
Automated Model Transformations Based on

STRIPS Planning

Old°ich Nouza1, Vojt¥ch Merunka2, and Miroslav Virius3

1 Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical
Engineering, Department of Software Engineering in Economy,

nouza@fj�.cvut.cz
2 Czech University of Life Sciences Prague, Faculty of Economics and Management,

Department of Information Engineering,
merunka@pef.czu.cz

3 Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical
Engineering, Department of Software Engineering in Economy,

virius@fj�.cvut.cz

Abstract. This paper deals with application of STRIPS planning in
automated model transformations. Object oriented model is viewed as a
state space containing possible models as states and elementary transfor-
mations as state transitions. A source model is represented by an initial
state, a target model by a goal state. Automation of model transforma-
tion consists in �nding a plan to reach a goal state in this state space.

Key words: automated model transformations, modeling, object ori-
ented approach, refactoring, SBAT, STRIPS planning

1 Introduction

Transformations play a key role in software engineering. Although there exist
satis�able solutions of automated transformations of models to text, the same
cannot be said about transformations of models to models. This area is still in
phase of research and exploring of possibilities [1].

According to the approaches of present implemented in several CASE tools,
every model transformation requires application of the corresponding transfor-
mation rule with suitable parameters [3, 4, 6, 13] Unfortunately, as mentioned
in [4], this approach has one big disadvantage, which is a low reusability. For
every transformation that has no rule de�ned, it is necessary to either apply a
composition of other rules, or de�ne a new transformation rule. In this paper, we
introduce transformation engine named SBAT (STRIPS Based Transformation
Engine) that does not require such steps.

2 Model Transformations

There are several ways how to de�ne model transformation. In this paper, we
introduce the de�nition presented in [5] and cited by [8]:

J. Barjis, M.M. Narasipuram, G. Rabadi, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop EOMAS’10, Hammamet, Tunisia, pp. 1-13, 2010.

mailto:nouza@fjfi.cvut.cz
mailto:merunka@pef.czu.cz
mailto:virius@fjfi.cvut.cz


2 Old°ich Nouza, Vojt¥ch Merunka, and Miroslav Virius

A transformation is the automatic generation of a target model from a
source model, according to a transformation de�nition. A transformation
de�nition is a set of transformation rules that together describe how a
model in the source language can be transformed into a model in the
target language. A transformation rule is a description of how one or
more constructs in the source language can be transformed into one or
more constructs in the target language.

2.1 Classi�cation of Transformations

Publication [8] describes two criteria of classi�cation of model transformations.
The �rst one is a di�erence of abstraction level of source and target models:

Horizontal transformation � A transformation where source and target models
have the same level of abstraction. A typical example is refactoring.

Vertical transformation � A transformation where source and target models
have a di�erent level of abstraction. A typical example is re�nement.

The second classi�cation criteria is a di�erence of modeling languages in which
the source and targets models are expressed:

Endogenous transformation � A transformation where source and target models
are expressed in the same language. Typical examples are refactoring and
normalization.

Exogenous transformation � A transformation where source and target models
are expressed in di�erent languages. Typical examples are code generation
and reverse engineering.

In this paper, we focus more closely on refactoring.

3 Refactoring

There exist several ways how to de�ne refactoring. The de�nition presented in
[7] says that refactoring is an improvement of software system without changing
its behavior. In other words, for the same input, the refactored software must
return the same output as the original software. Detail information on refactoring
is available in [2].

3.1 Complex Refactorings and Primitive Refactorings

The idea of complex refactoring as composition of �nite primitive (atomic) refac-
torings was �rst published in [10], where formal de�nition of C++ code refactor-
ing was discussed, and later in [12], where it was demonstrated on refactoring of
UML models. We have used the same idea to construct the SBAT transformation
engine.



