Automated Model Transformations Based on STRIPS Planning

Oldřich Nouza¹, Vojtěch Merunka², and Miroslav Virius³

¹ Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Software Engineering in Economy, nouza@fjfi.cvut.cz

² Czech University of Life Sciences Prague, Faculty of Economics and Management, Department of Information Engineering,

merunka@pef.czu.cz

³ Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Software Engineering in Economy, virius@fjfi.cvut.cz

Abstract. This paper deals with application of STRIPS planning in automated model transformations. Object oriented model is viewed as a state space containing possible models as states and elementary transformations as state transitions. A source model is represented by an initial state, a target model by a goal state. Automation of model transformation consists in finding a plan to reach a goal state in this state space.

Key words: automated model transformations, modeling, object oriented approach, refactoring, SBAT, STRIPS planning

1 Introduction

Transformations play a key role in software engineering. Although there exist satisfiable solutions of automated transformations of models to text, the same cannot be said about transformations of models to models. This area is still in phase of research and exploring of possibilities [1].

According to the approaches of present implemented in several CASE tools, every model transformation requires application of the corresponding transformation rule with suitable parameters [3, 4, 6, 13] Unfortunately, as mentioned in [4], this approach has one big disadvantage, which is a low reusability. For every transformation that has no rule defined, it is necessary to either apply a composition of other rules, or define a new transformation rule. In this paper, we introduce transformation engine named SBAT (STRIPS Based Transformation Engine) that does not require such steps.

2 Model Transformations

There are several ways how to define model transformation. In this paper, we introduce the definition presented in [5] and cited by [8]:

A transformation is the automatic generation of a target model from a source model, according to a transformation definition. A transformation definition is a set of transformation rules that together describe how a model in the source language can be transformed into a model in the target language. A transformation rule is a description of how one or more constructs in the source language can be transformed into one or more constructs in the target language.

2.1 Classification of Transformations

Publication [8] describes two criteria of classification of model transformations. The first one is a difference of abstraction level of source and target models:

- *Horizontal transformation* A transformation where source and target models have the same level of abstraction. A typical example is refactoring.
- *Vertical transformation* A transformation where source and target models have a different level of abstraction. A typical example is refinement.

The second classification criteria is a difference of modeling languages in which the source and targets models are expressed:

- *Endogenous transformation* A transformation where source and target models are expressed in the same language. Typical examples are refactoring and normalization.
- *Exogenous transformation* A transformation where source and target models are expressed in different languages. Typical examples are code generation and reverse engineering.
- In this paper, we focus more closely on refactoring.

3 Refactoring

There exist several ways how to define refactoring. The definition presented in [7] says that refactoring is an improvement of software system without changing its behavior. In other words, for the same input, the refactored software must return the same output as the original software. Detail information on refactoring is available in [2].

3.1 Complex Refactorings and Primitive Refactorings

The idea of complex refactoring as composition of finite primitive (atomic) refactorings was first published in [10], where formal definition of C++ code refactoring was discussed, and later in [12], where it was demonstrated on refactoring of UML models. We have used the same idea to construct the SBAT transformation engine.

4 STRIPS Planning

Technical report [9] defines STRIPS as following:

STRIPS (STanford Research Institute Problem Solver) belongs to the class of problem solvers that search a space of "world models" to find one in which a given goal is achieved. For any world model, we assume there exists a set of applicable operators each of which transforms the world model to some other world model. The task of the problem solver is to find some composition of operators that transforms a given initial world model into one that satisfies some particular goal condition.

The STRIPS language is based on the calculus of first-order predicate logic. Formally, the STRIPS problem can be expressed by the following definitions:

Definition 1. STRIPS problem is an ordered triple (I, O, G), where I is an initial state, O is a set of operators, and G is a goal state condition.

Definition 2. Operator $o(\bar{x})$ is defined as an ordered triple(P, A, D), where $P = (\bar{x})$ is an application condition, $A = [A_1(\bar{x}), \ldots, A_l(\bar{x})]$ is a set of formulas which become true after operator application, $D = [D_1(\bar{x}), \ldots, D_m(\bar{x})]$ is a set of formulas which become false after operator application, $\bar{x} = (x_1, \ldots, x_n)$ are free variables contained in formulas $P, A_1, \ldots, A_l, D_1, \ldots, D_m, n \in \mathbb{N}^+, l, m \in \mathbb{N}^0$. Elements of A are called add-effects, elements of D delete-effects.

Definition 3. Let $o(x_1, \ldots, x_n) = (P, A, D) \in O$ be operator. A transition function $o': (x_1 \times x_2 \times \ldots \times x_n \times S) \to S$, where S is a state set, is defined in the following way:

$$o'(x_1, \dots, x_n, s) \stackrel{def}{=} \frac{(s \cup A) - D \qquad \varnothing}{s \models P} \tag{1}$$

A goal is to find such list of operators applications, which cause transition for initial state to the state satisfying the goal state condition. More formally:

Definition 4. State s_m is a solution of problem (I, O, G), if there exists a list of operators applications $o_1(\overline{h_1}), \ldots, o_m(\overline{h_m})$, where $\overline{h_i}$ are vectors of constants, $m \in \mathbb{N}$, and:

 $1. s_0 = I$ $2. (\forall i \in \hat{m}) s_i = o'_{i-1} (\overline{h_{i-1}}, s_{i-1})$ $3. s_m \models G$

If $I \vDash G$, then the solution, which is I in this case, is called trivial solution.

5 SBAT Transformation Engine

5.1 Requirements

Resulting from the facts on present state model transformation discussed in the introduction of this paper, we have decided to design a new transformation engine fulfilling the following requirements:

- 1. The engine will support model transformations such as refactoring.
- 2. The input of transformation process will be the source model and conditions of a target model.
- 3. The output of transformation process will be a target model, or information that the source model cannot be transformed to any model fulfilling the input conditions.
- 4. The source model and the target model will be consistent in light of behavior of modeled system.
- 5. The transformation process will be fully automatized, without need to specify transformation rules on input.
- 6. The engine will be universal and sufficiently reusable for wide scale of object models.

5.2 Formal Definition of Object Model

In this paper, formal definition of object model is based on simplified metamodel of UML 2.0 class diagrams, in detail described in [11]. Because of intended generality, we do not focus on implementation details, such as method parameters and bodies, access mode of class members, etc.

5.2.1 Model as State Space For our purposes we use the primitive refactoring composition mentioned earlier. For this reason, we define model as a state space, where state set represents model in all possible states and state transitions represent primitive refactorings.

Definition 5. Let C be a class universe, A attribute universe, and F method universe. LetObject, Client \in C be classes, where $\forall (x \in C - [Object]) (Object \prec c)$, which means that Object is parent of all other classes and Client represent a client class, whose object sends messages to objects of classes in model. Let be "empty value". Model state s is an ordered 5-tuple (C_s, in_s, super_s, type_s, send_s), where

 $-C_s \subset C - [Object, Client]$ is a finite set of classes of model in state s, $-in_s \subseteq ((A \cup F) \times C_s)$ is a binary relation named "is in class" defined as

$$in_{s} \stackrel{def}{=} \{(x, y) | x \in (Attr(y) \cup Meth(y)) \land y \in C_{s}\},$$

$$(2)$$

where Attr(y) and Meth(y) are sets of attributes and methods respectively of class y,

- $super_s \subseteq ((C_s \cup [Object]) \times C_s)$ is a binary relation "is superclass" defined as

$$super_{s} \stackrel{def}{=} \{(x, y) | x = super(y) \land x, y \in C_{s} \},$$
(3)

where super(y) means "a superclass of y",

. .

