

A Framework and Methodology for Enterprise Process

Type Configurations

Peter Bollen

School of Business and Economics

Maastricht University, Tongersestraat 53,

6200MD, Maastricht, the Netherlands

p.bollen@maastrichtuniversity.nl

Abstract. In this paper we will present the results of research into the semantics

of modeling constructs for the process-oriented perspective for the conceptual

modeling of enterprise subject areas. We will distinguish 3 conceptual process

types that will be the building blocks for any enterprise process base. The

definition of these conceptual process types will be anchored in existing

process- and decision making frameworks within the fields of management

information systems and the administrative sciences

Keywords: Conceptual Modeling, Process Modeling, Process Configurations,

 Business Process Modeling

1 Introduction

In [1, 2] we have introduced a number of conceptual process configurations in

organizations. In this paper we will apply the framework, thereby introducing a

modelling methodology for the process-oriented perspective and we will relate our

conceptual framework to earlier decision-making frameworks from the fields of

(management) information systems and administrative sciences. Furthermore, we will

present the meta-model for our process modelling language; the meta-process model

(see figure 1).

 In this paper we will derive the semantic bridges that we need for instantiating the

process modeling constructs (as defined in [1, 2]), in an enterprise subject area under

the restriction that they are „compatible‟ with the models for the data-oriented

perspective in the fact-based approach [3, 4]. In line with the IFIP-CRIS framework

[5] we will assume that an application model for the data-oriented perspective is

available (see figure 1). Subsequently, we can derive a model for the process-oriented

perspective that will use the model in the „data-oriented‟ perspective as a starting

point, thereby constraining the possible „process-oriented‟ models that can exist for

the application area and respecting the borders of the application that are imposed by

the Universe of Discourse (UoD) in the „data-oriented‟ perspective.

 The remainder of this paper is organized as follows: in section 2 the methodology

for instantiating the process modeling constructs in a specific application area will be

given, in section 3 some methodological backgrounds will be provided. In section 4 a

J. Barjis, M.M. Narasipuram, G. Rabadi, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop EOMAS’10, Hammamet, Tunisia, pp. 14-29, 2010.

mailto:p.bollen@maastrichtuniversity.nl

process modelling procedure will be given and in section 5 the meta process model

will be given, finally, in section 6 conclusions will be given.

Enterprise
data
model

Enterprise
Impulse
Base

Enterprise
Process
Base

Enterprise
data
base

 Meta
 model
fact oriented
 approach

 Meta
process
 model

 Meta
behaviour
 model

Fig. 1. Documents in the data-, process- and behaviour-oriented perspectives.

In the (information- and knowledge-) management literature different definitions of

„process‟ can be found. Davenport [6] defines a process as “…a structured, measured

set of activities designed to produce a specified output for a particular customer or

market.”. Hammer and Champy [7] define a process as : “..a collection of activities

that takes one or more kinds of input and creates an output that is of value to the

customer.” Nickols [8] addresses the issues of identification and analysis of business

processes as follows: “..identification and analysis of business processes must be

anchored to something concrete.”

1.1 The Enterprise Process Type Configurations in our Framework

In this article we will „anchor‟ the concept of a conceptual (business) process to the

„tangible‟ result of such a business process in terms of „knowledge‟. In line with

Nickols our position is that processes are not discrete sets of related activities but

rather selected portions of larger streams of activity. In figure 2 we have summarized

the different conceptual process configurations that we have introduced in [1, 2]. We

will provide the definitions of these conceptual process types here.

Definition 1. A derivation process type is a conceptual process type whose process

instances create fact instances by applying the same derivation rule on instances of the

same ingredient fact type(s) (from the enterprise data model).

A Framework and Methodology for Enterprise Process Type Configurations 15

Definition 2. A mixed determination process type is a conceptual process type in

which the fact generator uses instances of the same ingredient fact types (that are

contained in the application‟s data model) for all process instances.

Definition 3. A strict-determination process type is a conceptual process type in

which the fact generator does not use a known derivation rule all the time and the fact

generator does not use instances of the same ingredient fact types (that are contained

in the application‟s data model) in all process instances.

