An Extended Semantics for Logic Programs with
Annotated Disjunctions and its Efficient Implementation

Fabrizio Riguzzi and Terrance Switt

1 ENDIF — University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
fabrizio.riguzzi@unife.it
2 CENTRIA — Universidade Nova de Lisboa
tswift@cs.suysb.edu

Abstract. Logic Programming with Annotated Disjunctions (LPADS) is a for-
malism for modeling probabilistic information that has recently receivetased
attention. The LPAD semantics, while being simple and clear, sufferstfiemre-
quirement of having function free-programs, which is a strong limitafiothis
paper we present an extension of the semantics that removes thigicesaitd
allows us to write programs modeling infinite domains, such as Hidden Marko
Models. We show that the semantics is well-defined for a large class grigms.
Moreover, we present the algorithm “Probabilistic Inference with Tabéing
Answer subsumption” (PITA) for computing the probability of queries to-p
grams according to the extended semantics. Tabling and answer gtlisunot

only ensure the correctness of the algorithm with respect to the semauttalsd
make it very efficient on programs without function symbols.

PITA has been implemented in XSB and tested on six domains: two with func-
tion symbols and four without. The execution times are compared with tHose o
ProbLog,cplint and CVE. PITA was almost always able to solve larger prob-
lems in a shorter time on both type of domains.

1 Introduction

Many real world domains only can be represented effectiifelye are able to model
uncertainty. Recently, there has been an increased ihtedegic languages represent-
ing probabilistic information due to their succesful usd&/iachine Learning.

Logic Programs with Annotated Disjunction (LPADS) [21] leaattracted the atten-
tion of various researchers due to their clarity, simpjiaihodeling power and ability
to model causation. Their semantics is an instance of thakidison semantics [17]:
a theory defines a probability distribution over logic pramis and the probability of a
query is obtained by summing the probabilities of the protwahere the query is true.
The semantics of LPADs proposed in[21] requires the progrorbe function-free,
which is a strong requirement ruling out many interestinggpams. Thus, we propose
a version of the semantics that allows function symbols)@ltbe lines of[[1I7,12].

The new semantics is based on a program transformationitgehthat not only
allows proving the correctness the semantics but also gesvan efficient procedure
for computing the probability of queries from LPADs. Thea@lghm “Probabilistic In-
ference with Tabling and Answer subsumption” (PITA) buitdglanations for every

subgoal encountered during a derivation of the query. Tipéaeations are compactly
represented using Binary Decision Diagrams (BDDs) that alew an efficient com-
putation of the probability. Since all the explanations &osubgoal must be found,
tabling is very useful for storing such information. Talglinas already been shown use-
ful for probabilistic logic programming il [6,14,7]. PITAansforms the input LPAD
into a normal logic programs in which the subgoals have araexgument storing a
BDD that represents the explanations for its answers. M@rew/e also exploit answer
subsumption to combine explanations coming from diffectauises.

PITA draws inspiration from[55] that first proposed to use BOior computing the
probability of queries for the Problog language, a ministadi probabilistic extension
of Prolog, and from[[15] that applied BDDs to the more genefAD syntax. Other
approaches for reasoning on LPADs includel [14], where Sl<Blwtion is extended
by repeatedly branching on disjunctive clauses, [1Bgres CVE is presented that
transforms an LPAD into an equivalent Bayesian network &ed performs inference
on the network using the variable elimination algorithm.

PITA was tested on a number of datasets, both with and withmation symbols,
in order to evaluate its efficiency. The execution times dfAPWwere compared with
those ofcplint [15], CVE [10] and ProbLod[8]. PITA was able to successfisibve
more complex queries than the other algorithms in most casést was also almost
always faster both on datasets with and without functionisyim

The paper is organized as follows. Secfidn 2 illustratesyimeax and semantics of
LPADs. Sectioi B discusses the semantics of LPADs with fanctymbols. Section
[gives an introduction to BDDs. Sectibh 5 defines dynamatifitation for LPADs.
Sectior{ 6 briefly recalls tabling and answer subsumptionti@e74 presents PITA and
shows its correctness. Sect[dn 8 describes the experimedtSectiof]9 concludes the
paper and presents directions for future works.

2 Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctioffi1]] consists of a finite set of annotated
disjunctive clauses of the forty, : «y V...V hy, @ oy < by, ..., by, INnSuch a clause
hi,...h, arelogical atomdy, ..., b,, logical literals, and o, . . ., «,, } real numbers
in the interval(0, 1] such thatZ?=1 a; <1.hy:a1V...Vh,: a,is called thenead
andby,...,b,, is called thebody. Note that ifn = 1 anda; = 1 a clause corresponds
to a normal program clause, sometimes callewa-disjunctiveclause. IfZ;:1 aj <

1, the head of the annotated disjunctive clause implicitlgtams an extra atomull
that does not appear in the body of any clause and whose giondtal — >, «;.
For a clause” of the form above, we definkead(C') as{(h; : a;)|1 < i < n}if
S ia; =1landas{(h; : a;)]1 <i <n}U{(null :1-3Y " «;)} otherwise.
Moreover, we definéody(C) as{b;|1 < i < m}, h;(C) ash; ande;(C) asq;.

