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Abstract. This paper proposes an inductive learning method for main-
taining a web-based ontology by incorporating newly generated concepts
from assertional knowledge (A-Box). The ontology used in this approach
is represented by DAML+OIL. This ontology is translated into a form
acceptable for the FACT system, a Description Logic (DL) reasoner, and
is compiled into a knowledge base as a T-Box, a terminological knowledge
description. Inductive learning is used for integrating the A-Box, where
positive and negative examples submitted by human users are stored.
Inductive Logic Programming (ILP) is used in order to induce concepts
consistent with positive examples and to exclude negative ones. Such in-
duced concepts are explored in order to find where they are positioned in
the concept hierarchy in the T-Box, and the original ontology is revised.
ILP can provide new concepts for DLs even though they may have richer
expressiveness since DL is a decidable fragment of first-order logic. The
induced concepts could be also utilized for predicting novel assertions
from human users.

1 Introduction

In recent years, the Semantic Web[23] has been evolving as the next-generation
web technology and has attracted the attention of many researchers in machine
learning and knowledge engineering. The Semantic Web opens a wide range of
new research challenges for the machine-learning community. Ontologies play
a key role in the Semantic Web, which relies significantly on the formal on-
tologies that structure underlying data for the purpose of comprehensive and
transportable machine understanding[15]. In learning ontology for the Seman-
tic Web, the idea of automatically maintaining ontologies by analyzing instance
data, which has recently been called A-Box-Mining[16], is not new, as denoted
in [14]. In regard to A-Box Mining research, Assertional Mining in [22] and the
rough set theory [18] have been adopted for assertional mining where each con-
cept has been described in Description Logics (DL). Wellington[28], which can
check the consistency of an A-Box and was developed by a group at King’s
College, has been released on a web site. DL reasoning service is used for infor-
mation extraction by checking new concept descriptions and adding them to the
domain ontology[25]. On the other hand, as a research of applying ILP to knowl-
edge base represented in DL[1], the main purpose of which was that T-Box, i.e.,



terminological knowledge or intentional concept definition, was revised so that
entire T-Box knowledge could be consistent. This paper proposes an Inductive
Logic Programming method for A-Box-Mining, and generated concepts resulting
from mining are put in a suitable position in the ontology constructed in the
T-Box concept hierarchy. ILP has been applied to a number of concept inference
problems; however, few studies have been conducted with the goal of inducing
general concept definitions of knowledge on the WWW, and the Semantic Web
in particular. In this paper, DAML+OIL[7] is chosen as a web-based ontology
representing language based on DL[13]. The FACT system[9] is used for the infer-
ence engine for DL reasoning. First, the DAML+OIL-based ontology is compiled
and stored as knowledge bases in processable forms by FACT. Then extensional
concepts provided by human users are collected via a Web browser where each
concept example is labeled as positive or negative. These examples are regarded
as A-Box knowledge, and Aleph[24], an ILP system, is applied to induce general
concepts that are consistent with all the positive data and inconsistent with all
the negative data. Such generated concepts are put into the DAML+OIL on-
tology hierarchy described above in an appropriate position. The DAML+OIL
ontology could be maintained and revised for emerging new concepts submitted
by users. In addition, in the A-Box, the induced concept could predict positive
or negative concepts against newly incorporated users’ assertions. This paper is
organized as follows: a brief introduction of DL is given in Section 2. Section 3
explains how DAML+OIL ontology is transformed into understandable forms
by FACT. Section 4 shows a small example and reports a result. The conclusion
is given in Section 5.

2 Description Logics

Description Logics (DL) are logic-based-knowledge representation formalisms,
also known as terminological logics or concept languages based on concepts
(classes) and roles (e.g., [3][17]). Concepts are interpreted as sets of objects and
roles as binary relations of objects. DLs are characterized by sets of constructors
provided for building complex concepts and roles from simpler ones. The basic
DL is known as ALC, in which concepts (denoted by C, D) are constructed out
of atomic concepts (denoted by A) and atomic roles (denoted by P ) according to
the following syntax rules and semantics (Table 1). In Table 1, semantics is given
by an interpretation I = (∆I, ·I), which consists of a set ∆I (the domain of I)
and a function ·I (the interpretation function of I) that maps every concept to
a subset of ∆I and every role to a subset of ∆I × ∆I.

