
Bridging Programming Productivity, Expressiveness, and
Applicability: a Domain Engineering Approach

Oded Kramer and Arnon Sturm
Department of Information Systems Engineering, Ben-Gurion University of the Negev

Beer-Sheva, Israel
odedkr@bgu.ac.il, sturm@bgu.ac.il

Abstract. Productivity is the ability to create a quality software product in a
limited period with limited resources. The software engineering community
advocates that the future of productivity lies in the field of domain engineering.
However, existing domain engineering approaches suffer from the tension
between productivity and applicability. In this paper we propose an approach
that reduces this tension by adopting a domain engineering method called
Application-based DOmain Modeling (ADOM) as an infrastructure for a new
programming approach. The adopted ADOM is applied on Java as its
underlying language. This approach will offer guidance and validation for
application developers as mechanisms for improving their productivity. This is
done by keeping the regular Java development environment and thus
maintaining the developer's expressiveness and not compromising the overall
applicability of the approach.

Keywords: Domain engineering, software productivity,

1 Introduction

Today’s software development is a complex process involving a set of activities that
require orchestration. One of the most resource consuming activities is programming.
In order to better utilize the programming activity we should seek for ways to increase
its productivity. Productivity according to [13] is “the ability to create a quality
software product within a limited period with limited resources”. The productivity of
a programmer is affected by many factors. Jones [8] presented several of these: the
design for reusability, experience, bugs or errors, management, creeping
requirements, code structure and complexity, application size, supportive tools, and
programming languages.

Many efforts have been made in order to increase the programmers’ productivity
from the technical point of view. These efforts are focused on providing techniques
for increasing the code reusability, thus saving programming time. These techniques
include generic programming which enables reuse by parameterizations, design
patterns which provide solutions for specific situations, meta programming which
enables programming at various levels of abstraction, as well as utilizing reflection

I. Reinhartz-Berger, A. Sturm, Y. Wand, J. Bettin, T. Clark, S. Cohen, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop DE@CAiSE’10, Hammamet, Tunisia, pp. 47-60, 2010.

mechanisms, and frameworks which provide partial design and implementations but
are difficult to compose [3]. However, most of these efforts are related to general
purpose reuse techniques, thus they do not exploit the commonalities among similar
applications of a given domain.

Nowadays, the software engineering community advocates that the future of
productivity lies in the field of domain engineering [3, 4, 11, 19]. According to
Haarsu [7], domain engineering is a systematic process to provide common core
architecture for similar applications. Its purpose is to provide reuse capabilities among
these applications.

Indeed significant productivity achievements have already been reported [11, 12],
but the quest for better software development solutions is far from over. We claim
that one of the reasons for this is the inherent tension between productivity and
applicability that current domain engineering approaches suffer from. Solutions that
offer potentially promising productivity results tend to be expensive and require
radical changes to the accustomed programming paradigms, thus their applicability is
low.

A key factor that can aid in resolving this tension is expressiveness, which is the
ability of developers to express desired semantics. Expressiveness is highly correlated
with applicability. Solutions that reduce significantly the developer's expressiveness
often require new development tools and processes. These tend to be expensive and
require a learning curve that might seem to managers as risks that should be avoided.
We assert that desired solutions should strive to keep the level of expressiveness as in
general-purpose languages.

In this paper we propose an approach that aims at partially resolving the above
mentioned tension by adopting a domain engineering method called Application-
based DOmain Modeling [16, 17] (ADOM) as an infrastructure for a new
programming approach. This approach offers guidance and validation for application
developers as mechanisms for improving their productivity. The novelty of the
proposed approach lies in using a standard programming language (including it
supporting tools), thus maintaining the developer's expressiveness and increasing the
applicability of the approach.

 The structure of the rest of the paper is as follows. Section 2 discusses related
work concerning DSLs and feature-oriented programming approaches, delving into
the tension between productivity and applicability. Section 3 briefly introduces
ADOM - the underlining framework of the proposed approach, which is presented in
details in Section 4. Finally, Section 5 concludes and refers to future research
directions.

2 Related Work

As domain engineering provides the platform for increasing productivity, in this
section we analyze domain specific languages and feature-oriented approaches in
view of the above mentioned tension.

48 O. Kramer and A. Sturm

2.1. DSLs

Domain Specific Languages (DSLs) are computer languages that are tailored to
specific domains [11, 14]. This reduction to a specific domain allows the elevation of
the language abstraction level. A higher abstraction level is a sought out goal in the
fields of DSLs [6, 9, 11, 14]. It leads to many benefits such as: increased productivity,
improved quality, better maintainability, and reuse of experts’ knowledge. DSLs are
divided into two distinct types: external and internal DSLs.

2.1.1. External DSL

The basic premise of external DSLs is that the underlying principles of a higher
abstraction level and tailoring to specific domain necessitate the development of the
DSL from scratch. Typically, there would be a domain expert whose expertise is on
the semantics of the domain and an expert programmer whose expertise is on
developing complicated and sophisticated software1 working on this process [11]. The
design process includes defining domain concepts and their relationships, semantics,
notations, and constraints. The implementation process includes building a code
generator, an optional domain specific framework, and the DSL's integrated
development environment (IDE) which includes the DSL’s supporting tools.