If the LPAD is ground, a clause represents a probabilist@ahbetween the non-
disjunctive clauses obtained by selecting only one atonménhtead. As usual, if the
LPAD T is not ground,T’ can be assigned a meaning by computing its grounding,
ground(T). The semantics of LPADs, given in[21], requires the grourafypam to be
finite, so the program must not contain function symbolsdbittains variables.

By choosing a head atom for each ground clause of an LPAD wa getmal logic
program called @ossible worldof the LPAD (called arinstanceof the LPAD in [21]).
A probability distribution is defined over the space of pbksiworlds by assuming
independence between the choices made for each clause.

More specifically, armtomic choiceas a triple(C, 0, i) whereC € T, 6 is a substi-
tution that ground<” andi € {1,...,|head(C)|}. (C,6,i) means that, for ground
clauseC¥, the headh;(C) was chosen. A set of atomic choicesis consistentif
(C,0,4) € k,(C,0,j) € k=1 =j,ie.onlyone head is selected for a ground clause.
A composite choice is a consistent set of atomic choices. Trebability P(x) of a
composite choice is the product of the probabilities of the individual atorolmices,
i.e. P(k) = [[c.iex i(C).

A selectiono is a composite choice that, for each cladgin ground(T), con-
tains an atomic choicéC,9,4) in 0. We denote the set of all selectioasof a pro-
gramT by Sr. A selectiono identifies a normal logic program, defined as follows
we = {(hi(C)0 + body(C))0|(C,0,i) € o}. w, is called gpossible worldor simply
world) of 7. W denotes the set of all the possible worlds7ofSince selections are
composite choices, we can assign a probability to possibhde: P(w,) = P(o) =
Iico.ies @i(C):

We consider onlysoundLPADs, in which every possible world has a total model
according to the Well-Founded Semantics (WHES) [20]. In thigvihe uncertainty is
modeled only by means of the disjunctions in the head and ythé features of the
semantics. In the followingy, = ¢ means that the atomis true in the well-founded
model of the progranw,,.

The probability of a ground atom according to an LPADY is given by the sum of
the probabilities of the possible worlds where the atomus tider the WFSP(¢) =
Yooesyuw, = P(0). Itis easy to see thdt satisfies the axioms of probability.

Example 1.Consider the dependency of sneezing on having the flu or vay.fe

Cy = strong_sneezing(X) : 0.3 V moderate_sneezing(X) : 0.5 < flu(X).

Cy = strong_sneezing(X) : 0.2 V moderate_sneezing(X) : 0.6 < hay_fever(X).

Cs = flu(david).

Cy = hay-fever(david).
This program models the fact that sneezing can be caused loy fiay fever. The
query strong_sneezing(david) is true in 5 of the 9 instances of the program and its
probability is
Pr(strong_sneezing(david)) = 0.3-0.2+40.3-0.6+0.3-0.2+0.5-0.2+0.2-0.2 = 0.44

Even if we assumed independence between the choices fordadi ground clauses,
this does not represents a restriction, in the sense tisagtiliiallow to represent all the
joint distributions of atoms of the Herbrand base that apeegentable with a Bayesian
network over those variables. Details of the proof are @difor lack of space.

LPADs can be written by the user or learned from data. Whertemriby the user,
the best approach is to write each clause so that it modelssakcmechanism of the
domain and to choose the parameters on the basis of his kuhgsvtd the mechanism.

3 A Semantics for LPADs with Function Symbols

If a non-ground LPADI" contains function symbols, then the semantics given ini@ect
is not well-defined. In this case, each possible warldis the result of an infinite
number of choices and the probabilB(w,) of w, is 0 since it is given by the product
of an infinite number of factors all smaller than 1. Thus, thabability of a formula is
0 as well, since it is a sum of terms all equal to 0.

Therefore a new definition of the LPAD semantics is neces§&eyprovide such
a definition following the approach in[l12] for assigning ansatics to ICL programs
with function symbols. A similar result can be obtained gdib/].

A composite choice: identifies a set of possible worlds; that contains all the
worlds relative to a selection that is a supersetofe.,w, = {w,|oc € Sp,0 2 K}
We define the set of possible worlds associated to a set of@sitechoiced(: wyx =
UKEK Wk

Given a ground atomp, we define the notion of explanation, covering set of com-
posite choices and mutually incompatible set of explanatid finite composite choice
k is anexplanatiorfor ¢ if ¢ is true in every world ofu,.. In ExampldlL, the composite
choice{(C1, {X/david}, 1)} is an explanation fostrong_sneezing(david). A set of
composite choice& is coveringwith respect tap if every worldw, in which ¢ is true
is such thatu, € wg. In Exampldl, the set of composite choices

K, = {{(Cy,{X/david}, 1)}, {(Ca, {X/david}, 1)} } (1)

is covering forstrong_sneezing(david). Two composite choices; andx, areincom-
patibleif their union is inconsistent, i.e., if there exists a clausand a substitutiod

groundingC such that{C, 0, j) € 1, (C,0,k) € k2 andj # k. A set K of composite
choices isnutually incompatibléf for all x, € K, ko € K, k1 # ko = k1 andks are
incompatible. The set of composite choices

Ky = {{(Cy,{X/david}, 1), (Cy, {X/david},2)},
{(Clv {X/davld}v 1)7 (C2a {X/daUZd}v 3)}7 (2)
{(Cy, {X/david}, 1)}}

is mutually incompatible for the theory of Examjile 1. Theldaoling results of [12]
hold also for LPADs.

