the other children of the node.

By converting a set of explanations into a mutually incompatible set of explanations,
MDDs allow to computeµ(ωK) given anyK. This is equivalent to computing the
probability of a DNF formula which is an NP-hard problem but decision diagrams offer
also a practical algorithm that was shown better than other methods [5].

5

Decision diagrams can be built with various software packages that provide highly
efficient implementation of Boolean operations. However, most packages are restricted
to work on Binary Decision Diagram (BDD), i.e., decision diagrams where all the vari-
ables are Boolean. To work on MDD with a BDD package, we must represent multival-
ued variables by means of binary variables. Various optionsare possible, we found that
the following, proposed in [4], gives the best performance.For a variableX havingn
values, we usen − 1 Boolean variablesX1, . . . , Xn−1 and we represent the equation
X = i for i = 1, . . . n−1 by means of the conjunctionX1∧X2∧. . .∧Xi−1∧Xi, and the
equationX = n by means of the conjunctionX1∧X2∧. . .∧Xn−1. The BDD represen-
tation of the functionfK1

is given in Figure 1(b). The Boolean variables are associated
with the following parameters:P (X1) = P (X = 1) . . . P (Xi) =

P (X=i)∏
i−1

j=1
(1−P (Xi−1))

.

5 Dynamic Stratification of LPADs

One of the most important formulations of stratification is that ofdynamicstratification.
[13] shows that a program has a 2-valued well-founded model iff it is dynamically
stratified, so that it is the weakest notion of stratificationthat is consistent with the
WFS. As presented in [13], dynamic stratification computes strata via operators on3-
valued interpretations– pairs of the form〈T ;F 〉, whereT andF are subsets of the
Herbrand baseHP of a normal programP .

Definition 2. For a normal programP , setsT andF of ground atoms, and a 3-valued
interpretationI we define

TrueI(T) = {A : valI(A) 6= t and there is a clauseB ← L1, ..., Ln in P and a
ground substitutionθ such thatA = Bθ and for every1 ≤ i ≤ n eitherLiθ is true
in I, or Liθ ∈ T};

FalseI(F) = {A : valI(A) 6= f and for every clauseB ← L1, ..., Ln in P and
ground substitutionθ such thatA = Bθ there is somei (1 ≤ i ≤ n), such thatLiθ
is false inI or Liθ ∈ F}.

The conditionsvalI(A) 6= t andvalI(A) 6= f are inessential, but ensure that onlynew
facts are included inTrueI(T) andFalseI(F), and simplify the definition of dynamic
strata below. [13] shows thatTrueI andFalseI are both monotonic and definesTI as
the least fixed point ofTrueI andFI as the greatest fixed point ofFalseI . In words, the
operatorTI extends the interpretationI to add the new atomic facts that can be derived
fromP knowingI;FI adds the new negations of atomic facts that can be shown falsein
P by knowingI (via the uncovering of unfounded sets). An iterated fixed point operator
builds up dynamic strata by constructing successive partial interpretations as follows

Definition 3 (Iterated Fixed Point and Dynamic Strata).For a programP let

WFM0 = 〈∅; ∅〉;
WFMα+1 = WFMα ∪ 〈TWFMα

;FWFMα
〉;

WFMα =
⋃

β<α WFMβ , for limit ordinal α.

6

Let WFM(P) denote the fixed point interpretationWFMδ, whereδ is the smallest
countable ordinal such that both setsTWFMδ

andFWFMδ
are empty. We refer toδ

as thedepthof programP . Thestratumof atomA, is the least ordinalβ such that
A ∈WFMβ (whereA may be either in the true or false component ofWFMβ).

[13] shows that the iterated fixed pointWFM(P) is in fact the well-founded model
and that any undefined atoms of the well-founded model do not belong to any stratum
– i.e. they are not added toWFMδ for any ordinalδ.

Dynamic stratification captures the order in which recursive components of a pro-
gram must be evaluated. Because of this, dynamic stratification is useful for modeling
operational aspects of program evaluation. Fixed-order dynamic stratification [16], used
in Section 7, replaces the definition ofFalseI(F) in Definition 2 is by

FalseI(F) = {A : valI(A) 6= f and for every clauseB ← L1, ..., Ln inP and ground
substitutionθ such thatA = Bθ there exists afailing prefix: i.e., there is somei
(1 ≤ i ≤ n), such thatLiθ is false inI or Liθ ∈ F , and for allj (1 ≤ j ≤ i− 1),
Ljθ is true inI}.