Automated Model Transformations Based on STRIPS Planning 3

4 STRIPS Planning

Technical report [9] de�nes STRIPS as following:

STRIPS (STanford Research Institute Problem Solver) belongs to the
class of problem solvers that search a space of �world models� to �nd one
in which a given goal is achieved. For any world model, we assume there
exists a set of applicable operators each of which transforms the world
model to some other world model. The task of the problem solver is to
�nd some composition of operators that transforms a given initial world
model into one that satis�es some particular goal condition.

The STRIPS language is based on the calculus of �rst-order predicate logic.
Formally, the STRIPS problem can be expressed by the following de�nitions:

De�nition 1. STRIPS problem is an ordered triple (I,O,G), where I is an
initial state, O is a set of operators, and G is a goal state condition.

De�nition 2. Operator o (x̄) is de�ned as an ordered triple(P,A,D), whereP =
(x̄) is an application condition, A = [A1 (x̄) , . . . , Al (x̄)] is a set of formulas
which become true after operator application, D = [D1 (x̄) , . . . Dm (x̄)] is a set
of formulas which become false after operator application, x̄ = (x1, . . . xn) are
free variables contained in formulas P,A1, . . . , Al, D1, . . . Dm, n ∈ N+, l,m ∈ N0.
Elements of A are called add-e�ects, elements of D delete-e�ects.

De�nition 3. Let o (x1, . . . , xn) = (P,A,D) ∈ O be operator. A transition func-
tion o′ : (x1 × x2 × . . .× xn × S) → S, where S is a state set, is de�ned in the
following way:

o' (x1, . . . , xn, s)
def
=

(s ∪A)−D ∅
s � P

(1)

A goal is to �nd such list of operators applications, which cause transition for
initial state to the state satisfying the goal state condition. More formally:

De�nition 4. State sm is a solution of problem (I,O,G), if there exists a list of
operators applications o1

(
h1
)
, . . . , om

(
hm
)
, where hi are vectors of constants,

m ∈ N, and:

1. s0 = I
2. (∀i ∈ m̂) si = o′i−1

(
hi−1, si−1

)
3. sm � G

If I � G, then the solution, which is I in this case, is called trivial solution.



4 Old°ich Nouza, Vojt¥ch Merunka, and Miroslav Virius

5 SBAT Transformation Engine

5.1 Requirements

Resulting from the facts on present state model transformation discussed in
the introduction of this paper, we have decided to design a new transformation
engine ful�lling the following requirements:

1. The engine will support model transformations such as refactoring.
2. The input of transformation process will be the source model and conditions

of a target model.
3. The output of transformation process will be a target model, or information

that the source model cannot be transformed to any model ful�lling the
input conditions.

4. The source model and the target model will be consistent in light of behavior
of modeled system.

5. The transformation process will be fully automatized, without need to spec-
ify transformation rules on input.

6. The engine will be universal and su�ciently reusable for wide scale of object
models.

5.2 Formal De�nition of Object Model

In this paper, formal de�nition of object model is based on simpli�ed metamodel
of UML 2.0 class diagrams, in detail described in [11]. Because of intended gen-
erality, we do not focus on implementation details, such as method parameters
and bodies, access mode of class members, etc.

5.2.1 Model as State Space For our purposes we use the primitive refactor-
ing composition mentioned earlier. For this reason, we de�ne model as a state
space, where state set represents model in all possible states and state transitions
represent primitive refactorings.

De�nition 5. Let C be a class universe, A attribute universe, and F method
universe. LetObject, Client ∈ C be classes, where ∀ (x ∈ C − [Object]) (Object ≺ c),
which means that Object is parent of all other classes and Client represent a
client class, whose object sends messages to objects of classes in model. Letε be
�empty value�. Model state s is an ordered 5-tuple (Cs, ins, supers, types, sends),
where

� Cs ⊂ C − [Object, Client] is a �nite set of classes of model in state s,
� ins ⊆ ((A ∪ F )× Cs) is a binary relation named �is in class� de�ned as

ins
def
= {(x, y) |x ∈ (Attr (y) ∪Meth (y)) ∧ y ∈ Cs } , (2)

where Attr (y) and Meth (y) are sets of attributes and methods respectively of
class y,



