
Real-time Web Services Orchestration and

Choreography

Kawtar Benghazi, Manuel Noguera, Carlos Rodŕıguez-Domı́nguez, Ana Belén
Pelegrina, and José Luis Garrido

University of Granada
Department of Languages and Computer Systems

GEDES Research Group
C/ Periodista Daniel Saucedo Aranda S/N. 18071 Granada, Spain

{benghazi,mnoguera,carlosrodriguez,abpelegrina,jgarrido}@ugr.es

Abstract. Real-Time issues are not usually considered when describ-
ing and composing web services. However, modern web services are usu-
ally involved in the software implementation of time-constrained business
processes [1]. The satisfaction of time constraints is crucial in order to
ensure the validity of systems where the response to a certain stimulation
has to take place in a shortened period of time. Thus, the service com-
position problem becomes more complex, since time restrictions should
be taken into account both in the choreography and orchestration pro-
cesses in order to establish the temporal consistency of the web services.
In this paper, we present a formal approach for real-time service orches-
tration and choreography. In this regard, we use UML-RT as a visual
and user-friendly notation in order to model services and their interac-
tions, Timed CSP as an underlying formal grounding to enable services
verification and WS-BPEL as an execution language.

Key words: Timed-web services, web-services composition

1 Introduction

Web services are loosely-coupled modular software applications that interact
with each other through web technologies. In order to enable inter and intra or-
ganizational integration, these web services should be composed to work together
to carry out the integrated business process goals.

The choreography and orchestration are important emerging mechanism that
deal with the problem of web services composition. Choreography is concerned
with the web services interaction coordination, and orchestration is concerned
with the creation of high level web services (called orchestrators) from existing
ones.

Whenever web services are involved in the implementation of time-constrained
business processes [1], their composition becomes very complex, since time re-
strictions should be taken into account both in the choreography and orchestra-
tion processes in order to establish the temporal consistency of the web services.

J. Barjis, M.M. Narasipuram, G. Rabadi, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop EOMAS’10, Hammamet, Tunisia, pp. 142-153, 2010.

To this matter, it is important to introduce the notion of timed web services,
which are services whose behavior and interactions with other services have to
accomplish pre-established time restrictions.

Capturing time restrictions in orchestration and choreography requires the
usage of languages with enough expressive power to represent complex relations
about timely interaction between services. Moreover, it is very important to use
formal methods with a well defined syntax and semantics in order to ensure
the compositionally of timed web services and in order to verify the temporal
properties that they should fulfill. Several authors (e.g., [2]) have advocated
for the usage of process algebra for describing services and for reasoning on
their properties. In this paper, we use Timed CSP [3] for the orchestration and
choreography of timed web services. Timed CSP has several characteristics that
make it suitable in order to describe both the behavior and the interactions of
timed web services:

– It allows the description of temporal constraints.
– It has a well defined denotational and operational semantics [4]. On that basis,
it can be checked whether processes satisfy properties of models by means of
model checker tools (e.g., HORAE [5], FDR [6]) or bisimulation

– Compositionally: the denotation of a process is constructed from denotations
of its parts.

Timed CSP and formal methods have the disadvantage of being tedious to
use. In order to overcome this problem we combine this language with UML no-
tations, specifically with timed sequence diagrams [7] and timed state diagrams
[7]. Thus, both the choreography and the orchestration of timed web services are
carried out in a visual manner and, then, are mapped to Timed CSP processes
by applying a set of transformation rules.

In the field of web services, the Web Service-Business Process Execution
Language (WS-BPEL) is a commonly adopted standard with a rich set of con-
structs to compose services. In this paper, we establish a set of mapping rules
to systematically derive code from Timed CSP processes to WS-BPEL.

Several works in the literature have addressed the composition of web services
[8]. In [9], sequence diagrams are used for the choreography of web services. Also,
the transformation from sequence diagrams to WS-BPEL is given. In [10], UML-
RT is used in order to describe timed web services. Other Works use formal
methods for describing and reasoning on web services. For example, [11] [12]
uses petri nets, [2] and [13] use CCS and [14] uses π-calculus. However, the time
constraints and the temporal consistency between services was not addressed in
any of these approaches.

This paper is organized as follows: Section 2 gives an overview of Timed
CSP language. In Section 3, the timed web services and its constituents are
defined. Both Section 4 and Section 5 describe proposed web services compo-
sition techniques. In Section 6, a mapping from Timed CSP to WS-BPEL is
defined. Finally, brief conclusions drawn from this paper and some ongoing work
is described in Section 7.