In DL, the knowledge base consists of two knowledge parts: the T-Box and
the A-Box. The T-Box, the terminological part, is a set of axioms describing the
domain structure, where concepts and relations holding between such concepts
are defined. In the T-Box, terminological axioms are restricted to formulas of
the form C � D (short for ¬C�D) and C

.= D (short for (¬C�D)� (C �¬D)),
where C and D are concept names. Given an interpretation I which satisfies
C

.= D iff CI = DI and C � D iff CI ⊆ DI , a T-Box T is consistent iff it



Table 1. DL syntax rules and semantics

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R has-child RI ⊆ ∆I × ∆I

conjunction C � D Human � Male CI ∩ DI

disjunction C � D Doctor � Lawyer CI ∪ DI

negation ¬C ¬Male ∆I\C
existential restriction ∃R.C ∃has-child.Male {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C ∀has-child.Doctor {x | ∀y.〈x, y〉 ∈ RI =⇒ y ∈ CI}

satisfies every axiom in T (i.e., I |= T ). On the other hand, the A-Box, the
assertional part, is a set of axioms describing a concrete situation. It consists of
concept assertions (written as a : C) and role assertions (written as 〈a, b〉 : R).
Given an interpretation I which satisfies a : C iff aI ∈ CI and 〈a, b〉 : R iff
〈aI, bI〉 ∈ RI , an A-Box A is consistent if it satisfies every axiom in A (i.e.,
I |= A). A knowledge base Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ).
DLs provide several reasoning services such as concept satisfiability, concept
subsumption, knowledge base consistency, and instance checking. The tableaux
algorithm is used for such reasoning[4].

3 DAML+OIL-based Knowledge Base in FACT

3.1 Overview of DAML+OIL

DAML+OIL is a semantic markup language for Web resources based on DL. It
is regarded as a T-Box in the sense that it describes structures of the domain.
It builds on earlier W3C[29] standards such as RDF[20] and RDF Schema[21]
and extends these languages with richer modeling primitives. Class constructors
and axioms equipped for DAML+OIL[10] are shown in Table 2and Table 3.
In addition to these denotations, in DAML+OIL, XMLS[26] data types are
supported, and the arbitrarily complex nesting of constructors is allowed: e.g.,
∀hasChild.(Doctor � ∃hasChild.Doctor), which means “individuals whose children
are all doctors or individuals who have at least one child who is a doctor.”
Note that the axioms denoted in Table 3 are mostly reducible to subClassOf or
subPropertyOf axioms.



Table 2. DAML+OIL class constructors

Constructor DL Syntax Example

intersectionOf C1 � · · · � Cn Human � Male
unionOf C1 � · · · � Cn Doctor � Lawyer

complementOf ¬C ¬Male
oneOf {x1 · · · xn} {john,Mary}
toClass ∀P.C ∀hasChild.Doctor

hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ � nP.C �2hasChild.Lawyer

maxCardinalityQ � nP.C �1hasChild.Male
cardinalityQ = nP.C =1hasParent.Female

Table 3. DAML+OIL axioms

Axiom DL Syntax Example

subClassOf C1 
 C2 Human 
 Animal � Biped
sameClassAs C1

.
= C2 Man

.
= Human � Male

subPropertyOf P1 
 P2 hasDaughter 
 hasChild
samePropertyAs P1

.
= P2 cost

.
= price

sameIndividualAs {x1} .
= {x2} President Bush

.
= G W Bush

disjointWith C1 
 ¬C2 Male 
 ¬Female
differentInduvidualFrom {x1} 
 ¬{x2} John 
 ¬Peter

inverseOf P1
.
= P−

2 hasChild
.
= ¬hasParent−

transitiveProperty P + 
 P ancester+ 
 ancester

uniqueProperty � 
� 1P � 
� 1 hasMother
UnambiguousProperty � 
� 1P− � 
� 1 isMotherOf−



For example, a fragment of a DAML+OIL ontology description[2] is written
in Figure 1.The first description asserts that there is a class known as “Animal,”
and the second means that “Male” is a subclass of “Animal.” The last means
some animals are “Female” but nothing can be both “Male” and “Female” be-
cause these two classes are disjoint.