— Given a finite setK of finite composite choices, there exists a finite &&tof
mutually incompatible finite composite choices such that= wg-.
— If Ky and K5 are both mutually incompatible sets of composite choices shat

WK, = Wi, theny_ . P(k) =3, cx, P(k)

Thus, we can define a unique probability meagure?r — [0, 1] where(27 is defined
as the set of sets of worlds identified by finite sets of finiteposite choicesf2; =
{wk| K is afinite set of finite composite choidedt is easy to see thd? is an algebra
overWr. Theny is defined byu(wx) = >, c k- P(r) whereK” is afinite set of finite
composite choices that is mutually incompatible and suatutly = wg-. As for ICL,
(Wr, 27, 1) is a probability space [9].

Definition 1. The probability of a ground atond is given byP(¢) = p({w,|w, €
Wr A wy |= qb}

Theoreni? in Sectionl 7 shows that/fifis a sound LPAD with bounded term-size and
¢ is a ground atom, there is a finite gétof explanations ob such thati is covering.
ThereforeP(¢) is well-defined.

In the case of Examplé ¥> shown in equatiohl2 is a covering set of explanations
for sneezing(david, strong) that is mutually incompatible, so

P(sneezing(david, strong)) = 0.3-0.64+0.3-0.2+4 0.2 = 0.44

4 Representing Explanations by Means of Decision Diagrams

In order to represent explanations we can use Multivaluedidiimn Diagrams[[19].
An MDD represents a functiofi(X) taking Boolean values on a set of multivalued
variablesX by means of a rooted graph that has one level for each variahé#h node
has one child for each possible value of the multivaluedatde associated to the level
of the node. The leaves store either O or 1. Given values fahalvariablesX, an
MDD can compute the value ¢f(X) by traversing the graph starting from the root and
returning the value associated to the leaf that is reached.

Given a set of explanations’, we obtain a Boolean functiofix in the following
way. Each ground claus@é appearing ink is associated to a multivalued variable
Xcp with as many values as atoms in the head’ofEach atomic choicéC, 0, 1) is
represented by the propositional equatips = i. Equations for a single explanation
are conjoined and the conjunctions for the different exaiimms are disjoined.

The set of explanations in Equatid (1) can be representétefynctionfy, (X) =
(X0 =1) vV (Xe,p = 1). An MDD can be obtained from a Boolean function: from
[k, th MDD shown in Figur¢ 1() is obtained.

3

e “1
Xeyo Xewo Xeyn Xeyn
(a) MDD. (b) BDD.

Fig. 1. Decision diagrams for Examdlé 1.

Given a MDD M, we can identify a set of explanatioh$,; associated td/ that is
obtained by considering each path from the root to a 1 leaf @&xglanation. If is easy
to see thail is a set of explanations and is obtained fromfy, K and K, represent
the same set of worlds, i.e., thak = wg,, .

The important role of MDDs is thak’,, is mutually incompatible because at each
level we branch on a variable and the explanations assdciatéhe leaves that are
below a child of a node are incompatible with those of the iothédren of the node.

By converting a set of explanations into a mutually incoritgatset of explanations,
MDDs allow to computeu(wg) given any K. This is equivalent to computing the
probability of a DNF formula which is an NP-hard problem batision diagrams offer
also a practical algorithm that was shown better than ottethaus([5].

Decision diagrams can be built with various software paekabat provide highly
efficient implementation of Boolean operations. Howevershpackages are restricted
to work on Binary Decision Diagram (BDD), i.e., decisiongliams where all the vari-
ables are Boolean. To work on MDD with a BDD package, we mysesent multival-
ued variables by means of binary variables. Various optawagossible, we found that
the following, proposed il [4], gives the best performariea. a variableX havingn
values, we us@ — 1 Boolean variables(y, ..., X,,_; and we represent the equation
X =ifori =1,...n—1bymeans of the conjunctiali; AX,A...AX,;_ AX;, and the
equationX = n by means of the conjunctiali; AX>A...AX,_;. The BDD represen-
tation of the functionfr, is given in Figurg¢ I(B). The Boolean variables are assatiate

with the following parameters?(X;) = P(X = 1)...P(X;) = %.
=1 i—1

5 Dynamic Stratification of LPADs

One of the most important formulations of stratificatiorhiattofdynamicstratification.
[13] shows that a program has a 2-valued well-founded mdtlé is dynamically
stratified, so that it is the weakest notion of stratificatibat is consistent with the
WFS. As presented i [13], dynamic stratification computestatvia operators o8-
valued interpretations- pairs of the form(T’; F'), whereT and F' are subsets of the
Herbrand baséi» of a normal progran.