Ft5 Ft7

Ft8

Ft4 Ft6

Pt1 Pt2

Pt3

Dr2

Derivation Process
Type

Mixed-determination Process
Type

Strict-determination Process
Type

Fig. 2. Conceptual process configuration types (in[1]).

2 Typology of Process Types in Management Information Systems

 and Knowledge Management

2.1 The Gorry and Scott-Morton Framework

In the field of management information systems, Gorry and Scott-Morton [9] have

introduced a typology for managerial decision making. In their framework,

managerial decisions can considered to be structured, semi-structured or

unstructured. This framework was based on the work of Simon who made a

distinction into „programmed‟ and „non-programmed‟ decisions [10]: “ The basis for

these differences is that in the unstructured case the human decision maker must

provide judgement and evaluation as well as insight into problem definition. In a very

structured situation, much if not all of the decision-making process can be

automated.” [9]. Although Gorry and Scott-Morton, refer to managerial decision

making in a broad sense, we will interpret their framework in the context of active

users that create fact instances as „materilization‟ of a decision making process.

16 P. Bollen

Definition 4. A conceptual process type is structured if ingredient fact types are

known to exist (within or outside the enterprise data model) AND if a derivation rule

for the process type is known to exist (either accessible or not accessible by the active

users within the SoI).

Definition 5. A conceptual process type is semi-structured if ingredient fact types are

known to exist (within or outside the enterprise data model).

Definition 6. A conceptual process type is unstructured if ingredient fact types are

not known to exist (within or outside the SoI) AND a derivation rule for the process

type is not known to exist (either accessible or not accessible by the active users

within the SoI).

Definitions 4, 5 and 6 are based upon the extent in which ingredient fact types and

derivation rules are known to exist. This means that the fact instances of these

ingredient fact types are recorded within the focal UoD or within at least one different

UoD, and that derivation rules should be potentially accessible by active users within

or outside the focal Sphere of Influence.

2.2 The (revisited) Polanyi Framework

Polanyi classifies knowledge into tacit knowledge and explicit knowledge: “ Tacit

knowledge is personal, context-specific, and therefore hard to formalize and

communicate.” „Explicit‟ or „codified‟ knowledge, on the other hand, refers to

knowledge that is transmittable in formal, systematic language” [11]. In Den Hertog

et al. [12] tacit knowledge is defined as: “ (implicit) knowledge stored in the brains of

human beings rather than material knowledge carriers.” McBriar et al. [13] define

explicit knowledge as: “knowledge that can be represented in words, drawings, plans,

equations or numbers, which can easily be communicated between people”.

 Kim et al. [14] studied the existing distinction into „tacit‟ and „explicit‟ knowledge

in the literature and concluded that a revised epistemology was necessary in order to

make a distinction into the concept of „tacit‟ knowledge as defined by Polanyi [11]

(in which tacit knowledge cannot be expressed externally) and the concept of „tacit‟

knowledge as defined by Nonaka [15] (in which tacit knowledge is defined as

knowledge that is (currently) not expressed externally). They revised the existing

epistemology by replacing the old concept of „tacit‟ knowledge by the revised

concepts of tacit knowledge and the new concept of implicit knowledge: “tacit

knowledge is knowledge that cannot be expressed externally and implicit knowledge

is knowledge that can be expressed externally when needed, but currently exists

internally” [15] (p.3).

Definition 7. A conceptual process type is explicit if a derivation rule is known to the

user groups within the SoI AND all ingredient fact types are contained in the

enterprise data model.

A Framework and Methodology for Enterprise Process Type Configurations 17

Definition 8. A conceptual process is implicit if a derivation rule is known to exist

outside the SoI but currently is not accessible to the active users of the user group(s)

within the SoI OR
1
 ingredient fact types are known to exist outside the enterprise data

model but currently are not contained in the enterprise data model.

Definition 9. A conceptual process type is tacit if a derivation rule does not exist

outside or within the SoI.

Definitions 7, 8 and 9 are based upon the extent in which ingredient fact types exist

in the enterprise data model and the extent in which the derivation rules are known to

user groups in the SoI.