- $type_s \subseteq (A \times C_s) \cup (F \times (C_s))$ is a binary relation named "is of type" defined as

$$type_{s} \stackrel{def}{=} \{(x, y) | x = type(y) \land y \in C_{s} \}, \qquad (4)$$

where type(y) means "a type of y",

 $-send_s \subseteq (F \times (C_s \cup [Client]) \times (A \cup F) \times C_s)$ is a 4-ary relation named "sends message" defined as

$$send_{s} \stackrel{def}{=} \{(x, y, u, v) | (x, y) \in in_{s} \\ \wedge (\exists w) ((u, w) \in in_{s} \wedge (u \prec w \lor u = w)) \\ \wedge \langle x, \Lambda \rangle \in Meth(y) \},$$
(5)

where lambda-expression Λ contains message sending $o \triangleleft u$, where o is an instance of class w.

The following conditions must be fulfilled:

- in the class hierarchy, each attribute appears at most once, so

$$(\forall x \in A) (\forall y, z \in C) (in_s (x, y) \land in_s (x, z) \to \neg (y \prec z) \land \neg (z \prec y)), \quad (6)$$

- each attribute is of some type, so

$$(\forall x \in A) (\exists y \in C_s) (type_s(x, y)), \tag{7}$$

- each attribute is of at most one type and each method has at most one return value type, so

$$(\forall x \in (A \cup F)) (\forall y, z \in C_s) (type_s (x, y) \land type_s (x, z) \to y = z).$$
(8)

Definition 6. Model is a state space (M, Φ) , where M is a finite set of model states and $\Phi = \bigcup_{i=1}^{n} \left[\varphi_i : M \times E^{k_i} \to M \right]$, $(\forall i \in \hat{n}) (k_i \in \mathbb{N})$ is a set of transformation rules.

5.3 Model Transformation Problem

Each model transformation requires answers to the following questions [8]:

- 1. What needs to be transformed?
- 2. What will be the result of the transformation?

To find answers, we have to formulate the transformation problem and set the principle of its solution. This can be done by several ways, we have decided to apply the STRIPS planning.

5

5.4 STRIPS Planning application

Let's assume any finite subset B of object universal, containing elements of all possible model states. To formulate STRIPS problem (I, O, G) for model transformation, we must describe the model states and transformation rules using first-order predicate logic calculus. For this purpose, we define predicates shown in table 1.

 Table 1. Predicates for STRIPS problem formulation in SBAT engine

Predicate	Declaration	Definition
class c is in model	$inModel\left(c ight)$	$c \in C_s$
class c is not in	outOfModel(c)	$c \in (B - C_s)$
model		
attribute a is in class	$attrInClass\left(a,c ight)$	$(a,c) \in in_s$
c		
attribute a is not in	attrOutOfClass(a, c)	$\neg ((a,c) \in in_s) \land a \in (B \cap A)$
class c		
method μ is in class	$methInClass\left(\mu,c ight)$	$(\mu, c) \in in_s$
с		
method μ is not in	$methOutOfClass(\mu, c)$	$\left \neg\left((\mu,c)\in in_s\right)\wedge\mu\in\left(B\cap F\right)\right.$
class c		
attribute <i>a</i> is of type	$hasType\left(a,t ight)$	$(a,t) \in type_s$
t		
method μ has return	$hasRetType\left(\mu,t ight)$	$(\mu, t) \in type_s$
value type t		
class c is superclass	$superClass\left(c,d ight)$	$(c,d) \in super_s$
of d		
class c is a parent of	$parent\left(c,d ight)$	$c \prec d$
<i>d</i>		
method μ of class c	$sending\left(\mu,c,\eta,d ight)$	$(\mu, c, \eta, d) \in send_s$
sends message η to		
objects of class d		

5.4.1 Initial State Formulation Let $m_I = (C_I, in_I, super_I, type_I, send_I)$ be a model in initial state. We construct initial state I of STRIPS problem by the following steps:

- 1. Put $I := \emptyset$.
- 2. Add formulas about existence of classes in model:
 - a) $(\forall c \in C_I)$ put $(I := I \cup [inModel(c)])$ and
 - b) $(\forall c \in (B C_I))$ put $(I := I \cup [outOfModel(c)]).$
- 3. Add formulas about class attributes:
 - a) $(\forall (a,c) \in (in_I \cap (B \cap A, C_I)))$ put $(I := I \cup attrInClass(a,c))$ and

Automated Model Transformations Based on STRIPS Planning

- b) $(\forall (a,c) \in ((B \cap A, B \cap C) in_I))$ put $(I := I \cup attrOutOfClass(a,c)).$
- 4. Add formulas about class methods:
 - a) $(\forall (\mu, c) \in (in_I \cap (B \cap F, C_I)))$ put $(I := I \cup methInClass(\mu, c))$ and
 - b) $(\forall (\mu, c) \in ((B \cap F, B \cap C) in_I))$ put $(I := I \cup methOutOfClass(\mu, c)).$
- 5. Add formulas about inheritance:
- $(\forall (c,d) \in super_I)$ put $(I := I \cup superClass(c,d)).$
- 6. Add formulas about attribute types and return value types of methods:
 - a) $(\forall (a,c) \in (type_I \cap (B \cap A, C_I)))$ put $(I := I \cup hasType(a,c))$ and
 - b) $(\forall (\mu, c) \in (type_I \cap (B \cap F, C_I)))$ put $(I := I \cup hasType(\mu, c))$.
- 7. Add formulas about message sending: $(\forall (a, c, b, d) \in send_I) \text{ put } (I := I \cup sending (a, b, c, d)).$

5.4.2 Formulation of Goal State Condition A goal state condition G is defined by the formula that is true in any goal state.

5.4.3 Formulation of Operator Set The set of operators O is defined identically for each particular problem, because it represents a set of primitive refactorings. The complete definition of the operator set is described in table 3 in appendix.

5.5 Example

5.5.1 Problem Let's suppose a simplified class model of file system (see fig. 1).

Fig. 1. File system class model

The goal is to transform this model into state which satisfies the composite design pattern.

