
Domain Engineering: What is it? 

 
Arne Sølvberg 

 
Department of Computer and Information Science 

NTNU – The Norwegian University of Science and Technology 
7491 Trondheim, Norway 
arne.solvberg@idi.ntnu.no 

 
 

Abstract The term domain engineering has different meanings. In software 
engineering it is used for describing the software relevant features of the domain for 
which software is developed. In general the term denotes the act of creating the 
domain itself, including its artifacts. The paper argues that the use of the term in 
software engineering is not a happy choice and contributes to the terminological 
confusion often observed when disciplines meet in multi-disciplinary projects.  

   Keywords: information systems engineering, domain engineering 

1   Introduction 

When computers first came around, it made sense to distinguish between a domain 
and its computer applications. Around 40-50 years the so-called “Scandinavian 
School” of Information Systems made clear distinctions between the “total system”, 
the “information system”, and the “data system”, the latter consisted of computer 
hardware and software.  

These were pristine times, and it was simple to make such a distinction. An 
example of a “total system” could be a bank, with its vaults for the coins and bills, the 
“information system” would be the people and machines that exchange messages. A 
major task of the information system was to make sense of the numbers and texts that 
reflected the operation of the bank. The “data system” was the computers, the 
software and the data which could be stored and processed according to 
predetermined rules. It was a comparatively simple world.  

As the years have gone by, and computers are everywhere, this simple distinction 
is no longer straightforward. 

2 Domain layer and application layer, is this an appropriate 
distinction? 

The call-for-papers explains the relationship between software and non-software as 
follows:  

I. Reinhartz-Berger, A. Sturm, Y. Wand, J. Bettin, T. Clark, S. Cohen, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop DE@CAiSE’10, Hammamet, Tunisia, pp. 1-5, 2010.



Domain engineering deals with two main layers: the domain layer, which deals 
with the representation of domain elements, and the application layer, which deals 
with software applications and information systems artifacts. In other words, 
programs, applications, or systems are included in the application layer, whereas 
their common and variable characteristics, as can be described, for example, by 
patterns, ontology, or emerging standards, are generalized and presented in the 
domain layer.  

I find this distinction to be somewhat disturbing and potentially misleading. Man-
made systems are always composed of parts. Most parts in our technical world 
increasingly consist of interrelated software and non-software. Take for example an 
automobile. The brakes consist of mechanical components and of process control 
software. So do other parts, like the fuel injection system, the power transmission 
system and many more. A car is an assembly of parts where many of them have very 
clear autonomous features. The various parts are made to interact through a 
combination of software and mechanical connections. How can one distinguish 
between a domain layer and an application layer for the car, when every component 
of the car is a system of both mechanical parts and software parts?  

Approximately 50 % of the production cost of a modern automobile reflects the 
cost of electronics and software. So what is the domain and what is the (software) 
application? Does this distinction make sense?  

The term domain engineering is used in contemporary software engineering. One 
example of a definition is “Domain Engineering is seen as a process for creating a 
family of programs so that programs in the family can be created efficiently” [3]. So 
domain engineering is seen as a technique for creating components with a wider 
applicability than the components would have when engineering makes one-of-a-kind 
solutions. The use of the term is seen more clearly in [4], where domain engineering is 
used in the meaning of reflecting software relevant features of a domain for the 
purpose of building software to be reusable for a wider market. 

The use of the term domain engineering in this context is a typical example of 
picking a general term and applying it in a restricted setting. Such practices change 
the meaning of terms and lead to confusion and difficulties when communicating over 
discipline borders. A somewhat wider definition is given by [5], but the restriction to 
the software perspective is evident also here. 

3  “Domain engineering" - old wine in new bottles? 

Domain engineering has always been there, as long as people have built artifacts to 
satisfy human wishes and desires. The design of a road is domain engineering, as is 
the design of a business organization. The term “domain engineering” in the current 
context comes out of information technology and software engineering. The question 
is whether domain engineering in this restricted context means the same as domain 
engineering in the wider context. I propose that this is not the case and that this 
discrepancy leads to confusion. 

If domain engineering means the engineering of a domain this is the same as the 
engineering of the total system of which the information system and the associated 

2    Arne Sølvberg



software are parts. This is very different from using the term domain engineering for 
describing the external properties of some part of the domain for the purpose of 
designing re-usable software solutions for this part of the domain.  

An information system is usually seen as giving support to some other system, by 
keeping track of its state-of-affairs, by supporting the exchange of information 
between the other system and its environment, and by providing information needed 
for changing the behavior of the other system, either through direct intervention or 
through making information available for other change agents [1]. In general, “the 
other system” is known by many different names, e.g., the user system, the user 
domain, the Universe of Discourse (UoD), the real world, the business system.  