Automated Model Transformations Based on STRIPS Planning 5

� supers ⊆ ((Cs ∪ [Object])× Cs) is a binary relation �is superclass� de�ned as

supers
def
= {(x, y) |x = super (y) ∧ x, y ∈ Cs } , (3)

where super (y) means �a superclass of y�,
� types ⊆ (A× Cs) ∪ (F × (Cs)) is a binary relation named �is of type� de�ned

as

types
def
= {(x, y) |x = type (y) ∧ y ∈ Cs } , (4)

where type (y) means �a type of y�,
� sends ⊆ (F × (Cs ∪ [Client])× (A ∪ F )× Cs) is a 4-ary relation named
�sends message� de�ned as

sends
def
= {(x, y, u, v) |(x, y) ∈ ins
∧ (∃w) ((u,w) ∈ ins ∧ (u ≺ w ∨ u = w))

∧ 〈x,Λ〉 ∈Meth (y)} ,
(5)

where lambda-expression Λ contains message sending o C u, where o is an
instance of class w.

The following conditions must be ful�lled:

� in the class hierarchy, each attribute appears at most once, so

(∀x ∈ A) (∀y, z ∈ C) (ins (x, y) ∧ ins (x, z)→ ¬ (y ≺ z) ∧ ¬ (z ≺ y)) , (6)

� each attribute is of some type, so

(∀x ∈ A) (∃y ∈ Cs) (types (x, y)) , (7)

� each attribute is of at most one type and each method has at most one return
value type, so

(∀x ∈ (A ∪ F )) (∀y, z ∈ Cs) (types (x, y) ∧ types (x, z)→ y = z) . (8)

De�nition 6. Model is a state space (M,Φ), where M is a �nite set of model
states and Φ =

⋃n
i=1

[
ϕi : M × Eki →M

]
, (∀i ∈ n̂) (ki ∈ N) is a set of transfor-

mation rules.

5.3 Model Transformation Problem

Each model transformation requires answers to the following questions [8]:

1. What needs to be transformed?
2. What will be the result of the transformation?

To �nd answers, we have to formulate the transformation problem and set the
principle of its solution. This can be done by several ways, we have decided to
apply the STRIPS planning.



6 Old°ich Nouza, Vojt¥ch Merunka, and Miroslav Virius

5.4 STRIPS Planning application

Let's assume any �nite subset B of object universal, containing elements of
all possible model states. To formulate STRIPS problem (I,O,G) for model
transformation, we must describe the model states and transformation rules
using �rst-order predicate logic calculus. For this purpose, we de�ne predicates
shown in table 1.

Table 1. Predicates for STRIPS problem formulation in SBAT engine

Predicate Declaration De�nition

class c is in model inModel (c) c ∈ Cs

class c is not in
model

outOfModel (c) c ∈ (B − Cs)

attribute a is in class
c

attrInClass (a, c) (a, c) ∈ ins

attribute a is not in
class c

attrOutOfClass (a, c) ¬ ((a, c) ∈ ins) ∧ a ∈ (B ∩A)

method µ is in class
c

methInClass (µ, c) (µ, c) ∈ ins

method µ is not in
class c

methOutOfClass (µ, c) ¬ ((µ, c) ∈ ins) ∧ µ ∈ (B ∩ F )

attribute a is of type
t

hasType (a, t) (a, t) ∈ types

method µ has return
value type t

hasRetType (µ, t) (µ, t) ∈ types

class c is superclass
of d

superClass (c, d) (c, d) ∈ supers

class c is a parent of
d

parent (c, d) c ≺ d

method µof class c
sends messageη to
objects of class d

sending (µ, c, η, d) (µ, c, η, d) ∈ sends

5.4.1 Initial State Formulation Let mI = (CI , inI , superI , typeI , sendI) be
a model in initial state. We construct initial state I of STRIPS problem by the
following steps:

1. Put I := ∅.
2. Add formulas about existence of classes in model:

a) (∀c ∈ CI) put (I := I ∪ [inModel (c)]) and
b) (∀c ∈ (B − CI)) put (I := I ∪ [outOfModel (c)]).