Definition 2. For a normal programP, setsI" and F' of ground atoms, and a 3-valued
interpretation/ we define

Truer(T) = {A : val;(A) # t and there is a claus® + Li,...,L, in P and a
ground substitutio such thatd = B6 and for everyl < i < n eitherL;0 is true
inI,orL;0 €T}

Falser(F) = {A : val;(A) # £ and for every clausé8 « L4,...,L, in P and
ground substitutior? such thatd = B there is some (1 < i < n), such that;0
is falseinl or L;0 € F}.

The conditionwal;(A) # t andval;(A) # £ are inessential, but ensure that onw
facts are included if'rue; (T') and Falser (F), and simplify the definition of dynamic
strata below.[[113] shows th&@true; and False; are both monotonic and defings as
the least fixed point df'rue; and.F; as the greatest fixed point 6fulse;. In words, the
operator7; extends the interpretatiahto add the new atomic facts that can be derived
from P knowingI; F; adds the new negations of atomic facts that can be shownifialse
P by knowing! (via the uncovering of unfounded sets). An iterated fixedhpoperator
builds up dynamic strata by constructing successive pantarpretations as follows

Definition 3 (Iterated Fixed Point and Dynamic Strata). For a programP let
WE My = (0; 0);

WFEMoi1 =WFEM,U(Twrwm,; FWwrM,);
WFMy =g, WFMg, for limit ordinal a.

6

Let WEF M (P) denote the fixed point interpretatidiy F'M;, whered is the smallest
countable ordinal such that both sefg, gy, and Fiyy pas, are empty. We refer té
as thedepthof program P. The stratumof atom A4, is the least ordinal5 such that
A € WFMg (whereA may be either in the true or false componentioF'Mg).

[13] shows that the iterated fixed poilit F M (P) is in fact the well-founded model
and that any undefined atoms of the well-founded model do @lohly to any stratum
—i.e. they are not added & "M for any ordinald.

Dynamic stratification captures the order in which recwwsismponents of a pro-
gram must be evaluated. Because of this, dynamic straitfica useful for modeling
operational aspects of program evaluation. Fixed-ordeanhjc stratification [16], used
in SectiorY, replaces the definition Bfilse; (F') in Definition[2 is by

Falser(F) = {A:val;(A) # £ and for every claus8 < L4, ..., L, in P and ground
substitutiond such thatd = B# there exists dailing prefix: i.e., there is some
(1 <4 <mn),suchthatl;0 is false in] or L;0 € F,andforallj (1 <j <i—1),
L0 istrueinl}.

[16] describes how fixed-order dynamic stratification cegithose programs that a
tabled evaluation can evaluate with a fixed literal selectioategy (i.e. without the SLG
operations ofSIMPLIFICATION and DELAY). As shown from the following example,
fixed-order stratification is a fairly weak condition for aogram.

Example 2.The following program has a 2-valued well-founded model sods dy-
namically stratified, but does not belong to other stratificaclasses, such as local,
modular, or weak stratification.

S< S, p. S —p, —(, .
p < g, T, —S. g« 1, —p.
r < p,—dg.

p, g, andr all belong to stratum 0, whilsbelongs to stratum 1. The simple program
p<—p. p.

is fixed-order stratified, but not locally, modularly, or vikbastratified. Fixed-order
stratification is more general than local stratificationg @iman modular stratification
(since modular stratified programs can be decidably rege@so that they have failing
prefixes). It is neither more nor less general than weakifétegton.

The above definitions of (fixed-order) dynamic stratificatior normal programs can be
straightforwardly adapted to LPADs — an LPAD(fsxed-order) dynamically stratified
if eachw € Wy is (fixed-order) dynamically stratified.

6 Tabling and Answer Subsumption

The idea behind tabling is to maintain in a table both subgyeatountered in a query
evaluation and answers to these subgoals. If a subgoal @ietered more than once,
the evaluation reuses information from the table rathen tiegaperforming resolution

against program clauses. Although the idea is simple, itil@gertant consequences.
First, tabling ensures termination of programs with leeinded term-size propert
programP has the bounded term-size property if there is a finite foncfi: N — N
such that if a query ternd) to P has sizesize(Q), then no term used in the deriva-
tion of @ has size greater thaf(size(Q)). This makes it easier to reason about ter-
mination than in basic Prolog. Second, tabling can be useddtate programs with
negation according to the WFS. Third, for queries to wides#daf programs, such as
datalog programs with negation, tabling can achieve thengppitomplexity for query
evaluation. And finally, tabling integrates closely wittoRxg, so that Prolog’s familiar
programming environment can be used, and no other langsagaquired to build com-
plete systems. As a result, a number of Prologs now supgaitgaincluding XSB,
YAP, B-Prolog, ALS, and Ciao. In these systems, a predipdteis evaluated using
SLDNF by default: the predicate is made to use tabling by dadaton such agable
p/nthat is added by the user or compiler.