 The modalities in the different knowledge typologies, however, cannot be matched

1-on-1 because these three different „knowledge typologies‟ are based on different

domain paradigms. Gorry and Scott-Morton take managerial decision making as the

foundation for their classification. Kim et al. take the extent in which knowledge can

be made explicit as a starting point. Our process-typology that we have introduced in

[1] has systems theory as its foundation.

3 The Modeling Methodology for the Process-Oriented Perspective

In order to be able to model the process-oriented features for fact types that are

contained in the application‟s data model but that are created in conceptual process

instances that are executed by active users outside the focal SoI we need to introduce

a fourth conceptual process configuration to our framework from section 1.1: the

enter process type.

Definition 10. An enter process type models the process-oriented characteristics for

those fact instances of fact types that are contained in the enterprise data model but

that are „created‟ in conceptual processes by active users outside the SoI of the

enterprise subject area.

Definition 10 implies that every „potential‟ process type that can not be executed

under the responsibility of one or more user groups within the SoI will be considered

an enter process type when the enterprise process base is created.

 If we consider all possible combinations of ingredient fact types, conceptual process

types and resulting fact types in terms of whether the fact types are contained in the

application‟s data model and/or whether the instances of the conceptual process types

are performed under the responsibility of active users within the application‟s SoI, we

yield 14 possible process types and sphere of influence/UoD combinations. If a

declarative document or user example is within this border, its fact types can be

considered to be part of the enterprise data model. If a conceptual process type lies

within the rectangle it can be considered to be executed under the responsibility of the

1 To be interpreted as an inclusive OR.

18 P. Bollen

user groups within the SoI. If a prescriptive document lies within the rectangle, it

means that the derivation rule on that prescriptive document is accessible to active

users in the enterpise SoI that tells potential user groups how to execute a process

instance.

 The duality that exists regarding declarative versus prescriptive documents can be

explained as follows. If a document is qualified as a prescriptive document it means

that within that part of the enterprise subject area the document must be considered to

specify a course of action. The same document can however, be considered as an

instance of a declarative document in the process base of a different (part of the)

enterprise subject area. In Anthony‟s hierarchy [16] three types of management

control can be distinguished: operational-, tactical (or management)- and strategic

control. Within the UoD and SoI of tactical control a derivation rule might be an

outcome of a fact-generating activity. In this situation the derivation rule is an

instance of a declarative document (for example a lot-sizing decision rule). Such an

instance of a declarative document, however, can be used as a prescriptive document

for operational control in another UoD and SoI when it is a derivation rule in a

prescriptive document (see figure 3).

Ft5

Ft2
Ft3
Ft4

Dr3:
SQRT(2*FT2.<R2>
*FT3.<R4>
/FT4.<R6>)

Lot
Sizing
Rule

Calculate
Order

Quantity
 (arg1:product)

Determine
lot-sizing rule

Instantiation

Tactical Control

Operational Control

Fig. 3. Application data model for the payroll example.

As a running example for the remainder of this paper we will use the ABC payroll

example.

A Framework and Methodology for Enterprise Process Type Configurations 19

Example: The ABC company

The example application is the payroll department of the branch X of the ABC

company. The relationship between this department and the other parts of the

organization are shown in figure 4.

 ABC
headquarters

 Corporate
 contracting

 ABC
Branch X

 ABC
Branch …

 Payroll
Department
 Branch X

 Payroll
Department
 Branch....

Fig. 4. Organization chart ABC company.

The users in the user groups of the payroll department of branch X, „decide‟ how

many hours an employee has worked in a given week by inspecting work-order

documents and taking additional information into account, e.g. traveling time and

information that was obtained in personal contact with the employees. For some

employees no work-order documents exist, and therefore the determination of their

work-hours is entirely based upon facts that are not contained in the current UoD of

the ABC example. The active users in this department furthermore decide upon the

gross salaries for the employees that are directly recruited. Although the criteria that

determine the salary for each employee are known, the facts that are needed for

applying these criteria are not available in the current UoD
2
. The net salary that will

appear on the salary slip for the employees is calculated outside the payroll‟s

enterprise area by a payroll service provider. The gross-to-net calculation rules are

applied by this outside service-agency, and therefore are not accessible by the active

users payroll department of the ABC company. Under some conditions it is possible

2
 This would normally suggest, that we will extend the UoD by those documents that contain

this information. However, in order to be able to illustrate these „border‟ concepts precisely, for

now, we assume that we can take any UoD as a starting point and illustrate how we can derive

an enterpise process base that belongs to such an arbitrary UoD.

