Feasibility Study Inputs based on Requirements
Engineering

Robert Pergl

Department of Information Engineering,
Faculty of Economics and Management,
Czech University of Life Sciences,
Prague, Czech Republic
pergl@pef.czu.cz

Abstract. Theoretically, every software project can be successful if it
has unlimited resources and does not care about the profit. Because
this is not true in practice, the feasibility study is an important step in
the software project initial phase. To achieve a valuable analysis, it is
important to identify crucial aspects related to the feasibility. Most of
the aspects come from the software product requirements.

An original method for identifying and documenting inputs to a feasibil-
ity study is presented in this paper. The method takes the requirements
on the software product and provides a structured quantified framework
for analysis of the requirements’ impacts on the project infrastructure
needs. The method formalism is based on the theoretical background of
systems theory and modelling.

Key words: feasibility study, requirements engineering, software engi-
neering, information systems development, managing software projects

1 Introduction

The feasibility study (or the analysis of alternativesﬂ) is used to justify a project.
It compares the various implementation alternatives based on their economic,
technical and operational feasibility [2]. The steps of creating a feasibility study
are [2]:

1. Determine implementation alternatives.

2. Assess the economic feasibility for each alternative. The basic question is
“How well will the software product pay for itself?” This is decided by per-
forming a cost/benefit analysis.

3. Assess the technical feasibility for each alternative. The basic question is “Is
it possible to build the software system?”. The set of feasible technologies is
usually the intersection of the following main aspects:

! In many corners of the software and other system development universes, the term,
“cost/benefit analysis” or CBA, has been supplanted by “analysis of alternative”,
itself a term encompassing not only economic feasibility (and, hence, also the practice
of CBA) but technical and operational feasibility, as well.

J. Barjis, M.M. Narasipuram, G. Rabadi, J. Ralyté, and P. Plebani (Eds.):
CAISE 2010 Workshop EOMAS’10, Hammamet, Tunisia, pp. 121-132, 2010.

pergl@pef.czu.cz

122 R. Pergl

— Requirements on the technology.

Available licences and their costs.

— Abilities of the developers and maintainers to master the technologies.
— Maturity of the technology, its support.
— Technologies to cooperate with / integrate with.

4. Assess the operational feasibility for each alternative. The main question is
“Is it possible to maintain and support this application once it is in produc-
tion?”

5. Choose an alternative.

We will let aside the operational feasibility which is not so tightly related to
the requirements engineering compared to the remaining feasibilities (economic
and technical). The requirements analysis implies many input parameters to the
feasibility study and the feasibility study implies input parameters to the Define
Infrastructure stage [2] (Figure 1J).

Define
Infrastructure

Requirements Feasibility

Study

Analysis

Fig. 1. Data flow from requirements analysis to the Define Infrastructure stage

In an ideal (but a rather rare) case, the project infrastructure fits all the
project needs: the process is fine-tuned, all the necessary technologies are avail-
able and ready and all the team members have all the needed skills and knowl-
edge. However, typically something is missing in this mosaic. For the project to
be successful, a certain adaptation to the implied requirements must take place.
The role of the method presented in this contribution is to help to identify and
quantify such adaptation needs.

The starting point for the method is the demand that the transforma-
tion of the requirements to the feasibility study (further denoted as RFST,
requirements-feasibility study transformation) should have the following at-
tributes:

— structured, so that the logic of the transformation is easy to comprehended,

— recordable, so that the conclusions may be verified and/or used for increasing
the evaluation accuracy in the future,

— traceable, so that the conclusions may be analysed and audited.

Here follows an original method based on the analogy between the software
project and the systems theory and modelling that provides a quantified struc-
tured framework for this transformation.

Feasibility Study Inputs based on Requirements Engineering 123

2 The Method’s Formal Background

The method is based on the analogy between systems theory and software
project. A formal model of a general system consists generally of inputs, outputs,
inner elements and relations [6]. Inputs are divided into endogenous ones, which
are inputs crucial for the system model and exogenous, which are other inputs
that must be taken into account. The analogy between the general system model
and a software engineering project is shown in the

2 Not all the terms in the table are important for the goal of the contribution, however
we find the analogy very inspiring and thus we wanted to present it in its fullness

124 R. Pergl

Systems modelling Software project analogy Set symbol
term
endogenic inputs explicit software product requirements Is

(crucial inputs
interesting for the

modelling)

exogenic inputs external conditions both predictable Ig

(other inputs) and unpredictable (environment)

inputs (union of all external factors and impacts I=IsUlg
endogenic and influencing the project

exogenic inputs)

outputs (0]