This paper makes use of a tabling feature cadlasiwer subsumptioMost formu-
lations of tabling add an answelrto a table for a subgod only if A is a not a variant
(as a term) of any other answer f§rHowever, in many applications it may be useful to
order answers according to a partial order or (upper seattieg. In the case of a lattice,
answer subsumption may be specified by means of a declasatbragable p(,or/3 -
zero/1).for an unary predicatg. wherezero/1 is the bottom element of the lattice and
or/3 is the join operation of the lattice. For example, in the PEIgorithm for LPADs
presented in Sectidd 7, if a table had an answer F;) and a new answes(a, F2)
were derived, wheré; and F, are probabilistic explanations, the answéd, E1) is
replaced by(a, E3), whereFEjs is obtained by callingr(E,, E2, E5) and is the logi-
cal disjunction of the first two explanations, as stored i . Answer subsumption
over arbitrary upper semi-lattices is implemented in XSBdatified programs [18];
in addition, the mode-directed tabling of B-Prolog can dlsseen as a form of answer
subsumption.

Sectiorl ¥ uses SLG resolutidr [3] extended with answer sapsan in its proof of
Theoreni 2, although similar results could be extended terd#bling formalisms that
support negation and answer subsumption.

7 Program Transformation

The first step of the PITA algorithm is to apply a program tfanmsation to an LPAD
to create a normal normal program that contains calls foripoudetting BDDs. In our
implementation, these calls provide a Prolog interfackeo@UDIA C library and use
the following predicat&

— init, end for allocation and deallocation of a BDD manager, a datacstire used
to keep track of the memory for storing BDD nodes;

3 The logical disjunctionF; can be seen as subsumitg and E» over the partial order af
implication defined on logical formulas.

* http://visi.colorado.edu/ ~fabio/

5 BDDs are represented in CUDD as pointers to their root node.

http://vlsi.colorado.edu/~fabio/

— zero(-BDD), one(-BDD), and(+BDD1,+BDD2,-BDDO), or(+BDI)+BDD2,
-BDDO), not(+BDDI,-BDDO) Boolean operations between BDDs;

— add.var(+N_Val,+Probs,-Var) addition of a new multi-valued variable witk Val
values and parametePsobs

— equality(+Var,+Value,-BDD)BDD represent¥ar=Valueg i.e. that the random vari-
ableVar is assigned/aluein the BDD;

— ret_prob(+BDD,-P) returns the probability of the formula encodedB®D.

addvar(+N_Val,+Probs,-Var) adds a new random variable associated to a new in-
stantiation of a rule witiN_Val head atoms and parameters Fsbbs The auxiliary
predicateget var_n(+R,+S,+Probs,-Var)s used to wramdd var/3 and avoid adding a
new variable when one already exists for an instantiatiansi®own below, a new fact
var(R,S,Var)s asserted each time a new random variable is created, Rhigan iden-
tifier for the LPAD clausesSis a list of constants, one for each variables of the clause,
andVar is an integer that identifies the random variable associatidclauseR under
a particular grounding. The auxiliary predicates has thieviang definition

get_var_n(R, S, Probs,Var) +

(var(R, S, Var) — true;
length(Probs, L), add_var(L, Probs, Var), assert(var(R, S, Var))).

whereProbsis a list of floats that stores the parameters in the head eRuul

The PITA transformation applies to clauses, literals aminat If 4 is an atom,
PIT Ay (h) is h with the variableBD D added as the last argumentblfis an atom,
PIT Ay(by) is b; with the variableB; added as the last argument. In either case for an
atoma, BDD(PIT A(a)) is the value of the last argument BT T A(a),

If b; is negative literata;, PIT A (b;) is the conditional
(PITAj(a;) — not(BNj, B;);one(Bj)), wherePIT A (a;) is a; with the variable
BN; added as the last argument. In other words the input BBD, is negated if it
exists; otherwise the BDD for the constant functiois returned.

A non-disjunctive facC,. = h is transformed into the clause
PITA(C,) = PITAp(h) < one(BDD).
A disjunctive factC, = hy : a1 V...V h, : «,. Where the parameters sum to 1, is
transformed into the set of cIausBsITA(C’T)ﬁ

PITA(C,,1) = PITAp(h1) < getovarn(i,], (o, ..., o), Var),

equality(Var,1, BDD).

PITA(C,,n) = PITAp(hy) < getvarn(r,[], [oq,...,an], Var),
equality(Var,n, BDD).
In the case where the parameters do not sum to one, the ctafirst iransformed into

hi:oq V...V hy:an,Vnull : 1 =37« and then into the clauses above, where
the list of parameters gy, ..., a,,, 1 — >} ;] but the(n + 1)-th clause (the one for
null) is not generated.

The definite claus€’,. = h < by, bs, ..., b,,. is transformed into the clause

PITA(C,) = PITAy(h) PITAy(by), PIT Ay(bs), and(By, By, BBy),
..., PITAy(by),and(BBy,_1, Bm, BDD).

5 The second argument gkt_var_n is the empty list because, since we are considering only
range restricted programs (cfr. below), a fact does not contaiablas.

The disjunctive clause
CT :h1 :al\/...\/hn:an<—b1,b2,...,bm.
where the parameters sum to 1, is transformed into the sédwdesPIT A(C,)
PITA(C,,1) = PITAp(hy) « PITAy(b1), PIT Ap(bs),and(By, By, BBs),
..., PITAy(b,,),and(BB,,_1, B, BB,,),
get_var_n(r,VC, o, ..., an], Var),
equality(Var,1, B),and(BB,,, B, BDD).