20 P. Bollen

that the working hours for contractors must be recorded although these contractors are

not on the company‟s payroll. In addition it is possible that employees are on the

payroll who are hired under the responsibility of a temping-agency. The users in the

user groups of the payroll department of the branch X of the ABC company, are also

responsible for knowing the highest (gross) salary for an employee at any time.

 The fact-based model for the data perspective for this UoD and SoI is given in

figure 5. For a brief explanation of the modelling concepts in fact-based modelling we

refer to the appendix. The SoI consists of the users in the user group of the payroll

department of branch X.

There is a

Person

(person ID)

Salary

(natural number)

earns

...worked...in a week

Number of hours

(natural number)

The highest salary for an employee is..

Person2

Person4

Salary1

Salary3

Salary2
Ft9

....

 gross

 Net

....

Ft7

Ft11

Ft10

Ft8

HoursPerson3

Person1

earns a net

Fig. 5. Fact-based data model for the payroll example.

The content of the fact-based data model in figure 5 can be summarized as follows.

There exists fact types that declare the existence of a person (Ft9), that declare that a

person earns a gross salary (Ft7), that a person has worked a specific number of hours

in a week (Ft8), that there is a highest (gross) salary for an employee (Ft10), and that

a person earns a net salary (Ft11). An overview of the fact-based modeling constructs,

that are used in figure 5 is given in [17].

 We have now discussed all possible situations under which fact instances can be

created. We will now synthesize the modalities under which a conceptual process type

within an indefinite SoI and UoD can be transformed onto a specific conceptual

process type that is defined within the borders of a known application UoD and SoI.

The most important modality is the responsibility under which a process instance is

executed. If this responsibility lies outside the application‟s SoI the process will

always be modeled as an enter process type. We will now consider the modalities

from the frameworks of Gorry and Scott-Morton [9] and Kim et al. [14] to

characterize the proto-process type configurations and how they map onto the actual

A Framework and Methodology for Enterprise Process Type Configurations 21

processs type configurations when the processes are performed under the

responsibility of active users within the SoI.

 From table 1 we see that when a conceptual process is performed under the

responsibility of (a) user group(s), within the SoI and the ingredient fact types are not

known within the enterprise data model or the process type is unstructured this will

always lead to a strict-determination process type in the the typology of this paper. If

a conceptual process type is not explicit but has (an) ingredient fact type(s) that are

contained in the enterprise data model then a process type will always be modeled as

a mixed-determination process configuration. Finally a structured and explicit process

type will always be modeled as a derivation process configuration.

Table. 1. Additional modalities for process configurations performed under responsibility of

 user groups within enterprise SoI.

Gorry-Scott

Moton

Ingredient

fact type(s)

Derivation

rule

Kim

Conceptual process

types in this paper

structured explicit Derivation

structured In enterprise

Data model

Outside SoI implicit mixed-determination

structured Not in entpr

Data model

Within SoI implicit strict-determination

structured Not in entpr

Data model

Outside SoI implicit strict-determination

semi-structured In enterprise

Data model

 tacit mixed-determination

semi-structured Not in entpr

Data model

 tacit strict-determination

unstructured tacit strict-determination

We can conclude from the analysis in this section that the two frameworks that we

have used from the literature (Gorry and Scott-Morton [9] and Kim et al. [14]) are not

sufficient for determining the exact process configuration in case the UoD and SoI are

finite. It turns out that the responsibility of the user who „performs‟ the process

instances of the conceptual process type in combination with the precise knowledge

on the „status‟ of the ingredient fact types, in terms of whether they are contained in

the enterprise data model, determine the resulting process configuration as defined in

this article. The main problem in terms of the applicability of the Gorry and Scott-

Morton and the Kim et al. frameworks lies in the notion of „falsifying‟ the claim that

something does not exist. The framework that we have introduced in this paper,

however, only needs an answer to the question whether ingredient facts can be found

on example documents within the UoD of the enterprise subject area, or whether there

exist active users within the given SoI, that have access to a given derivation rule.