[16] describes how fixed-order dynamic stratification captures those programs that a
tabled evaluation can evaluate with a fixed literal selection strategy (i.e. without the SLG
operations ofSIMPLIFICATION and DELAY). As shown from the following example,
fixed-order stratification is a fairly weak condition for a program.

Example 2.The following program has a 2-valued well-founded model andso is dy-
namically stratified, but does not belong to other stratification classes, such as local,
modular, or weak stratification.

s← ¬s, p. s← ¬p,¬q,¬r.
p← q,¬r, ¬s. q← r, ¬p.
r ← p,¬q.

p, q, andr all belong to stratum 0, whilesbelongs to stratum 1. The simple program

p← ¬ p. p.

is fixed-order stratified, but not locally, modularly, or weakly stratified. Fixed-order
stratification is more general than local stratification, and than modular stratification
(since modular stratified programs can be decidably rearranged so that they have failing
prefixes). It is neither more nor less general than weak stratification.

The above definitions of (fixed-order) dynamic stratification for normal programs can be
straightforwardly adapted to LPADs – an LPAD is(fixed-order) dynamically stratified
if eachw ∈ WT is (fixed-order) dynamically stratified.

6 Tabling and Answer Subsumption

The idea behind tabling is to maintain in a table both subgoals encountered in a query
evaluation and answers to these subgoals. If a subgoal is encountered more than once,
the evaluation reuses information from the table rather than re-performing resolution

7

against program clauses. Although the idea is simple, it hasimportant consequences.
First, tabling ensures termination of programs with thebounded term-size property. A
programP has the bounded term-size property if there is a finite function f : N → N
such that if a query termQ to P has sizesize(Q), then no term used in the deriva-
tion of Q has size greater thanf(size(Q)). This makes it easier to reason about ter-
mination than in basic Prolog. Second, tabling can be used toevaluate programs with
negation according to the WFS. Third, for queries to wide classes of programs, such as
datalog programs with negation, tabling can achieve the optimal complexity for query
evaluation. And finally, tabling integrates closely with Prolog, so that Prolog’s familiar
programming environment can be used, and no other language is required to build com-
plete systems. As a result, a number of Prologs now support tabling including XSB,
YAP, B-Prolog, ALS, and Ciao. In these systems, a predicatep/n is evaluated using
SLDNF by default: the predicate is made to use tabling by a declaration such astable
p/n that is added by the user or compiler.

This paper makes use of a tabling feature calledanswer subsumption. Most formu-
lations of tabling add an answerA to a table for a subgoalS only if A is a not a variant
(as a term) of any other answer forS. However, in many applications it may be useful to
order answers according to a partial order or (upper semi-)lattice. In the case of a lattice,
answer subsumption may be specified by means of a declarationsuch astable p(,or/3 -
zero/1).for an unary predicatep. wherezero/1 is the bottom element of the lattice and
or/3 is the join operation of the lattice. For example, in the PITAalgorithm for LPADs
presented in Section 7, if a table had an answerp(a,E1) and a new answerp(a,E2)
were derived, whereE1 andE2 are probabilistic explanations, the answerp(a,E1) is
replaced byp(a,E3), whereE3 is obtained by callingor(E1, E2, E3) and is the logi-
cal disjunction of the first two explanations, as stored in a BDD3. Answer subsumption
over arbitrary upper semi-lattices is implemented in XSB for stratified programs [18];
in addition, the mode-directed tabling of B-Prolog can alsobe seen as a form of answer
subsumption.

Section 7 uses SLG resolution [3] extended with answer subsumption in its proof of
Theorem 2, although similar results could be extended to other tabling formalisms that
support negation and answer subsumption.

7 Program Transformation

The first step of the PITA algorithm is to apply a program transformation to an LPAD
to create a normal normal program that contains calls for manipulating BDDs. In our
implementation, these calls provide a Prolog interface to the CUDD4 C library and use
the following predicates5

– init, end: for allocation and deallocation of a BDD manager, a data structure used
to keep track of the memory for storing BDD nodes;

3 The logical disjunctionE3 can be seen as subsumingE1 andE2 over the partial order af
implication defined on logical formulas.

4 http://vlsi.colorado.edu/ ˜ fabio/
5 BDDs are represented in CUDD as pointers to their root node.