PITA(Cy,n) = PITAp(hy,) < PITAp(b1), PIT Ay(bs), and(By, B2, BBs),
..., PITAy(b,,),and(BB,,_1, By, BB,,),
get_varn(r,VC, o, ..., o), Var),
equality(Var,n, B),and(BB,,, B, BDD).
whereV C' is a list containing each variable appearingin If the parameters do not
sum to 1, the same technique used for disjunctive facts . use

Example 3.ClauseC; from the LPAD of Exampléll is translated into
strong_sneezing(X, BDD) + flu(X, By),
get_var_n(1,[X],[0.3,0.5,0.2], Var),
equality(Var,1, B),and(By, B, BDD).
moderate_sneezing(X, BDD) « flu(X, By),
get_var_n(1,[X],[0.3,0.5,0.2], Var),
equality(Var,2, B),and(B1, B, BDD).
while clauseCs is translated into
flu(david, BDD) «+ one(BDD).

In order to answer queries, the gaalve(Goal,P)s used, which is defined by
solve(Goal, P) < init, retractall(var(_, _,-)),

add_bdd_arg(Goal, BDD,Goal BDD),

(call(Goal BDD) — ret_prob(BDD, P); P = 0.0),

end.
whereadd_bdd_arg(Goal, BDD, Goal BDD) implementsPIT Ay, (Goal). Moreover,
various predicates of the LPAD should be declared as tableda predicate/n, the
declaration istable p(1,...,n,or/3-zero/1) that indicates that answer subsumption is
used to form the disjunct of multiple explanations: At a rmnim, the predicate of the
goal should be tabled; as shown in Secfibn 8 it is usuall\ebétttable every predicate
whose answers have multiple explanations and are goingreusel often.

Correctness of PITAIn this section we show two results regarding the PITA transf
mation and its tabled evaluatlriThese results ensure on one hand that the semantics
is well-defined and on the other hand that the evaluationridgigio is correct. For the
purposes of our semantics, we consider the BDDs producedoasdyterms, and do

not specify them further. We first state the correctnesseftTA transformation with
respect to the well-founded semantics of LPADs. Becausellow & PADs to have

"Due to space limitations, our presentation is somewhat informal: a for-
mal presentation with all proofs and supporting definitions can be foubhd a
http://www.ing.unife.it/docenti/FabrizioRiguzzi/Pap ers/RigSwil0-TR.pdf

10

http://www.ing.unife.it/docenti/FabrizioRiguzzi/Papers/RigSwi10-TR.pdf

function symbols, care must be taken to ensure that exjensadre finite. To accom-

plish this, we prove correctness for what we term dynanyefaiitary programs, essen-
tially those for which a derivation in the well-founded setties does not depend on an
infinite unfounded sét

Theorem 1 (Correctness of PITA Transformation).Let 7" be a sound dynamically-
finitary LPAD. Thenk is an explanation for a ground atamiff there is aPIT A, (a)0
in WEM(PITA(ground(T))), such thats is a path nBDD(PIT Ay(a)d) to a 1
leaf.

Theoren 2 below states the correctness of the tabling imgiémtion of PITA, since
the BDD returned for a tabled query is the disjunction of ao$ebvering explanations
for that query. The proof uses an extension of SLG evaluatian includes answer
subsumption but that is restricted to fixed-order dynarictatified programs 18], a
formalism that models the implementation tested in Se@idNote that unlike Theo-
rem[d, Theoreml2 does not require the progiato be grounded. However, Theoréin 2
does requird’ to be range restricted in order to ensure that tabled evatugtounds
answers. A normal program/LPAD iange restrictedf all the variables appearing in
the head of each clause appear also in the body. If a normgiarois range restricted,
every successful SLDNF-derivation faf completely grounds; [11], a result that can
be straightforwardly extended to tabled evaluations. iitewh, Theorenfi R requires
to have the bounded term-size property (cf. Sedfion 6) tarengrmination and finite
explanations.

Theorem 2 (Correctness of PITA Evaluation).Let 7" be a range restricted, bounded
term-size, fixed-order dynamically stratified LPAD amé ground atom. Lef be an
SLG evaluation ofPIT Ay (a) againstPIT A(T), such that answer subsumption is
declared orPIT Ay, (a) using BDD-disjunction. The# terminates with an answern.s
for PIT Ay (a) andBDD(ans) represents a covering set of explanationsifor

Thus range restricted, bounded term-size and fixed-orderdically stratified LPADs
have a finite set of explanations that are covering for a git@atom, so the semantics
with function symbols is well-defined.

8 Experiments

PITA was tested on two datasets that contain function sysnlbleé first is taken from
[21] and encodes a Hidden Markov Model (HMM) while the lattiem [5] encodes
biological networks. Moreover, it was also tested on the testbeds of[[10] that do
not contain function symbols. PITA was compared with theceéxarsion of Prode%
[5] available in the git version of Yap as of 19/12/2009, wiltie version ofcplint

8 Dynamically-finitary programs are a strict superclass of the finitargnams of[[1] and are
neither a subclass nor a superclass of the finitely ground prograf2k @hle formal definition
of dynamically-finitary programs is in the full version of this paper.