Real-time Web Services Orchestration and Choreography 143

2 An Overview of Timed CSP

Timed CSP has been proposed as a specification language in order to model
and to reason on concurrent, parallel systems that must fulfill explicit time con-
straints. Timed CSP in an extension over CSP [15] that introduces the capability
of quantifying temporal aspects of sequencing and synchronization [16]. In this
paper, Timed CSP terms are constructed according to the following grammar:

P ::= Stop | Skip | Wait t | a → P | P ;Q |
P�Q | P

t
⊲ Q | P ‖ Q

These terms has the following intuitive interpretations:

– P is a process.
– Stop is a deadlocked, stable process which will never engage in any external
communication. It is the “broken program”.

– Skip does nothing except to end successfully
√
. This process is equivalent to√ → STOP .

– Wait t does nothing, but it is ready to end after a delay t.
– a → P is a process that is initially prepared to engage in an event a, and then
it behaves as P .

– P ;Q corresponds to the sequential composition of P and Q. It represents
a process that behaves like P until P chooses to terminates and becomes
to behave like Q. The process Q is turned on at the exact moment that P
terminates.

– P�Q corresponds to a process that is willing to behave like either P or Q. The
choice is made by the environment. The decision is taken on the first visible
event (The process is non deterministic only if the first visible event of P and
Q are equal).

– P
t
⊲ Q, is the process that initially gives P the priority of turning on. If no

visible event from P has occurred in t units of time, the process behaves as
Q, and P never turns on.

– P ‖ Q represents a parallel composition of processes P and Q.

A variety of semantic models were defined for the Timed CSP language.
The Timed CSP operational semantic model is given in terms of two relations:

an evolution relation, which describes the situation in which a process becomes
another one by simply allowing time to pass, and a timed transition relation,
which describes when a process becomes another one by performing an action
at a particular time.

The denotational model is used in order to provide formal semantics to Timed
CSP terms. It also allows to specify the required behavior of a process, that is,
its desired properties.

The properties to be satisfied by a system or a process are defined in terms
of timed failures (or timed traces). This definition characterizes some timed fail-
ures (timed traces) as acceptable and some others as non-acceptable. A process

144 K. Benghazi, et al.

complies with its specification only if all its executions are acceptable, that is,
none of its executions violates its specification.

Likewise, if we denote (tr,ℵ) as a timed failure and S(tr,ℵ) as a predicate in
the timed failure, then it is said that P satisfies or complies with S(tr,ℵ) if
S(tr,ℵ) holds for any timed failure (trace) of P .

P sat S(tr,ℵ) ⇔ ∀(s,ℵ) ∈ tfailure(P) : S(tr,ℵ)

The specification of a process in terms of timed traces allows the description
of both safety and liveness properties [17].

3 Real-Time Service Elements

Services are self-contained active entities. Real-time services are services that
must behave under certain time restrictions. Thus, the operation of a real-time
service can only be considered correct if it delivers a valid result in a predefined
time range.

A real-time service is conceptually equal to a capsule in UML-RT. Thus, in
this paper it is used the same visual representation of an UML-RT capsule to
represent real-time services. Figure 1 shows the elements involved in a commu-
nication with services.

S1

<<Interfaces>>

In

inbound request

<<Interfaces>>
Out

outbound requests

Uses

provides

<<Protocol Role>>

In-out

inbound request

outbound requests

P: In-Out

Fig. 1. Service, port, interfaces and protocol role.

A real-time service Si communicates with other services through a set of
interaction ports Pk and according to a pre-established communication protocol.
It is important to mention that ports in our approach are active and therefore
they have an associated behavior.

Each port can be associated to one or two interfaces. This interfaces rep-
resents access points that control the behavior of the whole service. We can
distinguish between two types of interfaces:

Real-time Web Services Orchestration and Choreography 145

– Provided interfaces that describe the set of input requests and represent the
set of public operations provided by the service.

– Required interfaces that describe the set of output requests and represent the
set of public operations required by the service.

The set of input and output requests are encapsulated in protocols and pro-
tocol roles.

Definition 1: Real-time services Real-time services are modular software
applications that interact with each other through interfaces. This definition
coincide of the definition of a process in Timed CSP conceptual framework.
Thus, a real-time service can be represented by a process P in Timed CSP.

A real-time service has an internal and an external timed behavior:

– Internal timed behavior. It describes the behavior of the service that is as-
sociated with the accomplishment of its internal tasks. This behavior can be
represented as a set of timed events that may be observed during the service
execution. These are the timed traces σ = 〈(σ1, t1), (σ2, t2) . . . (σn, tn)〉 with
∀i ∈ 1..n, σi ∈ α(P), α(P) the set of all action of P and ti the time occurrence
of the event σi.