7

5.5.2 Solution The initial model state $m_s = (C_s, in_s, super_s, type_s, send_s)$, where:

 $\begin{array}{l} - \ C_s = [Folder, File, String] \\ - \ in_s = [(name, Folder), (owner, Folder), (name, File), (owner, File)] \\ - \ super_s = [(Object, Folder), (Object, File), (Object, String)] \\ - \ type_s = [(name, String), (owner, Folder)] \\ - \ send_s = \{(Client, main, x, y) | (x, y) \in in_s\} \end{array}$

The corresponding initial state of STRIPS problem is the following:

$$\begin{split} I &= [inModel \, (Folder) \,, inModel \, (File) \,, inModel \, (String) \,, \\ outOfModel \, (Element) \,, \\ attrInClass \, (name, Folder) \,, attrInClass \, (owner, Folder) \,, \\ attrInClass \, (name, File) \,, attrInClass \, (owner, File) \,, \\ attrOutOfClass \, (name, Element) \,, attrOutOfClass \, (owner, Element) \,, \\ superClass \, (Object, File) \,, superClass \, (Object, Folder) \,, \\ hasType \, (owner, Folder) \,, hasType \, (name, String) \,, \\ sending \, (Client, main, Folder, name) \,, \\ sending \, (Client, main, File, owner)] \end{split}$$

The goal state condition is the following:

(9)

 $G = inModel (Element) \land attrInClass (name, Element) \land$ $attrInClass (owner, Element) \land superClass (Element, File) \land (10)$ superClass (Element, Fodler)

The STRIPS planner reaches the goal state by application of satisfiable operators (see table 2).

Automated Model Transformations Based on STRIPS Planning

Operator application	Description
addClass(Element)	Add class <i>Element</i> to the model.
changeSup(File, Object, Element)	Change superclass <i>Object</i> of class
	File to Element.
changeSup(Folder, Object, Element)	Change superclass <i>Object</i> of class
	Fodler to Element.
attrUp(name, Element, File, Folder)	Move attribute <i>name</i> to class
	Element from its subclasses File
	and Folder.
attrUp(owner, Element, File, Folder)	Move attribute <i>owner</i> to class
	Element from its subclasses File
	and Folder.

Table 2. List of operators application to reach the goal state

The goal state is as follows:

```
 \begin{aligned} Goal &= [inModel (Folder), inModel (File), \\ & inModel (String), inModel (Element), \\ & attrInClass (name, Element), attrInClass (owner, Element), \\ & attrOutOfClass (name, Folder), \\ & attrOutOfClass (owner, Folder), \\ & attrOutOfClass (name, File), attrOutOfClass (owner, File), \\ & superClass (Element, File), superClass (Element, Folder), \\ & hasType (owner, Folder), hasType (name, String), \\ & sending (Client, main, Folder, name), \\ & sending (Client, main, File, name), \\ & sending (Client, main, File, name), \\ & sending (Client, main, File, owner)] \end{aligned}
```

A class model in UML notation corresponding to the goal state is shown in fig. 2.

6 Conclusion and Future Work

In this paper we have introduced SBAT transformation engine based on STRIPS planning system. This engine automates refactoring of the given source model to a target model fulfilling the input condition.

The main asset of SBAT engine for practice is a contribution to an improvement of automation of object model transformations, which consequently would implicate saved human resources for software projects. Then, these resources could be allocated for example on software debugging or testing tasks, rather than on model transformation ones. Another asset should be a theoretical background for research activities in the area of model transformations.

Fig. 2. File system as Composite design pattern

Several consecutive research topics appeared during the SBAT development, e.g. the model state space optimization by reduction of states count or implementation of SBAT in some CASE tool.

Acknowledgment

The authors would like to acknowledge the support of the research grant project SGS10/094 of the Czech Ministry of Education, Youth and Sports.

References

- 1. Czarnecki K. and Helsen S.: Feature-based survey of model transformation approaches. In: IBM Systems Journal 2006, vol. 45, no. 3, pp. 621-645. (2006)
- 2. Fowler M.: Refactoring. Addison-Wesley. ISBN 0-201-48567-2. (1999)
- Gray J., Lin Y., and Zhang J.: Automating Change Evolution in Model-Driven Engineering. In Computer 2006, vol. 31, no. 2, pp. 51. (2006)
- Jézequel J-M.: Model Transformation Techniques. Available online at http:// modelware.inria.fr/static_pages/slides/ModelTransfo.pdf. (2005)
- Kleppe A. G., Warmer J., and Bast W.: MDA Explained: The Model Driven Architecture: Practice and Promise. Boston (MA, USA): Addison-Wesley Longman Publishing Co., Inc., 170 p. ISBN:032119442X. (2003)
- Lin Y and Gray J: A model transformation approach to automatic model construction and evolution. In Proceedings of the 20th IEEE/ACM international Conference on Automated Software Engineering, pp. 448-451. (2005)
- 7. Markovic S.: Composition of UML Described Refactoring Rules. In OCL and Model Driven Engineering, UML 2004 Conference Workshop, pp. 45-59. (2004)
- 8. Mens T., Czarnecki K, and Gorp P. V.: A Taxonomy of Model Transformations. In Language Engineering for Model-Driven Software Development, ser. Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Dagstuhl (Germany). (2005)
- Nilson N. J. and Fikes R. E. STRIPS: A new approach to the application of theroem proving to problem solving. Standford Research Institute, Menlo Park (California) 34 p. (1970).

- Opdyke W. Refactoring Object-Oriented Frameworks. University of Illinois at Urbana-Champaign, Champaign, (IL, USA), PhD. thesis, 197 p. (1992)
- 11. Object Management Group (OMG): OMG Unified Modeling Language (OMG UML), Infrastructure: Version 2.2. 226 p. Available online at www.omg.org. (2009)
- Sunyé G., Pollet D., Le Traon Y., Jézéquel J-M.: Refactoring UML Models. In Proceedings of the 4th International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools. Springer-Verlag, London (UK), pp. 134-148. ISBN 3-540-42667-1. (2001)
- Zhang J., Lin Y., and Gray, J.: Generic and Domain-Specific Model Refactoring using a Model Transformation Engine. In Volume II of Research and Practice in Software Engineering, pp. 199-218. (2005)

Appendix: Primitive Refactorings as STRIPS Operators

Primitive	STRIPS Operator	
refactoring		
	Declaration	addClass(c)
	Condition	outOfModel(c)
Add class a	Add-effects	inModel(c)
Aut class c		$(\forall x \in B \cap C) attrOutOfClass(x, c)$
		$(\forall x \in B \cap F) methOutOfClass(x, c)$
	Delete-effects	outOfModel(c)
	Declaration	$addAttr\left(a,t,c ight)$
Add attribute a of	Condition	$(\forall x) (attrOutOfClass (x, d))$
type t into class c		$\lor \neg superClass(x,c) \lor \neg superClass(c,x)$
		$\forall x \neq c) \land$
		$(\forall x) (\neg hasType (a, x) \lor (x = t))$
	Add-effects	attrInClass(a, c)
	Delete-effects	attrOutOfClass(a, c)
	Declaration	$addMeth\left(\mu,c ight)$
Add method μ to	Condition	$methOutOfClass\left(\mu,c\right)\wedge\left(\forall x,y,z\right)$
class c		$(\neg sending(x, y, \mu, z) \lor \neg parent(z, c)$
		$\lor (z \neq c))$
	Add-effects	$methInClass\left(\mu,c ight)$
	Delete-effects	$methOutOfClass\left(\mu,c ight)$
Remove class c	Declaration	$removeClass\left(c ight)$
	Condition	$inModel\left(c ight) \wedge\left(orall x ight) \left(eg parent\left(c,x ight) ight) \wedge$
		$(\forall x) \neg attrInClass(x, c) \land$
		$\neg methInClass\left(x,c ight)$
	Add-effects	outOfModel(c)
	Delete-effects	inModel (c)