3. Add formulas about class attributes:

a) (∀ (a, c) ∈ (inI ∩ (B ∩A,CI))) put
(I := I ∪ attrInClass (a, c)) and



Automated Model Transformations Based on STRIPS Planning 7

b) (∀ (a, c) ∈ ((B ∩A,B ∩ C)− inI)) put
(I := I ∪ attrOutOfClass (a, c)).

4. Add formulas about class methods:

a) (∀ (µ, c) ∈ (inI ∩ (B ∩ F,CI))) put
(I := I ∪methInClass (µ, c)) and

b) (∀ (µ, c) ∈ ((B ∩ F,B ∩ C)− inI)) put
(I := I ∪methOutOfClass (µ, c)).

5. Add formulas about inheritance:
(∀ (c, d) ∈ superI) put (I := I ∪ superClass (c, d)).

6. Add formulas about attribute types and return value types of methods:

a) (∀ (a, c) ∈ (typeI ∩ (B ∩A,CI))) put
(I := I ∪ hasType (a, c)) and

b) (∀ (µ, c) ∈ (typeI ∩ (B ∩ F,CI))) put (I := I ∪ hasType (µ, c)).

7. Add formulas about message sending:
(∀ (a, c, b, d) ∈ sendI) put (I := I ∪ sending (a, b, c, d)).

5.4.2 Formulation of Goal State Condition A goal state condition G is
de�ned by the formula that is true in any goal state.

5.4.3 Formulation of Operator Set The set of operators O is de�ned iden-
tically for each particular problem, because it represents a set of primitive refac-
torings. The complete de�nition of the operator set is described in table 3 in
appendix.

5.5 Example

5.5.1 Problem Let's suppose a simpli�ed class model of �le system (see �g. 1).

Folder+name File+name+owner *+owner*
Fig. 1. File system class model

The goal is to transform this model into state which satis�es the composite
design pattern.



8 Old°ich Nouza, Vojt¥ch Merunka, and Miroslav Virius

5.5.2 Solution The initial model state ms = (Cs, ins, supers, types, sends),
where:

� Cs = [Folder, F ile, String]
� ins = [(name, Folder) , (owner, Folder) , (name, F ile) , (owner, F ile)]
� supers = [(Object, Folder) , (Object, F ile) , (Object, String)]
� types = [(name, String) , (owner, Folder)]
� sends = {(Client,main, x, y) |(x, y) ∈ ins }

The corresponding initial state of STRIPS problem is the following:

I = [inModel (Folder) , inModel (File) , inModel (String) ,

outOfModel (Element) ,

attrInClass (name, Folder) , attrInClass (owner, Folder) ,

attrInClass (name, F ile) , attrInClass (owner, F ile) ,

attrOutOfClass (name,Elememt) , attrOutOfClass (owner,Element) ,

superClass (Object, F ile) , superClass (Object, Folder) ,

hasType (owner, Folder) , hasType (name, String) ,

sending (Client,main, Folder, name) ,

sending (Client,main, Folder, owner) ,

sending (Client,main, F ile, name) ,

sending (Client,main, F ile, owner)]
(9)

The goal state condition is the following:

G =inModel (Element) ∧ attrInClass (name,Element)∧
attrInClass (owner,Element) ∧ superClass (Element, F ile)∧
superClass (Element, Fodler)

(10)

The STRIPS planner reaches the goal state by application of satis�able operators
(see table 2).



Automated Model Transformations Based on STRIPS Planning 9

Table 2. List of operators application to reach the goal state

Operator application Description

addClass (Element) Add class Element to the model.

changeSup (File, Object, Element) Change superclass Object of class
File to Element.

changeSup (Folder,Object, Element) Change superclass Object of class
Fodler to Element.

attrUp (name,Element, F ile, Folder) Move attribute name to class
Element from its subclasses File

and Folder.

attrUp (owner,Element, F ile, Folder) Move attribute owner to class
Element from its subclasses File

and Folder.