— software product and its
parametres,

— technology environment for running
the product,

— documentation and other artefacts,

— trainings

inner elements P

— team (project roles),

— subcontractors,

— tools (both development and
supporting),

— artefacts (code and documentation)

inner relations R;
(relations between — — process,
inner elements) — project management,

— intra-team communication,
— subcontractors communication.

relations from inside information to the customer Rio
to outside

relations from information about the requirements Ror
outside inside changes

relations from inside cooperation requests to customer from Rror

to outside and to the team

inside

relations from team responds to immediate customer Roro

outside to inside and requests for cooperation

outside

relations (union) all relations R = Roro U
Rrior U Ror U
Rio UR;

Table 1: Analogy between the general system model and a software engineering
project

Feasibility Study Inputs based on Requirements Engineering 125

Inner elements may be based on the concrete purpose and goal of the model

— objects,
— classes.

Objects are chosen in the case when it is necessary to model the project sys-
tem in a detailed level of single objects: documents, team roles, etc. In general
methodological models, classes will be usually used. Each element then repre-
sents a whole class, not an individual object: e.g. “programmer” represents all
the programmers; We do not care about structure and dynamics of objects in-
side the class. For the purpose of this paper, we will assume that all the inner
elements are classes.

Now we can speak about software project management from the perspec-
tive of systems modelling. Input-output mappings constitute functional require-
ments. The inputs are given (the customer specifies the requirements). The out-
puts are implied by the inputs. This implication is methodologically not trivial
at all, however we may assume that the outputs are created according to some
best-practices and their characteristics are thus given. Inputs and outputs are
thus out of our management attention here, while the other elements are the
core of software process management:

— inner elements,
— relations between inner elements,
— relations from inside to outside.

Managing the software project thus means managing those elements. It may
be also comfortable to work with groups of those elements:

Definition 1. Project factor is

— An inner element.

— A relation between inner elements,

— A relations from inside to outside,

— Any sub graph of a graph consisting of a set of nodes P and a set of edges
R;URjo.

The set of project factors will be denoted C.

If we suppose, that the goal of the project is to achieve the relation between
the inputs and outputs, then the project management means fine-tuning the
project factors. This happens based on the inputs and represents an adaptation
of the project system according to inputs in such a way, that the project system
achieves its goal in an optimal way, i.e. with minimum resources (time and costs).

Generally, there are two possibilities how to detect an adaptation need:

1. Adaptation ex post, that is based on past. The adaptation driver is discrep-
ancy between outputs and inputs. This type of adaptation is used in the
Adaptive Software Development (ASD) methodology [3].

2. Adaptation ez ante, that is considering the future. This type of adaptation
is performed based on prediction about the needs of structure changes. This
is the type of adaptation that is relevant to the RFST.

126 R. Pergl

3 The Method

3.1 Definitions

The above formal model as a general software project model may be used for
further research by introducing appropriate relations and factors in the system
model. The method for supporting the RFST is based on introducing the relation
representing demands on adaptation for the project system:

Definition 2. Demand dem(a, s) of the input a for the project factor s, where
a €1 and s € C is a mapping I x C onto an ordinal scale (0,10). 0 means, that
the input a does not require the adaptation of the factor s. The higher the value,
the higher the adaptation needs.

As for the relations between the inner elements, substitutability has been
chosen to be included in the method. Demands for adaptation of one factor may
be mitigated by substitution of another factor. An example may be providing
training to team members instead of hiring a new needed expert role (or vice
versa). Substitutability is defined as:

Definition 3. Substitution of project factors s1 and sy sub(si, s2), where
s1,82 € C, is a mapping C x C onto an ordinal scale (0,10). The substitution
represents a possibility of substituting a demand for project factor sy by a substi-
tute sy. In case where substitution is not possible, the function has value 0. The
higher value, the higher substitutability. The value 10 means perfect substitutes.

Individual demands for factor adaptation are added and we get the total
demand:

Definition 4. Difference of the factor s;, where j = 1,...,n is the value of
the function dif(s;), that assigns a non-negative whole number to every project
factor s; € C':

dif(s;) Zdem (@i, s;) (1)

where a; s input, n is the number of project factors and m is the number of
mputs.

A factor may be substituted by substitutes, which is covered by the following
definition:

Definition 5. Total substitution of the project factor s;, where j =
1,...,m is the value of the function csub(s;), that assigns a non-negative whole
number to every project factor s; € C':

n

csub(s;) Z sub(sj, sk), (2)
k=1,k#j

where n is the number of project factors.