The term domain engineering when used in this context implies that the software 
based information system and its domain should be seen as two different entities? But 
it is increasingly difficult to separate these two parts of “the total system” through all 
system layers, and collect the software parts in one bundle and the non-software parts 
in another. So, can domain engineering exist on its own, and be separated from 
information system engineering?  

4 Traditional approaches to information systems engineering in 
organizations 

Implicit to the traditional approaches to information systems engineering is that 
there is a primary system, the domain system, which is to be served by a secondary 
information system. Most of the practice of information systems engineering is done 
in the domain of administrative organizations, e.g., bank, insurance, public services. 
The information systems have been so central to the design of the administrative 
routines that it has been difficult to distinguish between the two.  

The information services are to be determined by the needs of the primary system. 
So, the first step in designing an information system is to do a requirement analysis. 
The next step is to find out whether the requirements can be satisfied. This is done by 
developing concrete solution proposals, and evaluating those relative to the 
requirements. Traditional approaches recognize that solution proposals and 
requirements must be co-developed. The solution proposals will give rise to 
modifications in the requirements, and to modifications of the features of the primary 
system. So, domain engineering is implicit in the traditional approach to information 
systems engineering. 

Traditional approaches to total systems realization are based on  
• application platforms 
• software- and process libraries 
• application languages 

These have been with us in different shapes and quality since we started to use 
computers.  

The ERP's are among the most successful application platforms. Almost all 
sizable companies depend on an ERP. Process libraries are among the most important 
tools for consultancy companies who mostly make their profit by re-using solutions 
for every new customer. Software libraries have been with us from the start and 

Domain Engineering: What is it?    3



provide for the reuse of software. Application specific languages have enjoyed less 
success. 

Characteristic for all these approaches are that the tools that they apply reflect 
knowledge about the domain, that the tools limit the functional and structural 
properties of the “total system” through their own limitations to treat data, and 
therefore lead to a design process where the limited functional properties of the 
information processing software platforms, - libraries, and languages, provide a 
limited solution space for the design of “the total system”.   
 
 
5   Domain modeling in multidiscipline oriented approaches 
 
Computer science is probably one of the few disciplines that cannot render useful 
results unless being related to another discipline. In many cases of traditional 
information systems engineering the computer part is large compared to the rest of the 
application system, and the modelling discipline of computer science dominates. For 
other situations there is more of a balance between the importance of domain 
disciplines and the IT discipline. Relevant domains are everywhere, in the material 
world, the biological world, and the worlds of organised and creative humans.  

In practical system development cross-competence cooperative activities relate the 
IT core technologies to the application areas. Different modelling cultures meet, and 
sometimes they clash. We need to better clarify the relationship between the IT as a 
modelling discipline, and the modelling disciplines of the domains where IT is 
applied.  We need a better framework for thinking about cross-competence systems 
design.  

 
 
6 Conclusion: On the need and possibility of model integration 
 
Computers are increasingly found everywhere, in almost every artifact, in the 
background of almost every organized human activity. This will have to result in a 
change in approach, from viewing the role of IT to mainly support “the other system”, 
to become an integral part of “the other system”. We should search for ways to avoid 
treating the domain discipline separate from the information system discipline, 
towards the integration of IT concepts, tools and theory into the modeling theories of 
the supported (domain) disciplines. If we manage this the two layers of domain 
engineering and application engineering may merge. 

Fortunately the basic modeling concepts of the “domain sciences” and of 
information technology overlap. Information systems are concerned with data that 
represent facts in a Universe of Discourse. A fact is what is known -or assumed - to 
belong to reality. In science and technology one usually distinguishes the following 
kinds of facts: state, event, process, phenomenon, and concrete system e.g., a 
magnetic field [2]. We see that the basic modeling ontology is the same in the 
sciences as for IT. This gives some reason for optimism. 

Because information technology provides component solutions to almost every 
other discipline we experience increasing fragmentation pressures on the discipline of 
IT itself. Every domain where IT is used seems to contain seeds for creating their own 

4    Arne Sølvberg



kind of discipline where IT is integrated with the domain specific knowledge. We 
often see labeling like, e.g., medical informatics, organizational informatics, and 
industrial informatics. And we sometimes see that common IT knowledge is 
reinvented in new application settings. Harmonization of domain modeling ontology 
with IT modeling ontology may be one approach to better sharing of IT knowledge 
among the various disciplines thus avoiding massive “wheel-re-invention”.  

References 

1. Boman, M.; Bubenko, J.A. jr.; Johannesson, P.; Wangler, B.: Conceptual 
Modelling. Prentice Hall, 1997,269 p.  

2. Bunge, M: The Philosophy of Science, Transaction Publishers, 1998, ISBNN 
0-7658-0415-8 

3. http://craigc.com/cs/de.html Accessed 23 April 2010 
4. http://www.domain-specific.com/ Accessed 23 April 2010 
5. http://burks.brighton.ac.uk/burks/foldoc/76/33.htm Accessed 23 April 2010 

 

Domain Engineering: What is it?    5