22 P. Bollen

4 A Procedure for Deriving the Process Base of an Enterprise

 Subject Area

The interaction between the UoD (what fact types are relevant for the enterprise

subject area) and the SoI (what active users are contained in the enterprise subject

area) if not properly managed can be a risk resulting in project delays and project cost

overruns in the development life cycle of business information systems. This

phenomenan is known as „scope-creep‟ [18] and is characterized by a human

tendency to widen the SoI over and over again, thereby extending the application‟s

UoD with new examples who in turn lead to an extension of the SoI and so on. To

overcome these problems concepts like Rapid Application Development (RAD) [19]

and timeboxing [20] emerged in the project management of IT development. These

approaches have had a big impact on the project lead times and they enforce

information and business analysts and user management to clearly demarcate the

enterprise subject area (UoD and SoI) in the analysis stage of the project. The

embodying of these demarcation requirements within the process-oriented perspective

enforces business analysts to decide what informational activity belongs to the

environment of the 'system' and what informational activity has to be considered part

of the system that is subject of the analysis. It should be noted that the enter process

types never have a process type argument, because instances of such a conceptual

process type do not have to be instantiated within the SoI under consideration. In

figure 6 the procedure for the determination of process type signature for given UoD

and a known SoI is summarized.

Facts of fact type in Application Data Model
 created in a known procedure

Procedure within sphere
 of influence

Enter
Process
Type

Derivation
Process
Type

Strict
Determination
Process Type

Mixed
Determination
Process Type

yes

yes

yes

no

no

no no yes

Input fact types
 known

Input fact types
 known

Fig. 6. Procedure for the determination of process type signature for given UoD and known SoI

A Framework and Methodology for Enterprise Process Type Configurations 23

We can now easily derive an application process base for a given UoD and SoI by

applying the decision tree from figure 6. We note that different user groups might use

different conceptual process types to create instances of a given fact type. After we

have determined all relevant conceptual process types within the sphere of influence

we in principle have atomic process type that subsequently can be grouped within a

user group to form compound process types.

Definition 11. A process base for a given UoD, user group and SoI contains all

conceptual process types and enter process types that exist within the SoI for the fact

types in the information grammar of that UoD and user group.

In figure 7 we have given the complete process base for the salary example in a

graphical format. We note that for each fact type from the models in the data-

perspective at least one process configuration must be contained in the application‟s

process base. To determine to what process type a process instance belongs, that

creates an instance of a fact type (that can be created in 2 or more process types), we

need an enterprise impulse base, that specifies under what conditions a specific

process type will be instantiated to create an instance of such a fact type.

Ft10

Ft9
Ft9

Ft9

Ft9 Ft8

Ft7

Ft9

Ft11

Ft8

Ft7

Ft7

 P1
derive highest

salary

 ENTER ENTER

P2
Derive net salary

(arg1: person)

P5
Determine work

hours
(arg1: person)

P3
 Determine

salary
(arg1: person)

P4
 Enroll NUON

contractor
(arg1: person)

P6
 Enroll

contractor
(arg1: person)

Dr3:
Ft10.<salary2>:=

 MAX(EXT
({Ft7.<salary1>}))

Fig. 7.„As-is‟ application process base for salary example.

24 P. Bollen

5 The Meta-Process Model

In this section we will give the meta model for the process-oriented perspective. The

meta model for the process-oriented perspective or meta process model (see figure 1)

is a specific application model for the data perspective that is based upon the UoD of

a process analyst. The meta process model determines the possible contents of any

process base. So a process base of any application UoD and SoI must be an instance

of the meta process model. In figure 8 we have given the meta process model

expressed as a UML class diagram [21].