Table 3: Primitive refactorings as STRIPS operators

Primitive refactoring Declaration <i>removeAttr</i> (a, c)Remove attribute a from class cDeclaration $removeAttr$ (a, c) $(x) = xp$ $(x) = xp$ $(x, y, \mu, z) \lor \neg parent$ (c, z) $\forall (z \neq c)$ $\forall (z \neq c)$ Add-effects $attrOutOfClass$ (a, c)Declaration $removeMeth$ (μ , c)Remove method μ from class cDeclarationremove method μ to uDeclarationDelete-effects $hasType$ (a, t)Remove method μ to uDeclarationChange type t of values returned by method μ to uDelete-effects $hasType$ (a, t)Delete-effects $hasRetType$ (μ, t)Delete-effects $superClass$ ($c, 0$)Add-effects $superClass$ ($c, 0$)Add-effects $superClass$ ($c, 0$) <th>Dulus ! time</th> <th colspan="2"></th>	Dulus ! time		
relactoringDeclarationremoveAttr (a, c)Remove attribute a from class cDeclaration $removeAttr (a, c) \land (\forall x, y, z)$ $(\neg sending (x, y, \mu, z) \lor \neg parent (c, z)$ $\lor (z \neq c))$ Add-effects $attrInClass (a, c)$ Remove method μ from class cDeclaration $removeMeth (\mu, c)$ Condition $methInClass (u, c) \land (\forall x, y, z)$ $(\neg sending (x, y, \mu, z) \lor \neg parent (c, z)$ $\lor (z \neq c))$ Add-effects $methInClass (u, c) \land (\forall x, y, z)$ $(\neg sending (x, y, \mu, z) \lor \neg parent (c, z)$ $\lor (z \neq c))$ Add-effects $methInClass (\mu, c)$ Decleration $chageAtrType (a, t, u)$ Change type t of attribute a to uDeclerationChange type t of attribute a to uDeclerationChange type t of of theta attribute a to uDeclerationChange superclassDeclarationb of class a to cConditionMove attribute a from class c to its all subclassesConditionMove attribute a to class c to its all subclassesDeclarationCondition $attrInClass (a, c) \land (\forall x)$ $(\neg sending (u, x, v, w))$ Add-effects $superClass (c, a)$ $(\neg sending (u, x, v, w))$ Add-effects $superClass (c, a)$ $(\neg sending (u, x, v, w))$ Add-effects $superClass (c, a)$ $(\neg sending (u, x, v, w))$ Add-effects $superClass (c, a)$ $(\neg sending (u, x, v, w))$ Add-effects $superClass (c, a)$ $(\neg sending (u, x, v, w))$ Add-effects $superClass (c, c)$ $(\forall (x = h) \lor \dots \lor x = h_n$ $\lor \neg superClass (a, c)$ $(\forall (x \in n) attrInClass (a, c))$ $(\forall (x \in n) a$	Primitive	STRIPS Operator	
Remove attribute a from class cDeclarationremoveAttr (a, c)Conditionattr.InClass (a, c) $\land (\forall x, y, z)$ $(\neg sending (x, y, \mu, z) \lor \neg parent (c, z)$ $\lor (z \neq c))$ Add-effectsattrOutOfClass (a, c)Delete-effectsattrInclass (a, c)Tom class cDeclarationremove method μ from class cConditionMatherDeclarationremoveMeth (μ, c) $(\forall x, y)$ ConditionmethInClass (μ, c) $\land (\forall x, y, z)$ $(\neg sending (x, y, \mu, c) \lor \neg parent (c, z)$ $\lor (z \neq c)$) $\land (\forall x, y)$ Add-effectsmethOutOfClass (μ, c)Delete-effectsmethOutOfClass (μ, c)Delete-effectshasType (μ, t, u)Change type t of values returned by method μ to uDeclarationChange superclassDeclarationb of class a to cConditionb of class a to cConditionMove attribute a to class c to its all subclasses b_1, \ldots, b_n Move attribute a to class c to its b_1, \ldots, b_n DeclarationAdd-effectssuperClass (μ, a)Delete-effectshasRetType (μ, t)Delete-effectssuperClass (μ, a)Add-effectssuperClass (μ, a)DeclarationchangeSup(μ, b, a)ConditionintModel (c) \land V = superClass (μ, a) $(\neg sending (u, u, u, w))$ Add-effectssuperClass (μ, a)Delete-effectssuperClass (μ, a)Delete-effectssuperClass (μ, a)Delete-effectssuperClass (μ, a)Delete-eff	refactoring	D	
attribute a from class cConditionattrinctass (a, c) $\land (\forall x, y, z)$ $(-sending (x, y, \mu, z) \lor \neg parent (c, z)$ $\lor (z \neq c)$)Add-effectsattrOutOfClass (a, c)Remove method μ from class cDeclarationremove method μ from class cConditionmemove method μ from class cDeclarationremove method μ from class cAdd-effectsattribute a to u Add-effectsmethod μ to u Declarationchange type t of attribute a to u Declarationchange type t of values returned by method μ to u Declarationchange superclass b of class a to c Declarationchange superclass b of class a to c Declarationchange superclass b of class a to c Declarationchange superclass b 1,, b_n DeclarationdeclarationchangeSup(a, b, c)ConditioninModel (c) \land superClass (b, a)declarationchangeSup(a, b, c)ConditioninModel (c) \land superClass (b, a)Delete effectssuperClass (b, a) <t< td=""><td>Remove</td><td>Declaration</td><td>removeAttr(a, c)</td></t<>	Remove	Declaration	removeAttr(a, c)
class c $ \left \begin{array}{c} (-sending (x, y, \mu, z) \lor \neg parent (c, z) \\ \lor (z \neq c)) \\ \hline \\ \mbox{Add-effects} & attrOutOfClass (a, c) \\ \hline \\ \mbox{Delete-effects} & attrInClass (u, c) \land (\forall x, y, z) \\ \hline \\ \mbox{Delete-effects} & methInClass (u, c) \land (\forall x, y, z) \\ (\neg sending (x, y, \mu, z) \lor \neg parent (c, z) \\ \lor (z \neq c)) \\ \hline \\ \mbox{Add-effects} & methInClass (\mu, c) \land (\forall x, y, c) \lor (y = c)) \\ \hline \\ \mbox{Add-effects} & methOutOfClass (\mu, c) \\ \hline \\ \mbox{Delete-effects} & methInClass (\mu, c) \\ \hline \\ \mbox{Delete-effects} & methInClass (\mu, c) \\ \hline \\ \mbox{Delete-effects} & hasType (a, t) ny \\ \hline \\ \mbox{Delete-effects} & hasType (a, t) \\ \hline \\ \mbox{Delete-effects} & hasType (a, t) \\ \hline \\ \mbox{Delete-effects} & hasType (\mu, t) \\ \hline \\ \mbox{Delete-effects} & hasRetType (\mu, t, u) \\ \hline \\ \mbox{Condition} & hasRetType (\mu, t) \\ \hline \\ \mbox{Delete-effects} & nasRetType (\mu, t) \\ \hline \\ \mbox{Delete-effects} & superClass (b, a) \land (\neg parent (a, c)) \land \\ \forall (x, u, v, w) ((\neg superClass (x, b)) \lor \\ (\neg sending (v, w, u, x)) \\ \land (\neg sending (v, w, u, x)) \\ \hline \\ \mbox{Add-effects} & superClass (c, a) \\ \hline \\ \mbox{Delete-effects} & superClass (c, a) \\ \hline \\ \mbox{Add-effects} & superClass (c, a) \\ \hline \\ \mbox{Add-effects} & superClass (c, a) \\ \hline \\ \mbox{Add-effects} & superClass (c, a) \\ \lor (\neg sending (u, x, v, w))) \\ \hline \\ \mbox{Add-effects} & superClass (c, a) \\ \hline \\ \mbox{Add-effects} & attrOutOfClass (a, b) \\ \hline \\ \mbox{Add-effects} & attrOutOfClass (a, b) \\ \hline \\ Add-effects$	attribute a from	Condition	$attrInClass(a,c) \land (\forall x,y,z)$