8

http://vlsi.colorado.edu/~fabio/

– zero(-BDD), one(-BDD), and(+BDD1,+BDD2,-BDDO), or(+BDD1,+BDD2,
-BDDO), not(+BDDI,-BDDO): Boolean operations between BDDs;

– add var(+N Val,+Probs,-Var): addition of a new multi-valued variable withN Val
values and parametersProbs;

– equality(+Var,+Value,-BDD): BDD representsVar=Value, i.e. that the random vari-
ableVar is assignedValuein the BDD;

– ret prob(+BDD,-P): returns the probability of the formula encoded byBDD.

add var(+N Val,+Probs,-Var) adds a new random variable associated to a new in-
stantiation of a rule withN Val head atoms and parameters listProbs. The auxiliary
predicateget var n(+R,+S,+Probs,-Var)is used to wrapadd var/3 and avoid adding a
new variable when one already exists for an instantiation. As shown below, a new fact
var(R,S,Var)is asserted each time a new random variable is created, whereR is an iden-
tifier for the LPAD clause,S is a list of constants, one for each variables of the clause,
andVar is an integer that identifies the random variable associatedwith clauseR under
a particular grounding. The auxiliary predicates has the following definition

get var n(R,S, Probs, V ar)←
(var(R,S, V ar)→ true;
length(Probs, L), add var(L,Probs, V ar), assert(var(R,S, V ar))).

whereProbsis a list of floats that stores the parameters in the head of ruleR.
The PITA transformation applies to clauses, literals and atoms. If h is an atom,

PITAh(h) is h with the variableBDD added as the last argument. Ifbj is an atom,
PITAb(bj) is bj with the variableBj added as the last argument. In either case for an
atoma, BDD(PITA(a)) is the value of the last argument ofPITA(a),

If bj is negative literal¬aj , PITAb(bj) is the conditional
(PITA′

b(aj) → not(BNj , Bj); one(Bj)), wherePITA′
b(aj) is aj with the variable

BNj added as the last argument. In other words the input BDD,BNk, is negated if it
exists; otherwise the BDD for the constant function1 is returned.

A non-disjunctive factCr = h is transformed into the clause
PITA(Cr) = PITAh(h)← one(BDD).
A disjunctive factCr = h1 : α1 ∨ . . . ∨ hn : αn. where the parameters sum to 1, is
transformed into the set of clausesPITA(Cr)

6

PITA(Cr, 1) = PITAh(h1)← get var n(i, [], [α1, . . . , αn], V ar),
equality(V ar, 1, BDD).

. . .
P ITA(Cr, n) = PITAh(hn)← get var n(r, [], [α1, . . . , αn], V ar),

equality(V ar, n,BDD).
In the case where the parameters do not sum to one, the clause is first transformed into
h1 : α1 ∨ . . . ∨ hn : αn ∨ null : 1 −

∑n
1 αi. and then into the clauses above, where

the list of parameters is[α1, . . . , αn, 1−
∑n

1 αi] but the(n+ 1)-th clause (the one for
null) is not generated.
The definite clauseCr = h← b1, b2, . . . , bm. is transformed into the clause

PITA(Cr) = PITAh(h)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2),
. . . , P ITAb(bm), and(BBm−1, Bm, BDD).

6 The second argument ofget var n is the empty list because, since we are considering only
range restricted programs (cfr. below), a fact does not contain variables.

9

The disjunctive clause
Cr = h1 : α1 ∨ . . . ∨ hn : αn ← b1, b2, . . . , bm.

where the parameters sum to 1, is transformed into the set of clausesPITA(Cr)
PITA(Cr, 1) = PITAh(h1)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2),

. . . , P ITAb(bm), and(BBm−1, Bm, BBm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, 1, B), and(BBm, B,BDD).

. . .
P ITA(Cr, n) = PITAh(hn)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2),

. . . , P ITAb(bm), and(BBm−1, Bm, BBm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, n,B), and(BBm, B,BDD).

whereV C is a list containing each variable appearing inCr. If the parameters do not
sum to 1, the same technique used for disjunctive facts is used.

Example 3.ClauseC1 from the LPAD of Example 1 is translated into
strong sneezing(X,BDD) ← flu(X,B1),

get var n(1, [X], [0.3, 0.5, 0.2], V ar),
equality(V ar, 1, B), and(B1, B,BDD).

moderate sneezing(X,BDD)← flu(X,B1),
get var n(1, [X], [0.3, 0.5, 0.2], V ar),
equality(V ar, 2, B), and(B1, B,BDD).

while clauseC3 is translated into
flu(david,BDD)← one(BDD).