9 ProbLog was not tested on programs with more than two atoms in the headseethe pub-
licly available version is not yet able to deal with non-binary variables.

11

[15] %ailable in Yap 6.0 and with the version of CVME[10] dahile in ACE-ilProlog
1.2.2¢4.

The first problem models a HMM with three states 1, 2 and 3 oti3iis an end
state. This problem is encoded by the program

s(0,1):1/3v s(0,2):1/3v s(0,3):1/3.

s(T,1):1/3v s(T,2):1/3v s(T,3):1/3« T1is T-1, T=0, s(T1,F),\+ s(T1,3)
For this experiment, we query the probability of the HMM lagin state 1 at timeN
for increasing values df, i.e., we query the probability &f(N,1) In PITA, we did not
use reordering of BDDs variabfgs The execution times of PITA, CVE argplint
are shown in FigurEl2. In this problem tabling provides anreaspive speedup, since
computations can be reused often.

LEIprhIlt
-¢-CVE |
—+PITA

o 20 0 60 80 100

Fig. 2. Three sided die.

The biological network problems compute the probabilitagfath in a large graph
in which the nodes encode biological entities and the ligggesents conceptual rela-
tions among them. Each programs in this dataset containiratioe of path plus a
number of links represented by probabilistic facts. Thegpmms have been sampled
from a very large graph and contain 200, 40Q, 5000 edges. Sampling was repeated
ten times, to obtain a series of 10 programs of increasirg sizeach test we queried
the probability that the two genes HGN§20 and HGNC983 are related. We used the
definition of path of [[8] that performs loop checking exgligiby keeping the list of
visited nodes:

path(X,Y) «— path(X,Y,[X], Z).

path(X,Y,V,[Y|V]) + edge(X,Y).

path(X,Y,V0,V1) <+ edge(X,Z),append(V0,_S, V1),

\ +member(Z,V0),path(Z,Y,[Z|V0],V1).
We used this definition because it gave better results treorth without explicit loop
checking. The possibility of using lists (that require ftion symbols) allowed in this
case more modeling freedom. The predicates:/2 andedge/2 are tabled.

We ran PITA, ProbLog andplint on the graphs in sequence starting from the
smallest program and in each case we stopped after one daythw first graph for

10 All experiments were performed on Linux machines with an Intel Coreu@ 56550 (2333
MHz) processor and 4 GB of RAM.

1 For each experiment, we used either group sift automatic reorderimgreordering of BDDs
variables depending on which gave the best results.

12

1 o 60 6 6@ 108
EEE IR e Y
ol —%—PITA \{} 10° | +%‘i¥‘4 K
7+ \\\
0 6 o
O, {}\
3t)
2l
il
0 560 1060 1560 ZObO 2556’ V3 10 560 10b0 15b0 2060 2560 3000
Edges Size
(a) Number of successes. (b) Execution times.
Fig. 3. Biological graph experiments.
10° 10°
10* POOTTVS
a
107"
0
w 10 o] w
° W***HWW °
€01 €
E10 M*M F1072
-2 /
10 7fﬂ(‘ —&—cplint
RN
-3 . . . -3
10 20 40 . 60 10 5 10 15 20 25 30 35 40
Number of persons in family N
(a) bloodtype (b) growingbody
Fig. 4. Datasets from (Meert et al. 2009).
10° 10* //
4
10 102 /]
, _
210 o X»/*
o o 10 K
€ 10° £
£10 = o
5 1072 1
107 —&-cplint 1 —&-cplint
B bR
—4 .) i 4
10 5 10 15 20 10 0 5 10 15
N Number of PhD students

(a) growinghead

(b) uwcse.

Fig. 5. Datasets from (Meert et al. 2009).

which the program ended for lack of menﬂyln PITA, we used group sift reordering
of BDDs variables. Figurg 3(a) shows the number of subgrémh&hich each algo-
rithm was able to answer the query as a function of the siZesc$tbgraphs, while Fig-
ure[3(b) shows the execution time averaged over all and belgubgraphs for which all
the algorithms succeeded. PITA was able to solve more spbhg@nd in a shorter time
thancplint and ProbLog. For PITA the vast majority of time for larger gia was
spent on BDD maintenance. ProbLog ended for lack of memotkiree cases out of
ten, PITA in two anctplint in four. This shows that, even if tabling consumes more
memory when finding the explanations, BDDs are built fastet asing less memory,
probably due to the fact that tabling allows less redunddnaofy one BDD is stored
for an answer) and a bottom-up construction of the BDDs, Wwisaisually better. This
shows that one should table every predicate whose answemhaltiple explanations,
aspath/2 andedge/2 above.

The four datasets of [10], served as a final suite of benchsnhldodtype en-
codes the genetic inheritance of blood tygegwingbody contains programs with
growing bodiesgrowinghead contains programs with growing heads angcse
encodes a university domain. In PITA we disabled automaardering of BDDs
variables for all datasets except fowcse. The execution times ofplint , CVE
and PITA are shown in Figurés 4(a) gnd 4(b), b(a) IaTﬂ.(lﬁ)lTA was faster than
cplint in all domains and faster than CVE in all domains exggoiwingbody
growingbody , however, is a domain in which all the clauses are mutualjusive,
thus making possible to compute the probability even witfRidDs.