Feasibility Study Inputs based on Requirements Engineering 127

The resulting demands for factor adaptation may be thus mitigated by inner
substitution relations. We get the resulting difference of the factor:

Definition 6. Resulting difference of the project factor b; is the function
vdif(b;) = max(0,dif(b;) — csub(b;)) (3)

The resulting difference represents overall clean demands for factor adap-
tation. Factors with highest values are the most crucial topics for the RFST,
however also high differences mitigated by high substitutions will result in an
action (ensuring the substitution works).

3.2 Inputs and Factors Selection

The next step in the method construction is to select appropriate inputs and
project factors. The sets I and C are naturally very large. For practical applica-
tions it is necessary to specify a subset of the inputs Iy C I and a subset of the
project factors Cy C C'. Ideal attributes of those sets should be:

— completeness,
— independence,
— minimalism.

In practice, it is very hard to achieve perfection in all those parameters and we
make a balance between completeness and model comprehensibility and man-
ageability, for the time complexity of processing all demands according to the
definition is 6(| 2] X |Cs|).

During the method development, 32 inputs and 57 factors were included
in the method. Software product quality characteristics and subcharacteristics
according to ISO/TIEC 9126-1 [B] and additional aspects were selected as the
inputs. The factors were divided into the following categoriesﬂ

— human resources (the team),

— the management process,

— the artefacts,

— software and hardware tools,

— communication and collaboration.

3.3 The Evaluation

The process of evaluating the inputs for RFST using the method is as follows:

1. Requirements gathering. Requirements gathering by ordinary methods (in-
terviews, questionnaires, etc.) [4].

2. Structuring requirements. Informal requirements are transformed to the
method’s inputs.

3 The list and description of the inputs and the factors is out of scope of this paper.
Please contact the author of the contribution if interested.

128 R. Pergl

3. Requirements analysis. This step means identification and quantification of
demand functions. For all the pairs of inputs and factors, we analyse whether
the input implies some sort of adaptation of the project infrastructure. For
factors that are not present in the project infrastructure yet, the adaptation
means the adoption of this factor. The demand value then represents the
complexity of the factor implementation.

4. Difference function evaluation according to the [Equation 1}

5. Substitution functions and total substitutions evaluation. For the factors with
high differences, the high adaptation demand may be mitigated by iden-
tifying some substitution relations. Substitutions for each factor are then
summed according to the

6. Resulting differences evaluation according to the

7. Results interpretation. Non-zero resulting differences represents overall clean
demands for factor adaptation and are thus a topic for the RFST. Generally,
the higher the value, the higher the overall adaptation needs. Factors with
highest values are the most crucial topics for the RFST, however also high
differences mitigated by high substitutions need attention (ensuring the sub-
stitution takes place). For a further discussion about results interpretation
see the next section.

3.4 Results Interpretation

The quantification of the demand and substitution values is performed based on
expert estimations of the method’s user. The correctness of the values and thus
the correctness of the results depends on the ability of the user to estimate the
adaptation needs and to assign ordinal numbers to them.

If the method’s user sticks to the recommended ordinal scale (0,10), the
values of the resulting differences lie in the interval (0,10m), where m is the
number of inputs. The upper limit represents the situation when all the inputs
imply the maximum demand.

For each specific input set it is necessary to define certain results interpre-
tation ranges having an adequate message. For example for the set of 32 inputs
the resulting differences are in the range (0,320) and we may decide to define
the following ranges categories:

1. The range (0,50) means “Neglectable adaptation need”.
2. The range (51, 250) means “Necessary to adapt”.
3. The range (251, 320) means “Too high adaptation needs”.

When interpreting the values, it is necessary to keep in mind that the result-
ing difference is a scalar value, while the demands have in nature also various
qualitative characteristics, as well. Those qualitative characters are not expressed
in the calculation. Thus situations may occur, when two demands for adapta-
tion may even neutralise each other. The resulting difference value represents
just a sum of all the demands. Its high value represents the message “this factor
needs an attention” and must be interpreted correctly according to the nature
of demands that contribute to it.

Feasibility Study Inputs based on Requirements Engineering 129

4 A Practical Example

Let us illustrate the whole concept on a small example. Let us imagine that we
need to develop an information system for a cattle farm. The information system
should be used to administrate information about the cattle, the information
about the veterinary inspections and the lactation data.

Let us suppose that we chose the quality characteristics according to ISO /TEC
9126-1 [5] as inputs Iz. The norm defines six characteristics:

— functionality,

— reliability,

— usability,

— efficiency,

— maintainability,
— portability.

As for the project factors Cs, let us suppose, we use the following factors in
several categories:

— team characteristics:

— qualification,

— personal stability,

— personal commitment,
— roles:

— team leader,

— analyst,

— developer,

— tester,

— technical writer,

— subject matter expert.
— process:

— development process flexibility,

— risk management,

— quality assurance.