In order to answer queries, the goalsolve(Goal,P)is used, which is defined by
solve(Goal, P)← init, retractall(var(, ,)),

add bdd arg(Goal,BDD,GoalBDD),
(call(GoalBDD)→ ret prob(BDD,P);P = 0.0),
end.

whereadd bdd arg(Goal,BDD,GoalBDD) implementsPITAh(Goal). Moreover,
various predicates of the LPAD should be declared as tabled.For a predicatep/n, the
declaration istable p(1,..., n,or/3-zero/1), that indicates that answer subsumption is
used to form the disjunct of multiple explanations: At a minimum, the predicate of the
goal should be tabled; as shown in Section 8 it is usually better to table every predicate
whose answers have multiple explanations and are going to bereued often.

Correctness of PITAIn this section we show two results regarding the PITA transfor-
mation and its tabled evaluation7. These results ensure on one hand that the semantics
is well-defined and on the other hand that the evaluation algorithm is correct. For the
purposes of our semantics, we consider the BDDs produced as ground terms, and do
not specify them further. We first state the correctness of the PITA transformation with
respect to the well-founded semantics of LPADs. Because we allow LPADs to have

7 Due to space limitations, our presentation is somewhat informal: a for-
mal presentation with all proofs and supporting definitions can be found at
http://www.ing.unife.it/docenti/FabrizioRiguzzi/Pap ers/RigSwi10-TR.pdf .

10

http://www.ing.unife.it/docenti/FabrizioRiguzzi/Papers/RigSwi10-TR.pdf

function symbols, care must be taken to ensure that explanations are finite. To accom-
plish this, we prove correctness for what we term dynamically-finitary programs, essen-
tially those for which a derivation in the well-founded semantics does not depend on an
infinite unfounded set8.

Theorem 1 (Correctness of PITA Transformation).Let T be a sound dynamically-
finitary LPAD. Thenκ is an explanation for a ground atoma iff there is aPITAh(a)θ
in WFM(PITA(ground(T))), such thatκ is a path inBDD(PITAh(a)θ) to a 1
leaf.

Theorem 2 below states the correctness of the tabling implementation of PITA, since
the BDD returned for a tabled query is the disjunction of a setof covering explanations
for that query. The proof uses an extension of SLG evaluationthat includes answer
subsumption but that is restricted to fixed-order dynamically stratified programs [18], a
formalism that models the implementation tested in Section8. Note that unlike Theo-
rem 1, Theorem 2 does not require the programT to be grounded. However, Theorem 2
does requireT to be range restricted in order to ensure that tabled evaluation grounds
answers. A normal program/LPAD isrange restrictedif all the variables appearing in
the head of each clause appear also in the body. If a normal program is range restricted,
every successful SLDNF-derivation forG completely groundsG [11], a result that can
be straightforwardly extended to tabled evaluations. In addition, Theorem 2 requiresT
to have the bounded term-size property (cf. Section 6) to ensure termination and finite
explanations.

Theorem 2 (Correctness of PITA Evaluation).Let T be a range restricted, bounded
term-size, fixed-order dynamically stratified LPAD anda a ground atom. LetE be an
SLG evaluation ofPITAh(a) againstPITA(T), such that answer subsumption is
declared onPITAh(a) using BDD-disjunction. ThenE terminates with an answerans
for PITAh(a) andBDD(ans) represents a covering set of explanations fora.

Thus range restricted, bounded term-size and fixed-order dynamically stratified LPADs
have a finite set of explanations that are covering for a ground atom, so the semantics
with function symbols is well-defined.

8 Experiments

PITA was tested on two datasets that contain function symbols: the first is taken from
[21] and encodes a Hidden Markov Model (HMM) while the latterfrom [5] encodes
biological networks. Moreover, it was also tested on the four testbeds of [10] that do
not contain function symbols. PITA was compared with the exact version of ProbLog9

[5] available in the git version of Yap as of 19/12/2009, withthe version ofcplint

8 Dynamically-finitary programs are a strict superclass of the finitary programs of [1] and are
neither a subclass nor a superclass of the finitely ground programs of [2]. The formal definition
of dynamically-finitary programs is in the full version of this paper.

9 ProbLog was not tested on programs with more than two atoms in the head because the pub-
licly available version is not yet able to deal with non-binary variables.

11

[15] available in Yap 6.0 and with the version of CVE [10] available in ACE-ilProlog
1.2.2010.