<daml:Class rdf:ID="Animal"></daml:Class>

<daml:Class rdf:ID="Male">

<rdfs:subClassOf rdf:resource="#Animal"/>

</daml:Class>

<daml:Class rdf:ID="Female">

<rdfs:subClassOf rdf:resource="#Animal"/>

<daml:disjointWith rdf:resource="#Male"/>

</daml:Class>

Fig. 1. DAML+OIL sample description

3.2 Translation from DAML+OIL Ontology to FACT Knowledge
Base

This paper focuses on the ontology concerning universities[11], which was ob-
tained from the DAML Ontology Library site[8]. It describes universities and
the activities that occur at them: e.g., Professor, Assistant, UndergraduateStu-
dent as classes, and mastersDegreeFrom, teacherOf as properties. A fragment of
the university ontology is illustrated in Figure 2.

<Class ID="TeachingAssistant">

<label>university teaching assistant</label>

<subClassOf resource="#Assistant" />

</Class>

<Property ID="teachingAssistantOf">

<label>is a teaching assistant for</label>

<domain resource="#TeachingAssistant" />

<range resource="#Course" />

</Property>

Fig. 2. A fragment of the University Ontology

The university ontology written in DAML+OIL is translated into the FACT
knowledge base. FACT is a DL classifier which includes two reasoners, one for
the logic SHF (ALC augmented with transitive roles, functional roles, and role
hierarchy) and the other for the logic SHIQ (SHF augmented with inverse



Table 4. XML concept descriptions

Standard Notation XML Markup

� <TOP/>

P1 � ¬P2 <AND>

<PRIMITIVE NAME="P1"/>

<NOT>

<PRIMITIVE NAME="P2"/>

</NOT>

</AND>
∃R.P <EXISTS>

<PRIMROLE NAME="R"/>

<PRIMITIVE NAME="P"/>

</EXISTS>

roles and a qualified number restriction)[9]. In FACT, both reasoners are de-
cidable because sound and complete tableaux algorithms are presented [9][12].
In order to implement FACT, a server on which the FACT server is running
is used, and client applications can access the server via a CORBA interface
independent of their architecture[5]. DAML+OIL is regarded as SHIQ plus
nominals and datatypes with RDFS-based syntax, so DL reasoning can be used
with DAML+OIL on FACT. In FACT, concept descriptions in the knowledge
base are represented in the XML format. For example, some concept descriptions
are represented as shown in Table 4.

The university ontology is translated from the DAML+OIL format into the
above XML by means of XSLT[27]. For example, the university ontology shown
in Figure 2 is translated into XML in Figure 3.



<KNOWLEDGEBASE>

<DEFCONCEPT NAME="TeachingAssistant" />

<IMPLIESC>

<CONCEPT>

<PRIMITIVE NAME="TeachingAssistant" />

</CONCEPT>

<CONCEPT>

<PRIMITIVE NAME="Assistant" />

</CONCEPT>

</IMPLIESC>

<DEFROLE NAME="teachingAssistantOf" />

<IMPLIESC>

<CONCEPT>

<SOME>

<PRIMROLE NAME="teachingAssistantOf" />

<TOP/>

</SOME>

</CONCEPT>

<CONCEPT>

<PRIMITIVE NAME="TeachingAssistant" />

</CONCEPT>

</IMPLIESC>

<IMPLIESC>

<CONCEPT>

<TOP/>

</CONCEPT>

<CONCEPT>

<ALL>

<PRIMROLE NAME="teachingAssistantOf" />

<PRIMITIVE NAME="Course" />

</ALL>

</CONCEPT>

</IMPLIESC>

</KNOWLEDGEBASE>

Fig. 3. XML representation translated from the University Ontology with DAML+OIL

The description in Figure 3 is equivalent to the following denotation in DL:

TeachingAssistant � Assistant
∃teachingAssistantOf.
 � TeachingAssistant
∀teachingAssistantOf.Course

According to the DTD for the FACT knowledge base[5], the university on-
tology is translated into an XML document. There are 49 concepts and 26 roles
in the ontology. The XML document is compiled into FACT and provided as a
T-Box for the university ontology.