The goal state is as follows:

Goal = [inModel (Folder) , inModel (File) ,

inModel (String) , inModel (Element) ,

attrInClass (name,Element) , attrInClass (owner,Element) ,

attrOutOfClass (name, Folder) ,

attrOutOfClass (owner, Folder) ,

attrOutOfClass (name, F ile) , attrOutOfClass (owner, F ile) ,

superClass (Element, F ile) , superClass (Element, Folder) ,

hasType (owner, Folder) , hasType (name, String) ,

sending (Client,main, Folder, name) ,

sending (Client,main, Folder, owner) ,

sending (Client,main, F ile, name) ,

sending (Client,main, F ile, owner)]

(11)

A class model in UML notation corresponding to the goal state is shown in �g. 2.

6 Conclusion and Future Work

In this paper we have introduced SBAT transformation engine based on STRIPS
planning system. This engine automates refactoring of the given source model
to a target model ful�lling the input condition.

The main asset of SBAT engine for practice is a contribution to an improve-
ment of automation of object model transformations, which consequently would
implicate saved human resources for software projects. Then, these resources
could be allocated for example on software debugging or testing tasks, rather
than on model transformation ones. Another asset should be a theoretical back-
ground for research activities in the area of model transformations.



10 Old°ich Nouza, Vojt¥ch Merunka, and Miroslav Virius

Folder+name File+name+owner * Element
Fig. 2. File system as Composite design pattern

Several consecutive research topics appeared during the SBAT development,
e.g. the model state space optimization by reduction of states count or imple-
mentation of SBAT in some CASE tool.

Acknowledgment

The authors would like to acknowledge the support of the research grant project
SGS10/094 of the Czech Ministry of Education, Youth and Sports.

References

1. Czarnecki K. and Helsen S.: Feature-based survey of model transformation ap-
proaches. In: IBM Systems Journal 2006, vol. 45, no. 3, pp. 621-645. (2006)

2. Fowler M.: Refactoring. Addison-Wesley. ISBN 0-201-48567-2. (1999)
3. Gray J., Lin Y., and Zhang J.: Automating Change Evolution in Model-Driven

Engineering. In Computer 2006, vol. 31, no. 2, pp. 51. (2006)
4. Jézequel J-M.: Model Transformation Techniques. Available online at http://

modelware.inria.fr/static_pages/slides/ModelTransfo.pdf. (2005)
5. Kleppe A. G., Warmer J., and Bast W.: MDA Explained: The Model Driven Ar-

chitecture: Practice and Promise. Boston (MA, USA): Addison-Wesley Longman
Publishing Co., Inc., 170 p. ISBN:032119442X. (2003)

6. Lin Y amd Gray J: A model transformation approach to automatic model construc-
tion and evolution. In Proceedings of the 20th IEEE/ACM international Confer-
ence on Automated Software Engineering, pp. 448-451. (2005)

7. Markovic S.: Composition of UML Described Refactoring Rules. In OCL and Model
Driven Engineering, UML 2004 Conference Workshop, pp. 45-59. (2004)

8. Mens T., Czarnecki K, and Gorp P. V.: A Taxonomy of Model Transformations.
In Language Engineering for Model-Driven Software Development, ser. Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Dagstuhl (Germany). (2005)

9. Nilson N. J. and Fikes R. E. STRIPS: A new approach to the application of theroem
proving to problem solving. Standford Research Institute, Menlo Park (California)
34 p. (1970).

http://modelware.inria.fr/static_pages/slides/ModelTransfo.pdf
http://modelware.inria.fr/static_pages/slides/ModelTransfo.pdf


Automated Model Transformations Based on STRIPS Planning 11

10. Opdyke W. Refactoring Object-Oriented Frameworks. University of Illinois at
Urbana-Champaign, Champaign, (IL, USA), PhD. thesis, 197 p. (1992)

11. Object Management Group (OMG): OMG Uni�ed Modeling Language (OMG
UML), Infrastructure: Version 2.2. 226 p. Available online at www.omg.org. (2009)