$ \begin{array}{ c c c c c } \hline \forall (z \neq c) \\ \hline \text{Add-effects} & attrOutOfClass (a, c) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ \hline \text{Delete-effects} & attrInClass (\mu, c) \land (\forall x, y, z) \\ \hline \text{Condition} & methInClass (\mu, c) \land (\forall x, y, z) \\ \neg sending (x, y, \mu, z) \lor \neg parent (c, z) \\ \lor (z \neq c) \\ \land (\forall x, y) (\neg sending (x, y, \mu, c) \lor (y = c)) \\ \hline \text{Add-effects} & methOutOfClass (\mu, c) \\ \hline \text{Delete-effects} & hasType (a, 1) \land super (u, t) \\ \hline \text{Add-effects} & hasType (a, 1) \\ \hline \text{Change type } t \text{ of} \\ \text{values returned by} \\ \text{method } \mu \text{ to } u \\ \hline \text{Delete-effects} & hasRetType (\mu, 1) \\ \hline \text{Delete-effects} & superClass (b, a) \land (\neg superClass (x, c)) \land \\ (\neg superClass (x, b)) \lor \\ (\neg superClass (x, c)) \land \\ (\forall (x, y, y) \neg sending (y, x, a, c) \\ \hline \text{Add-effects} & superClass (a, c) \\ (\forall i \in n) attrInClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrInClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrInClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrInClass (a, c) \\ (\forall i \in n) attrInClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrInClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, b_i) \\ \hline Delete-ef$	class c		$(\neg sending(x, y, \mu, z) \lor \neg parent(c, z))$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$\vee (z \neq c))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Add-effects	attrOutOfClass(a,c)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Delete-effects	attrInClass(a, c)
Remove method μ from class c Condition $methInClass (\mu, c) \land (\forall x, y, z)$ $(\neg sending (x, y, \mu, z) \lor \neg parent (c, z)$ $\lor (z \neq c))$ Add-effects $methOutOfClass (\mu, c)$ Delete-effects $methOutOfClass (\mu, c)$ Declaration $changeAtrTType (a, t, u)$ Change type t of attribute a to u Add -effectsChange type t of values returned by method μ to u $Declaration$ Change superclass b of class a to c $Declaration$ Move attribute a from class c to its $all subclasses$ b_1, \ldots, b_n $Declaration$ Move attribute a to class c from all its subclasses b_1, \ldots, b_n $Declaration$ Move attribute a to class c from all its subclasses b_1, \ldots, b_n $Declaration$ Move attribute a to class c from all its subclasses b_1, \ldots, b_n $Declaration$ Move attribute a to class c from all its subclasses b_1, \ldots, b_n $Declaration$ Move attribute a to class c from all its subclasses b_1, \ldots, b_n $Declaration$ Move attribute a to class c from all its subclasses b_1, \ldots, b_n $Declaration$ Declaration $attrDoutOfClass (a, c)$ $(\forall i \in n) attrInClass (a, c)$ Declete-effects $attrInClass (a, c)$ $(\forall i \in n) attrInClas$		Declaration	$removeMeth(\mu, c)$
$ \begin{array}{c} \mbox{from class } c & (\neg sending (x, y, \mu, z) \lor \neg parent (c, z) \\ \lor (z \neq c)) \\ \land (\forall x, y) (\neg sending (x, y, \mu, z) \lor (y = c)) \\ \hline \mbox{Add-effects} & methOutOfClass (\mu, c) \\ \hline \mbox{Delete-effects} & methInClass (\mu, c) \\ \hline \mbox{Delete-effects} & methInClass (\mu, c) \\ \hline \mbox{Delete-effects} & hasType (a, t, u) \\ \hline \mbox{Condition} & hasType (a, t) \\ \hline \mbox{Delete-effects} & hasType (a, t) \\ \hline \mbox{Delete-effects} & hasType (\mu, t, u) \\ \hline \mbox{Delete-effects} & hasRetType (\mu, t, u) \\ \hline \mbox{Delete-effects} & superClass (b, a) \land (\neg parent (a, c)) \land \\ \lor (x, u, v, w) ((\neg superClass (x, c)) \land \\ (\neg sending (v, w, u, x)) \\ \land (\neg sending (v, w, u, x)) \\ \land (\neg sending (v, w, u, x)) \\ \land (\neg sending (v, w, u, x)) \\ \hline \mbox{Add-effects} & superClass (c, a) \\ \hline \mbox{Delete-effects} & superClass (c, a) \\ \hline \mbox{Delete-effects} & attrDown (a, c, (b_1, \dots, b_n)) \\ \hline \mbox{Condition} & attrInClass (a, c) \land (\forall x) \\ (x \in n) attrInClass (a, c) \\ (\forall i \in n) attrInClass (a, c) \\$	Remove method μ	Condition	$methInClass\left(\mu,c ight)\wedge\left(orall x,y,z ight)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	from class c		$ (\neg sending(x, y, \mu, z) \lor \neg parent(c, z)) $
$ \begin{split} & \wedge (\forall x, y) (\neg sending (x, y, \mu, c) \lor (y = c)) \\ & \text{Add-effects} & methOutOfClass (\mu, c) \\ & \text{Delete-effects} & methInClass (\mu, c) \\ & \text{Delete-effects} & methInClass (\mu, c) \\ & \text{Deletation} & (changeAtrType (a, t, u) \\ & \text{Condition} & hasType (a, t) \land super (u, t) \\ & \text{Add-effects} & hasType (a, u) \\ & \text{Delete-effects} & hasType (a, t) \\ & \text{Delete-effects} & hasType (\mu, t, u) \\ & \text{Condition} & (changeMethType (\mu, t, u)) \\ & \text{Condition} & (changeMethType (\mu, t, u)) \\ & \text{Delete-effects} & hasRetType (\mu, t) \land super (u, t) \\ & \text{Add-effects} & hasRetType (\mu, t) \\ & \text{Delete-effects} & hasRetType (\mu, t) \\ & \text{Declaration} & changeSup(a, b, c) \\ & \text{Condition} & inModel (c) \land \\ & \forall (x, u, v, w) ((\neg superClass (x, c)) \land \\ & (\neg superClass (b, a) \land (\neg parent (a, c)) \land \\ & (\neg superClass (x, b)) \lor \\ & (\neg sending (u, x, v, w))) \\ & \text{Add-effects} & superClass (c, a) \\ & \text{Delete-effects} & (x = b_1 \lor \ldots \lor x = b_n \land \\ & (\forall x, y) \neg superClass (c, x)) \land \\ & (\forall x, y) \neg superClass (a, c) \\ & (\forall i \in n) attrOutOfClass (a, c) \\ & (\forall i \in n) attrOutOfClass (a, c) \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c), \\ & (\forall i \in n) attrOutOfClass (a, c$			$\lor (z \neq c))$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$\land (\forall x, y) (\neg sending (x, y, \mu, c) \lor (y = c))$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Add-effects	$methOutOfClass\left(\mu,c ight)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Delete-effects	$methInClass\left(\mu,c ight)$
$ \begin{array}{c} \mbox{Change type t of attribute a to u} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$		Declaration	changeAtrrType(a,t,u)
$ \begin{array}{c c} \mbox{attribute a to u} & \begin{tabular}{ c c c c } \hline Add-effects & $hasType(a,u)$} & \begin{tabular}{ c c c c } \hline Delete-effects & $hasType(a,t)$} & \begin{tabular}{ c c c c c } \hline Delete-effects & $hasRetType(\mu,t) \land super(u,t)$} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Change type t of	Condition	$hasType(a,t) \land super(u,t)$