4 Introductory Example

Some examples are prepared for an A-Box, which consists of the descriptions
inputted by humans. As a target concept, “Doctor Course Student” is intended.
Two positive examples and one negative example are supposed, as shown in
Figure 4. In this figure, each concept description for the target concept should
have more than two examples, but for the sake of simplicity, the rest have been
eliminated. Note that for the third concept (concept 3) no description of “mas-
tersDegreeFrom” exists.

% concept 1 (positive)

mastersDegreeFrom(c1,univ1).

teachingAssistantOf(c1,computerScience).

% concept 2 (positive)

researchProject(c2,machineLearning).

mastersDegreeFrom(c2,univ2).

% concept 3 (negative)

doctralDegreeFrom(c3,univ1).

professor(c3).

Fig. 4. Positive and negative examples

Aleph is used for inducing general concepts that are consistent with the
positive examples and inconsistent with the negative. The background knowledge
for Aleph is tailored along the university ontology. Aleph induces the following
concept:

mastersDegreeFrom(X, Y ).

By refering to the type definition in Aleph’s background knowledge, the above
concept could be transformed into the following concept with DL.

∃mastersDegreeFrom.University

Then the induced concept is inputted into the university T-Box. FACT provides
a function named “taxonomy position,” which receives concept descriptions as
arguments and returns the position in the taxonomy of the given concept ex-
pression; i.e., the super-concept for the given concept, the sub-concepts, and the
equivalent ones. The above induced concept accepts the following position in the
university T-Box:

super : person
sub : ⊥
equivalent : none



As a result, the target concept “Doctor Course Student” is newly created and
is put between “person” and “bottom” (i.e., the concept becomes a leaf) in the
university T-Box.

5 Conclusion

In this paper, we have presented a method for revising web-based ontology by
applying ILP to A-Box mining. [22] proposed a learning method for the A-
Box by applying the rough set theory. In the framework of [22], one simple
description logic ALR,= is used for learning: their framework receives an A-
Box and a set of decision concepts, called a D-Box, and outputs the set of all
generalized decision concepts (GDCs) for each decision in the D-Box by applying
efficient and reliable algorithms in the rough set theory. There exists a simple
translation of the algorithms used for data mining with the rough set theory when
concepts can be described by ALR,=; however, in the case of more expressive
A-Box languages, no algorithm exists, and the complexity of calculating GDCs
becomes an issue. A way of defining criteria to stop algorithms is suggested for
solving such problems. On the other hand, Horn Clauses are usually used in ILP.
Since DLs are subsets of function-free first-order logic and a decidable fragment
of it, the DL language with DAML+OIL can be treated in ILP only if the A-
Box is carefully constructed to be function-free and with at most two variables.
The main contribution of this paper is the incorporation of ILP into a web-based
ontology based on DL in order to facilitate the revision of a relatively expressible
knowledge representation. From the machine learning point of view, [6] applied
relational learning to construct knowledge bases from the web. In [6], FOIL[19] is
used for the induction of intentional knowledge from the web resources regarded
as extensional knowledge of the specified domain. The Semantic Web has been
advocated by the WWW Consortium[29] and could play a critical role in the
semantic phase of the next generation of web resources. Web resources could
gain a primary position in the sense that they have data from which various
types of knowledge are extracted. DAML+OIL is thought to be one of the main
ontology formalisms, and it is important for web applications and services to
revise and maintain ontologies constructed from it. The rich expressiveness which
ILP possesses is one of the promising methods for inferring general concepts and
constructing ontologies on the web.
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