The first problem models a HMM with three states 1, 2 and 3 of which 3 is an end
state. This problem is encoded by the program

s(0,1):1/3∨ s(0,2):1/3∨ s(0,3):1/3.
s(T,1):1/3∨ s(T,2):1/3∨ s(T,3):1/3← T1 is T-1, T1>=0, s(T1,F),\+ s(T1,3)

For this experiment, we query the probability of the HMM being in state 1 at timeN
for increasing values ofN, i.e., we query the probability ofs(N,1). In PITA, we did not
use reordering of BDDs variables11. The execution times of PITA, CVE andcplint
are shown in Figure 2. In this problem tabling provides an impressive speedup, since
computations can be reused often.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N

T
im

e
 (

s)

cplint
CVE
PITA

Fig. 2.Three sided die.
The biological network problems compute the probability ofa path in a large graph

in which the nodes encode biological entities and the links represents conceptual rela-
tions among them. Each programs in this dataset contains a definition of path plus a
number of links represented by probabilistic facts. The programs have been sampled
from a very large graph and contain 200, 400,. . ., 5000 edges. Sampling was repeated
ten times, to obtain a series of 10 programs of increasing size. In each test we queried
the probability that the two genes HGNC620 and HGNC983 are related. We used the
definition of path of [8] that performs loop checking explicitly by keeping the list of
visited nodes:

path(X,Y) ← path(X,Y, [X], Z).
path(X,Y, V, [Y |V])← edge(X,Y).
path(X,Y, V 0, V 1) ← edge(X,Z), append(V 0, S, V 1),

\+member(Z, V 0), path(Z, Y, [Z|V 0], V 1).
We used this definition because it gave better results than the one without explicit loop
checking. The possibility of using lists (that require function symbols) allowed in this
case more modeling freedom. The predicatespath/2 andedge/2 are tabled.

We ran PITA, ProbLog andcplint on the graphs in sequence starting from the
smallest program and in each case we stopped after one day or at the first graph for

10 All experiments were performed on Linux machines with an Intel Core 2 Duo E6550 (2333
MHz) processor and 4 GB of RAM.

11 For each experiment, we used either group sift automatic reordering orno reordering of BDDs
variables depending on which gave the best results.

12

500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

Edges

G
ra

p
h

s

ProbLog
cplint
PITA

(a) Number of successes.

500 1000 1500 2000 2500 3000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Size

T
im

e
 (

s)

ProbLog
cplint
PITA

(b) Execution times.

Fig. 3. Biological graph experiments.

20 40 60 80
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of persons in family

T
im

e
 (

s)

cplint
CVE
PITA

(a) bloodtype .

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

N

T
im

e
 (

s)

cplint
CVE
PITA

(b) growingbody .

Fig. 4.Datasets from (Meert et al. 2009).

5 10 15 20
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

cplint
CVE
PITA

(a) growinghead .

0 5 10 15
10

−4

10
−2

10
0

10
2

10
4

Number of PhD students

T
im

e
 (

s)

cplint
CVE
PITA

(b) uwcse .

Fig. 5.Datasets from (Meert et al. 2009).

13

which the program ended for lack of memory12. In PITA, we used group sift reordering
of BDDs variables. Figure 3(a) shows the number of subgraphsfor which each algo-
rithm was able to answer the query as a function of the size of the subgraphs, while Fig-
ure 3(b) shows the execution time averaged over all and only the subgraphs for which all
the algorithms succeeded. PITA was able to solve more subgraphs and in a shorter time
thancplint and ProbLog. For PITA the vast majority of time for larger graphs was
spent on BDD maintenance. ProbLog ended for lack of memory inthree cases out of
ten, PITA in two andcplint in four. This shows that, even if tabling consumes more
memory when finding the explanations, BDDs are built faster and using less memory,
probably due to the fact that tabling allows less redundancy(only one BDD is stored
for an answer) and a bottom-up construction of the BDDs, which is usually better. This
shows that one should table every predicate whose answer have multiple explanations,
aspath/2 andedge/2 above.

The four datasets of [10], served as a final suite of benchmarks. bloodtype en-
codes the genetic inheritance of blood type,growingbody contains programs with
growing bodies,growinghead contains programs with growing heads anduwcse
encodes a university domain. In PITA we disabled automatic reordering of BDDs
variables for all datasets except foruwcse . The execution times ofcplint , CVE
and PITA are shown in Figures 4(a) and 4(b), 5(a) and 5(b)13. PITA was faster than
cplint in all domains and faster than CVE in all domains exceptgrowingbody .
growingbody , however, is a domain in which all the clauses are mutually exclusive,
thus making possible to compute the probability even without BDDs.