9 Conclusion and Future Works

This paper has made two contributions. The first, semamitribution extends LPADs
to include functions. By way of proving correctness of th&#lransformation we also
characterize those extended LPAD programs whose derioeasatave only finite ex-
planations (dynamically-finitary LPADS); by way of proviegrrectness of PITA eval-
uation we characterize those that have only finite sets ofasgtions (LPADs with

the bounded term-size property). Such results ensurehbaemantics with function
symbols is well-defined.

The PITA transformation also provides a practical reasprlgorithm that was
directly used in the experiments of Sect[dn 8. The experimsubstantiate the PITA
approach. Accordingly PITA programs should be easily fodetdo other tabling en-
gines such as that of YAP, Ciao and B Prolog if they supponvaensubsumption over
general semi-lattices.

In the future, we plan to extend PITA to the whole class of sbuRADs by imple-
menting the SLGELAYING andSIMPLIFICATION operations for answer subsumption.
In addition, we are developing a version of PITA that is albl@hswer queries in an
approximate way, similarly to[8].

12 CVE was not applied to this dataset because the current version chanie graph cycles.
13 For the missing points at the beginning of the lines a time smaller 1hafi was recorded.
For the missing points at the end of the lines the algorithm exhausted the &vailaimory.

14

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Baselice, S., Bonatti, P., Criscuolo, G.: On finitely recursive g Theory and Practice
of Logic Programming 9(2), 213-238 (2009)

. Calimeri, F., Cozza, S., lanni, G., Leone, N.: Computable funstionASP: Theory and

implementation. In: ICLP. pp. 407—424 (2008)

. Chen, W., Warren, D.S.: Tabled evaluation with delaying for geih@gec programs. J. ACM

43(1), 20-74 (1996)

. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., JansGenkjmmig, A., Landwehr,

N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thp¥ehnekens, J.: Towards
digesting the alphabet-soup of statistical relational learning. In: NIP@200orkshop on
Probabilistic Programming (2008)

. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistiofg and its application

in link discovery. In: Internation Joint Conference on Artificial Intelligenpp. 2462—-2467
(2007)

. Kameya, Y., Sato, T.: Efficient EM learning with tabulation for parterieed logic pro-

grams. In: Computational Logic. LNCS, vol. 1861, pp. 269—284irfgyer (2000)

. Kimmig, A., Gutmann, B., Santos Costa, V.: Trading memory fomams: Towards tabling

ProbLog. In: International Workshop on Statistical Relational LearriitdLeuven (2009)

. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De RaedDii.the efficient execu-

tion of ProbLog programs. In: ICLP. LNCS, vol. 5366, pp. 175-=188ringer (2008)

. Kolmogorov, A.N.: Foundations of the Theory of Probability. ChalBeiblishing Company,

New York (1950)

Meert, W., Struyf, J., Blockeel, H.: CP-Logic theory inferendgnwontextual variable elim-
ination and comparison to BDD based inference methods. In: Interaai@onference on
Inductive Logic Programming. KU LEuven, Leuven, Belgium (2009)

Muggleton, S.: Learning stochastic logic programs. Electron sTrantif. Intell. 4(B), 141—
153 (2000)

Poole, D.: Abducing through negation as failure: stable models withim¢tependent choice
logic. J. Log. Program. 44(1-3), 5-35 (2000)

Przymusinski, T.: Every logic program has a natural stratificatiohee iterated least fixed
point model. In: Symposium on Principles of Database Systems. p211AEM Press
(1989)

Riguzzi, F.: Inference with logic programs with annotated disjunctiomder the well
founded semantics. In: ICLP. pp. 667—771. No. 5366 in LNCS, §prif2008)

Riguzzi, F.: A top down interpreter for LPAD and CP-logic. In: Caass of the Italian As-
sociation for Artificial Intelligence. pp. 109-120. No. 4733 in LNAI, 8ger (2007)
Sagonas, K., Swift, T., Warren, D.S.: The limits of fixed-ordenputation. Theor. Comput.
Sci. 254(1-2), 465-499 (2000)

Sato, T.: A statistical learning method for logic programs with distribusiemantics. In:
ICLP. pp. 715-729 (1995)

Swift, T.: Tabling for non-monotonic programming. Ann. Math. Artiftell. 25(3-4), 201—
240 (1999)

Thayse, A., Davio, M., Deschamps, J.P.: Optimization of multe@ldecision algorithms.
In: International Symposium on Multiple-Valued Logic. pp. 171-178/&)9

van Gelder, A., Ross, K., Schlipf, J.: Unfounded sets and waltded semantics for general
logic programs. J. ACM 38(3), 620—-650 (1991)

Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic pragiwith annotated disjunctions.
In: ICLP. LNCS, vol. 3131, pp. 195-209. Springer (2004)

15

	An Extended Semantics for Logic Programs with Annotated Disjunctions and its Efficient Implementation