12. Sunyé G., Pollet D., Le Traon Y., Jézéquel J-M.: Refactoring UML Models. In
Proceedings of the 4th International Conference on The Uni�ed Modeling Lan-
guage, Modeling Languages, Concepts, and Tools. Springer-Verlag, London (UK),
pp. 134-148. ISBN 3-540-42667-1. (2001)

13. Zhang J., Lin Y., and Gray, J.: Generic and Domain-Speci�c Model Refactoring
using a Model Transformation Engine. In Volume II of Research and Practice in
Software Engineering, pp. 199-218. (2005)

Appendix: Primitive Refactorings as STRIPS Operators

Table 3: Primitive refactorings as STRIPS operators

Primitive

refactoring

STRIPS Operator

Add class c

Declaration addClass (c)
Condition outOfModel (c)
Add-e�ects inModel (c)

(∀x ∈ B ∩ C) attrOutOfClass (x, c)
(∀x ∈ B ∩ F )methOutOfClass (x, c)

Delete-e�ects outOfModel (c)

Add attribute a of
type t into class c

Declaration addAttr (a, t, c)
Condition (∀x) (attrOutOfClass (x, d)

∨¬superClass (x, c) ∨ ¬superClass (c, x)
∨x 6= c)∧
(∀x) (¬hasType (a, x) ∨ (x = t))

Add-e�ects attrInClass (a, c)
Delete-e�ects attrOutOfClass (a, c)

Add method µ to
class c

Declaration addMeth (µ, c)
Condition methOutOfClass (µ, c)∧ (∀x, y, z)

(¬sending (x, y, µ, z) ∨ ¬parent (z, c)
∨ (z 6= c))

Add-e�ects methInClass (µ, c)
Delete-e�ects methOutOfClass (µ, c)

Remove class c

Declaration removeClass (c)
Condition inModel (c)∧ (∀x) (¬parent (c, x))∧

(∀x)¬attrInClass (x, c) ∧
¬methInClass (x, c)

Add-e�ects outOfModel (c)
Delete-e�ects inModel (c)

www.omg.org


12 Old°ich Nouza, Vojt¥ch Merunka, and Miroslav Virius

Primitive

refactoring

STRIPS Operator

Remove
attribute a from
class c

Declaration removeAttr (a, c)
Condition attrInClass (a, c) ∧ (∀x, y, z)

(¬sending (x, y, µ, z) ∨ ¬parent (c, z)
∨ (z 6= c))

Add-e�ects attrOutOfClass (a, c)
Delete-e�ects attrInClass (a, c)

Remove method µ
from class c

Declaration removeMeth (µ, c)
Condition methInClass (µ, c) ∧ (∀x, y, z)

(¬sending (x, y, µ, z) ∨ ¬parent (c, z)
∨ (z 6= c))
∧ (∀x, y) (¬sending (x, y, µ, c) ∨ (y = c))

Add-e�ects methOutOfClass (µ, c)
Delete-e�ects methInClass (µ, c)

Change type t of
attribute a to u

Declaration changeAtrrType (a, t, u)
Condition hasType (a, t)∧super (u, t)
Add-e�ects hasType (a, u)
Delete-e�ects hasType (a, t)

Change type t of
values returned by
method µ to u

Declaration changeMethType (µ, t, u)
Condition hasRetType (µ, t)∧super (u, t)
Add-e�ects hasRetType (µ, u)
Delete-e�ects hasRetType (µ, t)

Change superclass
b of class a to c

Declaration changeSup(a, b, c)
Condition inModel (c)∧

superClass (b, a)∧(¬parent (a, c))∧
∀ (x, u, v, w) ((¬superClass (x, c))∧
(¬superClass (x, b))∨
(¬sending (v, w, u, x))
∧ (¬sending (u, x, v, w)))

Add-e�ects superClass (c, a)
Delete-e�ects superClass (b, a)