$ \begin{array}{ c c c c c c } \hline \text{Delete-effects} & hasType (a,t) \\ \hline \text{Delatation} & changeMethType (\mu,t,u) \\ \hline \text{Condition} & hasRetType (\mu,t) \land super (u,t) \\ \hline \text{Add-effects} & hasRetType (\mu,t) \land super (u,t) \\ \hline \text{Add-effects} & hasRetType (\mu,t) \\ \hline \text{Delete-effects} & superClass (b,a) \land (\neg parent (a,c)) \land \\ \forall (x,u,v,w) ((\neg superClass (x,c)) \land \\ (\neg superClass (x,b)) \lor \\ (\neg sending (u,x,v,w))) \\ \hline \text{Add-effects} & superClass (c,a) \\ \hline \text{Delete-effects} & superClass (b,a) \\ \hline \text{Delete-effects} & superClass (b,a) \\ \hline \text{Delete-effects} & superClass (c,a) \\ \hline \text{Delete-effects} & superClass (c,c) \\ (\forall i \in h) \land (x,y) \neg sending (x,y,a,c) \\ \hline \text{Add-effects} & attrOutOfClass (a,c) \\ (\forall i \in h) attrInClass (a,c) \\ (\forall i \in h) attrOutOfClass (a,b_i) \\ \hline \text{Delete-effects} & attrInClass (a,c) \\ (\forall i \in h) attrOutOfClass (a,c) \\ (\forall i \in h) atttrOutOfClass (a,c) \\ (\forall i \in h) attrDuctofClass (a$	attribute a to u	Add-effects	$hasType\left(a,u ight)$
$\begin{array}{c c} \mbox{Change type t of}\\ \mbox{values returned by}\\ \mbox{method μ to u} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$		Delete-effects	$hasType\left(a,t ight)$
$ \begin{array}{c c c c c c } \hline \text{Condition} & has RetType (\mu, t) \land super (u, t) \\ \hline \text{Add-effects} & has RetType (\mu, u) \\ \hline \text{Delete-effects} & has RetType (\mu, t) \\ \hline \text{Deleta-effects} & superClass (b, a) \land (\neg parent (a, c)) \land \\ \forall (x, u, v, w) ((\neg superClass (x, c)) \land \\ (\neg sending (v, w, u, x)) \\ \land (\neg sending (u, x, v, w))) \\ \hline \text{Add-effects} & superClass (c, a) \\ \hline \text{Delete-effects} & superClass (b, a) \\ \hline \text{Delete-effects} & superClass (b, a) \\ \hline \text{Delete-effects} & superClass (a, c) \land (\forall x) \\ (x = b_1 \lor \ldots \lor x = b_n \\ \lor \neg superClass (a, c) \land (\forall x, y) \neg sending (x, y, a, c) \\ \hline \text{Add-effects} & attrInClass (a, c) \land (\forall x, y) \neg sending (x, y, a, c) \\ \hline \text{Add-effects} & attrOutOfClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrOutOfClass (a, b_i) \\ \hline Delete-e$	Channe tone thef	Declaration	$changeMethType(\mu, t, u)$
$\begin{array}{c c} \mbox{Values returned by}\\ \mbox{method μ to u} & \begin{tabular}{ c c c c c c } \hline Add-effects & $hasRetType($\mu$,$u$) \\ \hline Delete-effects & $hasRetType($\mu$,$u$) \\ \hline Delete-effects & $hasRetType($\mu$,$u$) \\ \hline Delete-effects & $hasRetType($\mu$,$u$) \\ \hline Deleta-effects & $hasRetType($\mu$,$u$) \\ \hline Deleta-effects & $uperClass($b$,$a$) \land ($\neg$parent($a$,$c$)) \land ($\neg$superClass($x$,$c$)) \land ($\neg$superClass($x$,$c$)) \land ($\neg$superClass($x$,$c$)) \land ($\neg$superClass($x$,$b$)) \lor ($\neg$sending($u$,$v$,$u$,$w$))) \\ \hline Add-effects & $superClass($b$,$a$) \\ \hline Delete-effects & $superClass($b$,$a$) \\ \hline Delete-effects & $superClass($b$,$a$) \\ \hline Deleta-effects & $superClass($c$,$a$) \\ \hline Deleta-effects & $superClass($c$,$a$) \\ \hline Condition & $attrInClass($a$,$c$) \land ($\forall x) \\ ($x = $b_1 \lor \ldots \lor $x = b_n \\ \lor \neg $superClass($c$,$x$)) \\ \land ($\forall x,y) \neg $sending($x$,$y$,$a$,$c$) \\ \hline Add-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Delete-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta-effects & $attrInClass($a$,$c$) \\ ($\forall $i \in n) $attrOutOfClass($a$,$b$) \\ \hline Deleta$	Change type t of	Condition	$hasRetType(\mu,t) \land super(u,t)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	values returned by	Add-effects	$hasRetType(\mu, u)$
$ \begin{array}{c c} \mbox{Change superclass} \\ \mbox{Declaration} & \mbox{changeSup}(a,b,c) \\ \mbox{Condition} & \mbox{inModel}(c) \land \\ \mbox{superClass}(b,a) \land (\neg parent(a,c)) \land \\ \nblack \forall (x,u,v,w) ((\neg superClass(x,c)) \land \\ (\neg superClass(x,b)) \lor \\ (\neg sending(v,w,u,x)) \\ \land (\neg sending(v,w,u,x)) \\ \land (\neg sending(u,x,v,w))) \\ \mbox{Add-effects} & \mbox{superClass}(c,a) \\ \mbox{Delete-effects} & \mbox{superClass}(b,a) \\ \mbox{Move attribute } a \\ \mbox{from class } c \mbox{ to its} \\ \mbox{all subclasses} \\ b_1,\ldots,b_n \\ \mbox{Move attribute } a \\ \mbox{to class } c \mbox{ from all} \\ \mbox{to class } (c,x)) \\ \mbox{Add-effects} \mbox{to class } (c,x)) \\ \mbox{Add-effects} \mbox{to class } (c,x) \\ \mbox{Add-effects} \mbox{to class } (c,x) \\ \mbox{Add-effects} \mbox{to class } (c,x) \\ Add-effec$	method μ to u	Delete-effects	$hasRetType(\mu, t)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Declaration	changeSup(a, b, c)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Change superclass	Condition	$inModel(c) \land$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b of class a to c		$superClass(b, a) \land (\neg parent(a, c)) \land$
$ \begin{array}{ c c c c c } \hline & (\neg superClass(x,b)) \lor \\ (\neg sending(v,w,u,x)) \\ \land (\neg sending(v,w,u,x)) \\ \land (\neg sending(v,w,u,x)) \\ \land (\neg sending(u,x,v,w))) \\ \hline & \text{Add-effects} & superClass(c,a) \\ \hline & \text{Delete-effects} & superClass(b,a) \\ \hline & \text{Delete-effects} & superClass(b,a) \\ \hline & \text{Deleta-effects} & superClass(a,c) \\ (\forall x, y) & \neg superClass(a,c) \\ (\forall x, y) & \neg sending(x,y,a,c) \\ \hline & \text{Add-effects} & attrOutOfClass(a,c) \\ (\forall i \in n) attrInClass(a,c) \\ (\forall i \in n) attrOutOfClass(a,b_i) \\ \hline & \text{Delete-effects} & attrInClass(a,x) \lor \neg superClass(c,x)) \\ \land (\forall x)((x \neq b_1 \lor \dots \lor x \neq b_n) \\ (\forall x)((x \neq b_1 \lor \dots \lor x \neq b_n) \\ (\forall x)((x \neq b_1 \lor \dots \lor x \neq b_n) \\ (\forall x)((x \in n) attrOutOfClass(a,c) \\ (\forall i \in n) attrOutOfClass(a,b_i) \\ \hline & \text{Delete-effects} & attrInClass(a,c) \\ (\forall i \in n) attrOutOfClass(a,b_i) \\ \hline & \text{Delete-effects} & attrInClass(a,c) \\ (\forall i \in n) attrOutOfClass(a,b_i) \\ \hline & \text{Delete-effects} & attrOutOfClass(a,c) \\ (\forall i \in n) attrInClass(a,c) \\ (\forall i \in n) $			$\forall (x, u, v, w) ((\neg superClass(x, c)) \land$