 Process
Signature

 Conceptual
process type

Determination
process type

 Enter

 Derivation
 process type

 Process type
 argument

 Postcondition

 Derivation rule

 Precondition

 Strict-
determination
 process type

 Mixed-
determination
 process type

1..*
1..*

*

1..*

1..*

1..*

1.. *

1.. *

1.. *

1.. *

Belongs to
Intension

Creates instance(s) of :
 Fact Type
where :

Instance(s) exists of :
 Fact Type
where :

Derivation rule code; {P}
Rule specification

{Disjoint}

{Disjoint}

{Disjoint}

Process code {P}
Process name

Resulting fact
type(s) [1..*]:
Fact Type

Position:argument
 code

Position:

Position:

Position:

Fig. 8. Meta process model expressed as UML class diagram.

A Framework and Methodology for Enterprise Process Type Configurations 25

The root of the object-class hierarchy is the abstract object class process signature.

The root class process signature has two subclasses namely the classes conceptual

process type and the enter configuration. Every instance of the conceptual process

type class has a post-condition. The object class conceptual process type, furthermore,

has two subclasses: derivation process type and determination process types. The

latter subclass is an abstract sub-class which has two leaf-classes; strict-determination

process type and mixed-determination process type. The meta process model is linked

to the meta model for the fact-based approach (for an example see [4]) via the

(implicit) object class fact type.

6 Conclusion

The definition of three different conceptual process types in combination with the

process border-concept of Sphere of Influence (SoI) has resulted in the existence of 3

conceptual process configurations (plus the enter configuration) for a given enterprise

subject area with a known UoD and a known SoI. We have shown in this paper that

the process configurations are not only determined by the level of „structuredness‟ and

„tacitness‟ in a general sense, but in many instances they are determined by the

borders in the data- and process perspectives, respectively. The ability to model

conceptual knowledge processes that have a „tacit‟ nature and the extent in which the

„codifiable‟ properties of these tacit knowledge processes can be modeled makes the

constructs in the meta process model in this paper applicable in the field of

Knowledge Management. The modeling constructs in the framework for the process

base in this paper turn out to be applicable in every enterprise subject area, whereas

the earlier frameworks of Gorry and Scott-Morton and Kim et al. are hard to apply in

real-life situations because they do not have „finite‟ border constructs for the

enterprise subject areas at hand.

References

1. Bollen, P. A Conceptual Modeling Language for the Adequate Design of Business

Processes. in BPMDS '07 2007. Trontheim, Norway.

2. Bollen, P., Conceptual process configurations in enterprise knowledge management

systems, in Applied computing 2006. 2006, ACM: Dijon, France.

3. Halpin, T. and T. Morgan, Information Modeling and Relational Databases; from

conceptual analysis to logical design 2nd ed. 2008, San-Francisco, California:

Morgan-Kaufman.

4. Nijssen, G. and T. Halpin, Conceptual schema and relational database design: A

fact based approach. 1989, Englewood Cliffs: Prentice-Hall.

5. Olle, T.W., et al., Information Systems Methodologies- A Framework for

Understanding. 1988: North-Holland, Amsterdam.

6. Davenport, T., Process innovation: reengineering work through information

technology. 1993, Cambridge: Harvard Business Press.

7. Hammer, M. and J. Champy, Reengineering the corporation: a manifesto for business

revolution. 1993, Harper Collins: New York.

26 P. Bollen

8. Nickols, F., The difficult process of identifying processes. Knowledge and process

management, 1998. 5: p. 14-19.

9. Gorry, G. and M. Scott Morton, A framework for management information systems.

Sloan Management Review, 1971(fall).

10. Simon, H., The new science of management decision making. 1960: Harper &

Brothers publishers.

11. Polanyi, M., The tacit dimension. 1966, London: Routledge & Kegan Paul ltd. .

12. Hertog, F.d. and E. Huizenga, The Knowledge Enterprise: implementation of

intelligent business strategies. 2000: Imperial College Press.

13. McBriar, I., et al., Risk, gap and strength: key concepts in knowledge management. .

Knowledge-Based Systems 2003. 16: p. 29-36.