– External timed behavior. It describes the set of interactions between a service
and its environment (i.e., a system composed by other services). Moreover, it
provides a black box that only shows an abstraction over the functionality that
is provided by a service, which will also hide its internal actions. Formally, the
internal behavior σint of a timed-service can be deduced from its internal one
by hiding all its internal actions: σint = σ \ INT , with INT a set of internal
action of a service.

It is possible to distinguish two types of real-time services:

– Primitive services are services that are not able to be divided.
– Composite services or orchestrators are a set of services that are composed of
existing services.

4 Real-time Service Choreography

The choreography is concerned with the interaction between services. This inter-
action is carried out through a set of messages exchanged between the interfaces
or the ports of the services. Due to this message passing nature, undesirable
situations such as deadlocking can be reached if the behavior of the services is
inconsistent. In order to ensure behavior consistency between communicating
services, the communications between their interfaces or ports must be coordi-
nated.

146 K. Benghazi, et al.

Definition 2: Business Protocol The business protocol represents a valid
communication sequence (conversation) and can be specified by a timed sequence
diagram (as it is shown in figure 2) or its corresponding timed traces (by applying
the rules described in [18]) and a set of temporal restrictions. Each trace has the
form 〈(e1, t1), (e2, t2) . . . (en, tn)〉, where each ti represents the instant of time
when the corresponding event ei occurs and, therefore, it establishes a partial
order in the occurrence of events. The set of the temporal restrictions has the
form {ti Op tj [+d]}, being Op a relational operator and d an optional amount
of time.

S1 S2

Port

S1

ex2

ex1

ey1

ey2

t1

t2>t1+5

Port

S2

Protocol Behaviour

Port S1
Behaviour

Port S2

Behaviour

Fig. 2. Services choreography using Timed sequence diagram.

Definition 3: Deadlock free A communication between two services σ1 and
σ2 is deadlock free if the parallel composition of the two services preserves the
execution order of the messages and the temporal constraints specified in a
conversation SD. Formally,

σ1||σ2 |=T SD

As an application example, let us consider a wire transfer order in an on-
line banking system. Once the client has confirmed all data and has ordered to
proceed through his/her web client, the transfer validation web service at the

Real-time Web Services Orchestration and Choreography 147

bank server generates a random key and sends it out to the client’s mobile phone
by invoking another web service of the client’s mobile network operator. It also
randomly selects one position in the matrix of secret codes that every client has
and that each branch office provides to its clients. We call that value the code
card matrix position (CCMP). Then, the transfer validation service requests
the web client for the two codes: the one randomly generated and sent to the
client’s cell phone and the one from the client’s code card. This process has to
be completed in 15 seconds, from the time the proceed order is received until
the time an SMS is delivered to the client’s cell phone. Afterwards, the client
has 150 seconds to provide the requested codes. Otherwise the transfer would
be canceled. The interaction between the transfer validation and the web client
services is described in figure 3.

Transfer

Validation

Web

Client

Proceed_Transfer

Ask_CCMP

Alt Security_Codes

timeout

0<t<150

t>150

Cancellation

Transfer_Receipt

Fig. 3. Timed sequence diagram

5 Bottom-Up Service Orchestration

In our approach, the internal behavior of primitive services is modeled by trans-
forming its timed sequence diagram into a corresponding timed state diagram,
following a set of rules established in [18]. A specification of this behavior in
Timed CSP syntaxis can be derived from a timed state diagram. Figure 4 shows

148 K. Benghazi, et al.

the internal behavior of the web client and the transfer validation services that
were introduced in previous section.

Transfer_Receipt

Proceed_Transfer \ Code_generation;

Code; Ask_CCMP

I[0, 150]. Security_Codes
\ Order_Transfer

timeout\ Cancellation
\ I[0,150].
Security_Codes

Cancellation

\Proceed_Transfer

Transfer Validation Web Client

Fig. 4. Internal behavior of web client and transfer validation services

By deriving timed state diagrams in figure 4 to Timed CSP, it is obtained
the formal specification of the transfer validation service (annotated as TV) and
the formal specification of the client (annotated as WC) 1:

TV = C1?Proceed Transfer → Code Generation → C2!Code → C1!Ask CCMP)

(C1?Security Codes → (C1!Transfer Receipt → SKIP))

150

⊲ (C1!Cancellation → SKIP)

WC = C1!Proceed Transfer → (C1!Security Code → C1?Transfer Receipt →

SKIP)
150

⊲ (C1?Cancellation → SKIP)

The specification of composite services or orchestrators is deduced from the
formal specification of its components (i.e, existing services) following a bottom-
up process, as it is shown in figure 5. These new services can be considered as
black-boxes that interact with the environment through their ports.