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			$(\neg superClass(x, b)) \lor$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(\neg sending(v, w, u, x))$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$\wedge (\neg sending(u, x, v, w)))$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Add-effects	superClass(c, a)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Delete-effects	superClass(b, a)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Move attribute a	Declaration	$\frac{attr Down (a, c, (b_1, \dots, b_n))}{attr Down (b_1, \dots, b_n)}$
$\begin{array}{c} \text{all subclasses} \\ \text{all subclasses} \\ b_1, \dots, b_n \\ \end{array} \begin{array}{c} (x = b_1 \lor \dots \lor x = b_n \\ \lor \neg superClass(c,x)) \\ \land (\forall x, y) \neg sending(x, y, a, c) \\ \hline \land (\forall x, y) \neg sending(x, y, a, c) \\ \hline \land (\forall x, y) \neg sending(x, y, a, c) \\ \hline \land (\forall x, y) \neg sending(x, y, a, c) \\ \hline \land (\forall i \in n) attrOutOfClass(a, c) \\ (\forall i \in n) attrOutOfClass(a, b_i) \\ \hline \end{array} \\ \begin{array}{c} \text{Move attribute } a \\ \text{to class } c \text{ from all} \\ \text{its subclasses} \\ b_1, \dots, b_n \\ \hline \end{array} \begin{array}{c} \text{Declaration} \\ \text{Ordition} \\ \hline \land (\forall x) ((x \neq b_1 \lor \dots \lor x \neq b_n) \\ \lor \neg superClass(c, x)) \\ \land (\forall i \in n) attrOutOfClass(a, b_i) \\ \hline \end{aligned} \\ \begin{array}{c} \text{Add-effects} \\ (\forall i \in n) attrOutOfClass(a, b_i) \\ \hline \end{aligned} \\ \begin{array}{c} \text{Add-effects} \\ (\forall i \in n) attrOutOfClass(a, b_i) \\ \hline \end{aligned} \\ \begin{array}{c} \text{Delete-effects} \\ (\forall i \in n) attrOutOfClass(a, b_i) \\ \hline \end{aligned} \\ \end{array} $	from class c to its	Condition	$attrInClass(a, c) \land (\forall x)$
$ \begin{array}{c c} b_1, \dots, b_n & & & & & & & & & & & & & & & & & & &$	all subclasses		$(x = b_1 \lor \ldots \lor x = b_n)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	b_1, \ldots, b_n		$\forall \neg superClass(c, x))$
$\begin{array}{c c} \mbox{Add-effects} & \mbox{attr}OutOfClass(a,c) \\ & (\forall i \in n) \mbox{attr}InClass(a,c) \\ & (\forall i \in n) \mbox{attr}InClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}InClass(a,c) \\ & (\forall i \in n) \mbox{attr}OutOfClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}InClass(a,c) \\ & (\forall i \in n) \mbox{attr}OutOfClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}InClass(a,x) \lor \neg superClass(c,x)) \\ & \land (\forall x) \ ((x \neq b_1 \lor \ldots \lor x \neq b_n) \\ & \lor \neg superClass(c,x)) \\ \hline \mbox{Add-effects} & \mbox{attr}InClass(a,c) \\ & (\forall i \in n) \mbox{attr}OutOfClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}OutOfClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}OutOfClass(a,c) \\ & (\forall i \in n) \mbox{attr}InClass(a,c) \\ & (\forall i \in n) \mbox{attr}InClass(a,c) \\ & (\forall i \in n) \mbox{attr}InClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}OutOfClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}InClass(a,c) \\ & (\forall i \in n) \mbox{attr}InClass(a,b_i) \\ \hline \mbox{Delete-effects} & \mbox{attr}InClass(a,$	-1,,		$\wedge (\forall x, y) \neg sending(x, y, a, c)$
$ \begin{array}{c} \text{Matching of a boost} & (\forall i \in n) \ attrInClass (a, b) \\ \hline (\forall i \in n) \ attrInClass (a, c) \\ (\forall i \in n) \ attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrInClass (a, c) \\ (\forall i \in n) \ attrOutOfClass (a, b_i) \\ \hline \text{Declaration} & attrUp \ (a, c, (b_1, \dots, b_n)) \\ \hline \text{Condition} & (attrInClass (a, x) \lor \neg superClass (c, x)) \\ \land (\forall x) \ ((x \neq b_1 \lor \dots \lor x \neq b_n) \\ \lor \neg superClass (c, x)) \\ \hline \text{Add-effects} & attrInClass (a, c) \\ (\forall i \in n) \ attrOutOfClass (a, b_i) \\ \hline \text{Delete-effects} & attrOutOfClass (a, b_i) \\ \hline \end{array} $		Add-effects	attrOutOfClass(a, c)
$\begin{array}{c c} \hline (\forall i \in n) attrInClass(a,c) \\ \hline Delete-effects & attrInClass(a,c) \\ \hline (\forall i \in n) attrOutOfClass(a,b_i) \\ \hline \\ \hline \\ Move attribute a \\ to class c from all \\ its subclasses \\ b_1, \dots, b_n \\ \hline \\ \hline \\ Add-effects & attrInClass(a,c) \\ \hline \\ (\forall i \in n) attrOutOfClass(a,c) \\ \hline \\ (\forall i \in n) attrInClass(a,c) \\ \hline \\ $			$(\forall i \in n) attrInClass(a, b_i)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Delete-effects	attrInClass(a, c)
Move attribute a to class c from all its subclasses b_1, \ldots, b_n Declaration $attrUp(a, c, (b_1, \ldots, b_n))$ $(attrInClass (a, x) \lor \neg superClass (c, x))$ $\land (\forall x) ((x \neq b_1 \lor \ldots \lor x \neq b_n)$ $\lor \neg superClass (c, x))$ Add-effects $attrInClass (a, c)$ $(\forall i \in n) attrOutOfClass (a, c)$ $(\forall i \in n) attrInClass (a, c)$ $(\forall i \in n) attrInClass (a, c)$ $(\forall i \in n) attrInClass (a, c)$			$(\forall i \in n) attrOutOfClass(a, b)$
$\begin{array}{c} \text{Add-effects} & attrOp(a,c,(a_1,\ldots,a_n)) \\ \text{for class } c \text{ from all} \\ \text{its subclasses} \\ b_1,\ldots,b_n \\ \end{array} \begin{array}{c} \text{Condition} & (attrInClass(a,x) \lor \neg superClass(c,x)) \\ \land (\forall x) ((x \neq b_1 \lor \ldots \lor x \neq b_n) \\ \lor \neg superClass(c,x)) \\ \text{Add-effects} & attrInClass(a,c) \\ (\forall i \in n) attrOutOfClass(a,b_i) \\ \hline \text{Delete-effects} & attrOutOfClass(a,b_i) \\ \hline \end{array}$	Move attribute a	Declaration	$attrUn(a, c, (b_1, \dots, b_n))$
$ \begin{array}{c} (atc) The class (a, x) \lor couplet Class (c, x)) \\ (atc) The class (a, x) \lor couplet Class (c, x)) \\ (atc) The class (a, x) \lor couplet Class (c, x)) \\ (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (c, x)) \\ (b) (atc) The class (a, x) \lor couplet Class (a, b) \\ (b) (atc) The class (atc) T$	to class c from all	Condition	$(attrInClass(a, r) \lor \neg superClass(c, r))$
$\begin{array}{c c} \text{Add-effects} & & & & & & & & & & & & & & & & & & &$	its subclasses	Condition	$\begin{pmatrix} (a \cup r) & (i \cup r) \\ (a \cup r) & (i \cup r $
Add-effects $attrInClass(a, c)$ $(\forall i \in n) attrOutOfClass(a, b_i)$ Delete-effects $attrOutOfClass(a, c)$ $(\forall i \in n) attrInClass(a, b_i)$	b_1 b_1		$((u))((u) - o_1 + \dots + u) - o_n)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	01,, 0n	Add-effects	attrInClass(a, c)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(\forall i \in n) attrOutOfClass(a, b_i)$
$(\forall i \in n) attrInClass(a, b;)$		Delete-effects	attrOutOfClass(a, c)
			$(\forall i \in n) attrInClass(a, b_i)$