14. Kim, T.-G., S.-H. Yu, and J.-W. Lee, Knowledge strategy planning: methodology and

case. . Expert Systems with Applications, 2003. 24(3): p. 295 - 307.

15. Nonaka, I., A dynamic theory of organizational knowledge creation. . Organization

Science, 1994. 5(1): p. 14-37.

16. Anthony, R., Planning and control systems: A framework for analysis. 1965: Harvard

University Press

17. Halpin, T., Information Modeling and Relational Databases; from conceptual

analysis to logical design. 2001, San Francisco, California: Morgan Kaufmann.

18. Verner, J., S. Overmyer, and K. McCain, In the 25 years since The Mythical Man-

Month what have we learned about project management ?. . Information and

Software Technology 1999. 41: p. 1021-1026.

19. Beynon-Davies, P. and M. Williams, The diffusion of information systems

development methods. . The journal of strategic information systems, 2003. 12: p. 25-

46.

20. Jalote, P., et al., Timeboxing: a process model for iterative software development.

Journal of Systems and Software, 2004. 70: p. 117-227.

21. Booch, G., J. Rumbauch, and I. Jacobson, Unified Modeling Language User Guide.

2nd ed. The Addison-Wesley Object Technology Series). 2005: Addison-Wesley

Professional. 496.

Appendix: Fact-Based Modeling concepts

Fact-Based Modeling (FBM) is a methodology for modeling information systems on

the conceptual level. It is named after its main constituents: objects that play roles in

relationships. The „role-based‟ FBM notation makes it easy to define static constraints

on the data structure and it enables the modeler to populate FBM schemas with

example sentence instances for constraint validation purposes. In FBM (and other fact

oriented approaches) the fact construct is used for encoding all semantic connections

between entities. Figure 9 summarizes the symbols in the FBM modeling language

that we will use in this paper.

A Framework and Methodology for Enterprise Process Type Configurations 27

"has"

B bnr
B

(bnr)
B !

...x....y...

B

x /y

B

{ 'b1, b2' }

P

x /y

(A) (B) (C) (D) (E)

 (F) (G)

A

Fig. 9.: Main symbols in Fact-Based Modeling (FBM).

Atomic entities (figure 9A) or data values (figure 9B) are modeled in ORM as simple

(hyphenated) circles. Instances of an entity type furthermore can exist independently

(e.g. they are not enforced to participate in any relationship), which is shown by

adding an exclamation point after the entity type‟s name (figure 9D). Simple

reference schemes in ORM are abbreviated by putting the value type or label type in

parenthesis beneath the name of the entity type (figure 9C). Semantic connections

between entities are depicted as combinations of boxes (figure 9E) and are called facts

or fact types in ORM. Each box represents a role and must be connected to either an

entity type, a value type or a nested object type (see figure 9F). A fact type can consist

of one or more roles. The number of roles in a fact type is called the fact type arity.

The semantics of the fact type are put in the fact predicate (this is the text string

…x…y… in figure 9E). A nested object type (see figure 9G) is a non-atomic entity

type that is connected to a fact type that specifies what the constituting entity types

and/or values types are for the nested object type.

 Figures 9H through 9L illustrate the diagramming conventions for a number of

static population constraint(s) (types) in ORM. A double-arrowed line (figure 9H) that

covers one or more „boxes‟ of a fact type is the symbol for an internal uniqueness

constraint. The symbol in figure 9K stands for an external uniqueness constraint. A(n)

uniqueness constraint restricts the number of identical instances of a role combination

„under‟ the uniqueness constraint to one. A mandatory role constraint (figure 9I) can

be added to a role. It specifies that each possible instance of such an object type must

play that designated role at all times. A disjunctive mandatory role constraint (figure

9J) is defined on two or more roles and specifies that each possible instance of the

28 P. Bollen

object type connected to these roles must at least play one of these roles at any time.

A subset constraint in figure 9K is sometimes depicted as an arrow: ----> between

roles or role-combinations. It enforces that the population of the „source‟ role at all

times must be a subset of the population of the „target‟ role. An in-depth treatment of

Fact-Based Modeling can be found in [17].

A Framework and Methodology for Enterprise Process Type Configurations 29