9 Conclusion and Future Works

This paper has made two contributions. The first, semantic, contribution extends LPADs
to include functions. By way of proving correctness of the PITA transformation we also
characterize those extended LPAD programs whose derived atoms have only finite ex-
planations (dynamically-finitary LPADs); by way of provingcorrectness of PITA eval-
uation we characterize those that have only finite sets of explanations (LPADs with
the bounded term-size property). Such results ensure that the semantics with function
symbols is well-defined.

The PITA transformation also provides a practical reasoning algorithm that was
directly used in the experiments of Section 8. The experiments substantiate the PITA
approach. Accordingly PITA programs should be easily portable to other tabling en-
gines such as that of YAP, Ciao and B Prolog if they support answer subsumption over
general semi-lattices.

In the future, we plan to extend PITA to the whole class of sound LPADs by imple-
menting the SLGDELAYING andSIMPLIFICATION operations for answer subsumption.
In addition, we are developing a version of PITA that is able to answer queries in an
approximate way, similarly to [8].

12 CVE was not applied to this dataset because the current version can nothandle graph cycles.
13 For the missing points at the beginning of the lines a time smaller than10−6 was recorded.

For the missing points at the end of the lines the algorithm exhausted the available memory.

14

References

1. Baselice, S., Bonatti, P., Criscuolo, G.: On finitely recursive programs. Theory and Practice
of Logic Programming 9(2), 213–238 (2009)

2. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory and
implementation. In: ICLP. pp. 407–424 (2008)

3. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J. ACM
43(1), 20–74 (1996)

4. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens,G., Kimmig, A., Landwehr,
N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I., Vennekens, J.: Towards
digesting the alphabet-soup of statistical relational learning. In: NIPS*2008 Workshop on
Probabilistic Programming (2008)

5. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its application
in link discovery. In: Internation Joint Conference on Artificial Intelligence. pp. 2462–2467
(2007)

6. Kameya, Y., Sato, T.: Efficient EM learning with tabulation for parameterized logic pro-
grams. In: Computational Logic. LNCS, vol. 1861, pp. 269–284. Springer (2000)

7. Kimmig, A., Gutmann, B., Santos Costa, V.: Trading memory for answers: Towards tabling
ProbLog. In: International Workshop on Statistical Relational Learning. KU Leuven (2009)

8. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient execu-
tion of ProbLog programs. In: ICLP. LNCS, vol. 5366, pp. 175–189. Springer (2008)

9. Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea Publishing Company,
New York (1950)

10. Meert, W., Struyf, J., Blockeel, H.: CP-Logic theory inference with contextual variable elim-
ination and comparison to BDD based inference methods. In: International Conference on
Inductive Logic Programming. KU LEuven, Leuven, Belgium (2009)

11. Muggleton, S.: Learning stochastic logic programs. Electron. Trans. Artif. Intell. 4(B), 141–
153 (2000)

12. Poole, D.: Abducing through negation as failure: stable models within the independent choice
logic. J. Log. Program. 44(1-3), 5–35 (2000)

13. Przymusinski, T.: Every logic program has a natural stratification and an iterated least fixed
point model. In: Symposium on Principles of Database Systems. pp. 11–21. ACM Press
(1989)

14. Riguzzi, F.: Inference with logic programs with annotated disjunctionsunder the well
founded semantics. In: ICLP. pp. 667–771. No. 5366 in LNCS, Springer (2008)

15. Riguzzi, F.: A top down interpreter for LPAD and CP-logic. In: Congress of the Italian As-
sociation for Artificial Intelligence. pp. 109–120. No. 4733 in LNAI, Springer (2007)

16. Sagonas, K., Swift, T., Warren, D.S.: The limits of fixed-order computation. Theor. Comput.
Sci. 254(1-2), 465–499 (2000)

17. Sato, T.: A statistical learning method for logic programs with distributionsemantics. In:
ICLP. pp. 715–729 (1995)

18. Swift, T.: Tabling for non-monotonic programming. Ann. Math. Artif. Intell. 25(3-4), 201–
240 (1999)

19. Thayse, A., Davio, M., Deschamps, J.P.: Optimization of multivalued decision algorithms.
In: International Symposium on Multiple-Valued Logic. pp. 171–178 (1978)

20. van Gelder, A., Ross, K., Schlipf, J.: Unfounded sets and well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

21. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions.
In: ICLP. LNCS, vol. 3131, pp. 195–209. Springer (2004)

15

	An Extended Semantics for Logic Programs with Annotated Disjunctions and its Efficient Implementation