Definition 4: Orchestrators The behavior of an orchestrator Σ is defined by
the parallel composition of its lower level timed web services σi, ..., σn, by hiding
all their internal actions. Formally,

Σ =‖i=1..n σi \ INT

For example, the specification of the orchestrator that results from the com-
position of both services TV and WC services is like follows:

Orchestrator = (TV ‖ WC) \ {Code Generation, Code}
1 In Timed CSP, the ? symbol represents “a waiting for requests” operation and the
! symbol represents a “send request” operation.

Real-time Web Services Orchestration and Choreography 149

P

P1 Pn…Pj…

P10 PjlPj0P1k PnmPn0
…… … … …

Composition

Composition
Orchestration

Composition
Orchestration

Composition
Orchestration

Composition
Orchestration

P

P1 Pn…Pj…

P10 PjlPj0P1k PnmPn0
…… … … …

Composition

Composition
Orchestration

Composition
Orchestration

Composition
Orchestration

Composition
Orchestration

Timed CSP

Specification of
primitive services

Timed CSP
Specification of

Orchestrators

Timed CSP

Specification of

Orchestrators

Fig. 5. Bottom-up service orchestration

6 Mapping from Timed CSP to WS-BPEL

In this section we establish the transformation rules between Timed CSP and
WS-BPEL XML format. Table 1 summarizes these rules.

Events to basic activities The main elements of Timed CSP framework are
events. Events represent atomic indivisible actions in the behavior of a process
and, thus, correspond to messages in WS-BPEL. These events may be either
reception or sending actions.

– The reception actions correspond to the basic activity < receive > .. <
/receive >.

– The sending actions may correspond to < reply > .. < /reply > or to <
invoke > .. < /invoke > basic activities, depending on whether the sending
action is an output-response to a previous request or a call to another service
with input parameters, respectively.

Processes to structured activities

– SKIP is a process that indicates a successful termination and can be mapped
to the terminate activity.

– STOP is a deadlock stable process that does not engage in any external
communication. This process models abnormal activity termination and, thus,
it corresponds to terminate activity.

150 K. Benghazi, et al.

< sequence >

< invoke, receive or reply.../ >

activityP

< /sequence >

a ? P

Wait for= “0 ” until=“t”Wait t;

<pick>

<Onmessage…..\>

<OnAlarm…\>

<\pick>

P Q

<flow>

Activity P1

….

Activity Pn

<\flow>

P1 || P2 || …|| Pn

<sequence>

Activity P1

….

Activity Pn

<\sequence>

P1; P2; …; Pn

terminateSTOP

emptySKIP

WS-BPELTimed CSP

< sequence >

< invoke, receive or reply.../ >

activityP

< /sequence >

a ? P

Wait for= “0 ” until=“t”Wait t;

<pick>

<Onmessage…..\>

<OnAlarm…\>

<\pick>

P Q

<flow>

Activity P1

….

Activity Pn

<\flow>

P1 || P2 || …|| Pn

<sequence>

Activity P1

….

Activity Pn

<\sequence>

P1; P2; …; Pn

terminateSTOP

emptySKIP

WS-BPELTimed CSP

Table 1. Mapping from Timed CSP to WS BPEL

– the sequence P1;P2; ..Pn obviously, corresponds to

< sequence >
P1

P2

..
Pn

< /sequence >

– a → P is the process that is initially prepared to engage in an event a and,
then, it behaves like P. This process corresponds to:

< sequence >
< invoke, receive or reply.../ >

activityP
< /sequence >

Real-time Web Services Orchestration and Choreography 151

– P1||P2 corresponds to a parallel execution of the structured activities P1, P2.., Pn,
expressed as < flow > P1, P2, Pn < /flow >.

– Delay wait t corresponds to:

< wait >
< for > t < /for >

< /wait >

– A time-sensitive choice (a → P
t
⊲ Q is a process that initially gives the turning

on priority to the process (a → P). If the event a does not occur in t units
of time, a timeout occurs and the process behaves as Q and P never turns
itself on. This choice corresponds to a “pick” activity with an < onMessage >
activity and an < onAlarm > one.