We gather requirements using suitable methods, structure them, map them
to the inputs and evaluate the demands. For simplicity of the example, let us
assume that we learnt that the information system must be highly reliable and
this makes demands for our team qualification, on the tester role and also makes
the quality assurance process a crucial one. The project is large and complex and
the schedule is tight. It makes demands for the team commitment. Unfortunately,
it looks like the team commitment is not high and needs increasing, fortunately,
the team is at least stable and the personality of the team leader makes him a
team authority. Users request the possibility of remote lactation data gathering.
This will be solved by porting the solution to mobile devices. This portability of
the solution will require more team qualification and will enhance demands for
the tester role and overall quality assurance.

130 R. Pergl

First, we fill in the demands table Only rows and columns with at

least one non-zero demand are shown.

Inputs
= dif(s)
reliability functionality portability
% team qualification 6 2 5 13
g commitment 0 8 0 8
g tester role 3 0 8 11
. quality assurance 8 0 5 13

Table 2: Demands analysis dem(a, s)

Next, we quantify the substitution functions like:
sub(commitment, personal stability) = 2
sub(commitment, team leader role) = 3
By incorporating these substitutions we obtain a table with resulting differ-

ences ((Table 3J).

Total Total Resulting
difference substitution difference
dif(s) csub(s) vdif(s)

% team qualification 13 0 13

g commitment 8 5 3

g tester role 11 0 11

- quality assurance 13 0 13

Table 3: Resulting differences

Now we can interpret the results. The analysis shows us, that the most crucial
areas that will require adaptation is team qualification and quality assurance.
There is a high demand for the tester role. Increased personal commitment will
be required, but it may be partly mitigated by substitutes.

This output provides a structured input into the feasibility study elaboration.
The inputs should be further analysed, the necessary actions formulated and
evaluated from the three feasibility perspectives described in

5 Discussion and Conclusions

The feasibility study is a crucial input to decision about the go/not-go for a
project. In the case of software projects, a quality feasibility study has a great

Feasibility Study Inputs based on Requirements Engineering 131

importance, because the success rate of the software projects is far from 100%
(Standish Group CHAOS reports). One of the input sources for the feasibility
study are the resulting software product requirements.

The presented method provides a way how to quantify the impact of user
requirements and other software project aspects on the project infrastructure.
The demands for infrastructure changes resulting from the requirements repre-
sent required adaptation that should take place for the project to be successful.
The presented method represents one possible approach to this issue and meets
the stated criteria: to be structured, recordable and traceable. It is based on the
analogy between the system modelling and a software project and formalizes the
software project as a system with inputs, outputs and inner structure which is
represented by project factors crucial in the project management.

The presented example should provide the reader with a feeling how the
method works and how it can be used. In this simple example, the conclusions
may be made just with common sense, but in real situations, typically tens of
inputs and factors will be involved and the conclusions will not be that apparent.

The selection of appropriate inputs and project factors sets is an import step
of the method. The balance between the accuracy and the manageable number
of elements should be maintained.

The method does not automate the process, but helps to cope with the
analysis in a structured, manageable way that simplifies discussion, reasoning
and makes decision making process a recordable, traceable action with better
reuse options. The method also inspires the user to think about possible relations
between the requirements and the infrastructure, which serves as a kind of check-
list for not forgetting some important issue.

The economic aspects of the analysis are not covered in the method, however
they should be taken into account during the analysis: e.g. when deciding about
the possible substitutions. Enhancement of the method in this area is one of the
topics of the further development.

The method is now being further developed and tested in practice with the
support of the IZMAN project (see Acknowledgement).

Acknowledgement

The research was supported by the Ministry of Education, Youth and Sports of
the Czech Republic (Grant No. 2C06004 Information and knowledge manage-
ment IZMAN).

References

1. Beck K., Andres C.: Extreme Programming Explained: Embrace Change (2nd Edi-
tion), Addison-Wesley Professional, (1981)

2. Ambler S.W.: Process Patterns: Building Large-Scale Systems Using Object Tech-
nology, Cambridge University Press, (1998)

132 R. Pergl

3. Highsmith III J.A.: Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems, Dorset House Publishing Company, (1999)

4. Hull M.E.C., Jackson K., Dick J.: Requirements Engineering, Springer, (2004)

5. ISO/IEC IS 9126-1 Information Technology - Software product Quality Part 1:
Quality model

6. Skyttner L.: General Systems Theory, World Scientific Publishing Company, (2001)

7. Standish Group International: CHAOS Report 2007, (2007)

	Feasibility Study Inputs based on Requirements Engineering
	Robert Pergl