Move attribute a
from class c to its
all subclasses
b1, . . . , bn

Declaration attrDown (a, c, (b1, . . . , bn))
Condition attrInClass (a, c) ∧ (∀x)

(x = b1 ∨ . . . ∨ x = bn
∨¬superClass (c, x))
∧ (∀x, y)¬sending (x, y, a, c)

Add-e�ects attrOutOfClass (a, c)
(∀i ∈ n) attrInClass (a, bi)

Delete-e�ects attrInClass (a, c)
(∀i ∈ n) attrOutOfClass (a, bi)

Move attribute a
to class c from all
its subclasses
b1, . . . , bn

Declaration attrUp (a, c, (b1, . . . , bn))
Condition (attrInClass (a, x) ∨ ¬superClass (c, x))

∧ (∀x) ((x 6= b1 ∨ . . . ∨ x 6= bn)
∨¬superClass (c, x))

Add-e�ects attrInClass (a, c)
(∀i ∈ n) attrOutOfClass (a, bi)

Delete-e�ects attrOutOfClass (a, c)
(∀i ∈ n) attrInClass (a, bi)



Automated Model Transformations Based on STRIPS Planning 13

Primitive

refactoring

STRIPS Operator

Copy methodµ
from class c to its
subclass b

Declaration methDown (µ, c, b)
Condition methInClass (µ, c) ∧

methOutOfClass (µ, b)
∧ (superClass (c, b))

Add-e�ects methInClass (µ, b)
Delete-e�ects methOutOfClass (µ, b)

Copy method µ to
class c from its
subclass b

Declaration methUp (µ, c, b)
Condition methOutOfClass (µ, c) ∧

methInClass (µ, b)
∧ (superClass (c, b))

Add-e�ects methInClass (µ, c)
Delete-e�ects methOutOfClass (µ, c)

Add message η
sent to objects of
class d from
method µ of
class c

Declaration addSend (µ, c, η, d)
Condition (¬sending (µ, c, η, d) ∧methInClass (µ, c)

∨ (∃x) ((parent (x, d) ∨ (x = d))∧
(methInClass (η, x))
∨ (attrInClass (η, x))))
∧ (∀x, y) (¬sending (x, y, µ, c)
∧ (c 6= Client))

Add-e�ects sending (µ, c, η, d)
Delete-e�ects ∅

Remove message η
sent to objects of
class d from
method µ of
class c

Declaration removeSend (µ, c, η, d)
Condition sending (µ, c, η, d) ∧ (c 6= Client)

∧ (∀x, y) (¬sending (x, y, µ, c))
Add-e�ects ∅
Delete-e�ects sending (µ, c, η, d)

Split message
sending d C η to
(d C l) C η, where
l is of type e.

Declaration splitSend (µ, c, η, d, l, e)
Condition sending (µ, c, η, d) ∧ attrInClass (l, d)

∧hasType (l, e)
Add-e�ects sending (µ, c, l, d)

sending (µ, c, η, e)
Delete-e�ects sending (µ, c, η, d)

Merge message
sending
(d C l) C η into
d C η, where l is of
type e.

Declaration mergeSend (µ, c, η, d, l, e)
Condition sending (µ, c, η, e) ∧ sending (µ, c, l, d)

∧attrInClass (l, d) ∧ hasType (l, e)
Add-e�ects sending (µ, c, η, d)
Delete-e�ects sending (µ, c, l, d)

sending (µ, c, η, e)


	Automated Model Transformations Based on STRIPS Planning
	Oldřich Nouza, Vojtěch Merunka, and Miroslav Virius
	Introduction
	Model Transformations
	Classification of Transformations

	Refactoring
	Complex Refactorings and Primitive Refactorings

	STRIPS Planning
	SBAT Transformation Engine
	Requirements
	Formal Definition of Object Model
	Model as State Space

	Model Transformation Problem
	STRIPS Planning application
	Initial State Formulation
	Formulation of Goal State Condition
	Formulation of Operator Set

	Example
	Problem
	Solution


	Conclusion and Future Work
	References