Primitive	STRIPS Operator	
refactoring		-
Comments and the	Declaration	$methDown(\mu, c, b)$
Copy method μ	Condition	$methInClass(\mu, c) \land$
$\frac{1}{1}$ to its		$methOutOfClass(\mu, b)$
subclass b		$\land (superClass(c, b))$
	Add-effects	$methInClass(\mu, b)$
	Delete-effects	$methOutOfClass(\mu, b)$
Comments of the day of the	Declaration	$methUp(\mu, c, b)$
Copy method μ to	Condition	$methOutOfClass(\mu, c) \land$
class c rom its		$methInClass(\mu, b)$
subclass o		$\land (superClass(c,b))$
	Add-effects	$methInClass(\mu, c)$
	Delete-effects	$methOutOfClass(\mu, c)$
Add message η	Declaration	$addSend(\mu, c, \eta, d)$
sent to objects of	Condition	$(\neg sending(\mu, c, \eta, d) \land methInClass(\mu, c))$
class d from		$\lor (\exists x) ((parent (x, d) \lor (x = d)) \land$
method μ of		$(methInClass(\eta, x))$
class c		$\vee (attrInClass(\eta, x))))$
		$\land (\forall x, y) (\neg sending (x, y, \mu, c))$
		$\land (c \neq Client))$
	Add-effects	$sending(\mu, c, \eta, d)$
	Delete-effects	Ø
Remove message η	Declaration	$removeSend(\mu, c, \eta, d)$
sent to objects of	Condition	sending $(\mu, c, \eta, d) \land (c \neq Client)$
class d from		$\land (\forall x, y) (\neg sending (x, y, \mu, c))$
method μ of	Add-effects	Ø
class c	Delete-effects	$sending(\mu, c, \eta, d)$
Split message	Declaration	$splitSend(\mu, c, \eta, d, l, e)$
sending $d \triangleleft \eta$ to	Condition	$sending\left(\mu,c,\eta,d\right) \wedge attrInClass\left(l,d\right)$
$(d \triangleleft l) \triangleleft \eta$, where		$\land hasType(l,e)$
l is of type e .	Add-effects	$sending(\mu, c, l, d)$
		$sending(\mu, c, \eta, e)$
	Delete-effects	$sending(\mu, c, \eta, d)$
Merge message	Declaration	$mergeSend(\mu, c, \eta, d, l, e)$
sending	Condition	$sending\left(\mu,c,\eta,e\right)\wedge sending\left(\mu,c,l,d\right)$
$(d \lhd l) \lhd \eta$ into		$\land attrInClass\left(l,d ight)\land hasType\left(l,e ight)$
$d \triangleleft \eta$, where l is of	Add-effects	$sending(\mu, c, \eta, d)$
type e.	Delete-effects	$sending(\mu, c, l, d)$
		sending (μ, c, η, e)