< pick >
< onMessage > .. < /onMessage >

ActivityP
< onAlarm >< for > n < /for >< /onAlarm >

activityQ
< pick >

7 Conclusions and Future Work

Despite the fact that time in which processes and services have to take place
is capital in system design, there exists few proposals that address the capture
of time constraints when composing services. In this paper we have presented a
set of techniques for the orchestration and choreography of timed web services
that combines UML-RT, Timed CSP and WS-BPEL. This approach enables the
verification of some of the properties of real-time services while using a user
friendly notation.

The techniques presented above will set the grounding for a model based
approach intended to develop time-constrained business processes based on web
services. This approach will be defined as a set of transformations between dif-
ferent models, as in a Model-Driven Engineering (MDE) methodology.

The intended development process can be summarized as follows:

1. CIM level. The business processes are designed using timed activity dia-
grams as presented in previous work [1].

2. PIM level. The specification of services and its composition is carried out by
UML diagrams and its corresponding Timed CSP and WS-BPEL processes.

3. PSM level. An implementation of the models is specified in programming
languages like RT-CORBA, Java-RT, etc..

152 K. Benghazi, et al.

References

1. Benghazi, K., Garrido, J.L., Noguera, M., Hurtado, M.V., Chung, L.: Extending
and formalizing uml 2.0 activity diagrams for the specification of time-constrained
business processes. In: RCIS. (2010)

2. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: ICWS ’04: Proceedings of the IEEE International Con-
ference on Web Services, Washington, DC, USA, IEEE Computer Society (2004)
43

3. Schneider, S.: Concurrent and Real–Time Systems – The CSP Approach. John
Wiley & Sons, Ltd., Chichester, England (2000)

4. Schneider, S.: An operational semantics for timed csp. Inf. Comput. 116(2) (1995)
193–213

5. Hao, P, J.S.D.J.S., Zhang, X.: Reasoning about timed csp models. In: 14th Inter-
national Symposium on Formal Methods (FM’06). (2006)

6. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River, NJ, USA (1997)

7. Benghazi, K.: Medistam-RT: Metodoloǵıa de Diseño y Análisis de Sistemas de
Tiempo-Real. Phd Thesis, University of Granada, Spain (2009)

8. Rauf, I., Iqbal, M.Z.Z., Malik, Z.I.: Uml based modeling of web service composition
- a survey. In: SERA ’08: Proceedings of the 2008 Sixth International Conference
on Software Engineering Research, Management and Applications, Washington,
DC, USA, IEEE Computer Society (2008) 301–307

9. Bauer, B., Müller, J.P.: Mda applied: From sequence diagrams to web service
choreography. In: ICWE. (2004) 132–136

10. Cambronero, M.E., Diaz, G., Pardo, J.J., Valero, V.: Using uml diagrams to model
real-time web services. In: ICIW ’07: Proceedings of the Second International
Conference on Internet and Web Applications and Services, Washington, DC, USA,
IEEE Computer Society (2007) 24

11. Yeung, W.: Csp-based verification for web service orchestration and choreography.
Simulation 83(1) (2007) 65–74

12. Martens, A.: Analyzing web service based business processes. In: FASE. (2005)
19–33

13. Cámara, J., Canal, C., Cubo, J., Vallecillo, A.: Formalizing wsbpel business pro-
cesses using process algebra. Electron. Notes Theor. Comput. Sci. 154(1) (2006)
159–173

14. Puhlmann, F.: Soundness verification of business processes specified in the pi-
calculus. In: OTM Conferences (1). (2007) 6–23

15. Hoare, C.A.R., Hoare, C.A.R.: Communicating sequential processes. Communica-
tions of the ACM 21 (1985) 666–677

16. Dong, J.S., Zhang, X., Sun, J., Hao, P.: Reasoning about timed csp models (2004)
17. Dong, J.S., Hao, P., Sun, J., Zhang, X.: A Reasoning Method for Timed CSP Based

on Constraint Solving. In: Formal Methods and Software Engineering. Springer
Berlin / Heidelberg (November 2006) 342–359

18. Benghazi, K., Tuñón, M.I.C., Holgado, J.A., Mendoza, L.E.: Towards uml-rt be-
havioural consistency. In: ICEIS (3). (2007) 612–615

19. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. Technical report, OMG (2003)

Real-time Web Services Orchestration and Choreography 153

	Real-time Web Services
	Orchestration and Choreography
	Introduction
	An Overview of Timed CSP
	Real-Time Service Elements
	Real-time Service Choreography
	Bottom-Up Service Orchestration
	Mapping from Timed CSP to WS-BPEL
	Events to basic activities
	Processes to structured activities

	Conclusions and Future Work
	References