The main two advantages of external DSLs are the improved productivity;
reports have shown of increase in productivity of 300%-1000% [11] and enhanced
application quality; due to a preliminary check of the model's consistency according
to domain rules. This means that many of the programmers' mistakes can be detected
and thus can be avoided at this early stage of development. The developers specify the
solution on a higher level, which is then transformed automatically to another form of
code. This means that they can avoid dealing with important but complicated issues
such as design principles and architecture, as these are handled by the code generator.

Yet, external DSLs suffer from various limitations. As mentioned, the design and
implementation of external DSLs is by no means simple, it is complicated and time
consuming. Even if the work is done by experts (both domain and programming), and
some supporting tools are available it might not be enough to ensure a successful
working DSL. According to [6] most DSLs are usually abandoned in the development
process and the work is done eventually in regular general purpose languages.
Additionally, to justify economically the investment of the DSL development process
a quota of applications has to be exceeded. While this is true for all domain
engineering techniques it is as harsh as the amount of emphasis that is put on the
domain engineering process [6, 9]. Moreover, introducing the notion of DSL based
development into an organization requires a significant change in the organization's
development paradigm. This change requires both new tools and new processes.
While some managers will be able to see the long terms advantages of DSLs, other
might be reluctant to introduce radical, expensive and time consuming changes to

1 obviously, they could be the same person, however both kinds of expertise are required

Bridging Programming Productivity, Expressiveness, and Applicability 49

their natural development process. All of these indicate that the applicability of
external DSLs is problematic.

Another limitation of external DSLs is the limited expressiveness of the
application developer. Usually, this is considered to be an advantage – limiting the
application developer's expressiveness means guiding him and controlling the quality
of his work, and by that increasing his productivity and the overall quality of the end
products. However, we consider this to be a disadvantage since the application
developer has many constraints. The restrictions imposed on application developers
are achieved by designating the domain to include a set of pre formulated
commonality and variability. In case the application developers wish to express a
newly encountered feature, they have to inform the DSL developers to update the
DSL and wait for the change to be done. This process is time consuming and more
importantly will make the procedure of incorporating new variants into the domain
difficult, ultimately leading to narrow domains. Furthermore, this limitation is directly
linked to the necessity to incorporate new tools and processes which lead to the
problematic applicability of the DSL.

2.1.2. Internal DSLs

Internal DSLs drew their inspiration from the recognized drawbacks of external
DSLs. Their basic premise is that DSLs should not be developed from scratch; rather
they should be embedded on existing proven general purposed programming
languages (GPPLs). In this sense internal DSLs are no different than regular domain
specific application programming interfaces. However, they are different in the sense
that the APIs are designed to have a language like flow to them. This is achieved by
advanced coding techniques such as method chaining, expression builders, interface
chaining, generics, etc. When these techniques are used correctly some domain
semantics could be validated in compile time.

The main advantage of internal DSLs is that they do not suffer from the above
mentioned drawbacks of external DSLs. This is caused by three main reasons: (1) The
development of internal DSLs is much easier with respect to external DSLs, mainly
because the GPPL facilities already exist; (2) Internal DSLs do not necessitate a
radical change in the organization's natural development paradigm as they permit
using the same set of tools (such as a programming languages, IDEs, and compilers);
and (3) Internal DSLs do not limit application developers’ expressiveness as they are
allowed to use the GPPL regularly. These reasons indicate that internal DSLs are
more applicable than external DSLs.

However, internal DSLs introduce the following limitations: (1) Current reports
[6, 9] of internal DSLs focused on code readability and maintainability. Although this
should have positive effects over productivity it is hard to see how sophisticated APIs
raise the level of abstraction similarly to external DSLs; (2) External DSLs achieved
improved code quality through pre code generating validation algorithms and higher
abstraction levels. Although internal DSLs can exploit coding techniques to assure
some domain semantics, they cannot implement validation algorithms that examine
the specified code according to domain constraints. Ultimately, application

50 O. Kramer and A. Sturm

programmers can use the API in any desirable way. Thus, in that sense internal DSLs
are less productive than external DSLs.

2.2. Feature-oriented approaches

Feature oriented approaches rely on features which are system properties that are
relevant to the stakeholders and are used to capture commonalities or discriminate
among systems in a product family [3]. The various approaches consist of a feature
model that contains all features covered by the product family along with their
dependencies and their variability [15]. Each application will be comprised by a
unique subset of the features presented in the feature model. Typically, the feature
model will be expressed using the tree diagram that was firstly introduced by the
Feature-Oriented Domain Analysis (FODA) method [10].

The different feature oriented approaches focus on different levels of abstractions
and on different stages of the development cycle. For example: FODA focuses on the
domain analysis phase, Hyper/UML [15] and the work presented in [5] focus on
feature oriented design by mapping features to other models (e.g., UML models).
Feature Oriented Programming (FOP) [1] and HyperJ [18] focus on mapping features
to code increments.

Many feature-oriented approaches suffer from the tension that was presented in
the previous section. For example, feature modeling can help facilitate DSL design
and DSLs may be used to specify the family members [4]. In that case, the
applicability of the feature-oriented approach is problematic, similarly to that of the
external DSLs. Furthermore, some approaches limit the expressiveness of application
developers to the extent of only selecting appropriate features that are mapped
automatically to code pieces (e.g., FOP and HyperJ [15, 18]). These, as in external
DSLs, also may suffer from extensive domain engineering efforts, radical changes to
the programming paradigm and narrow domains which will presumably lead to poor
applicability.

To overcome the aforementioned limitations with respect to the tension between
productivity and applicability, we utilize a domain engineering approach called
Application-based Domain Modeling (ADOM).

3 The ADOM Approach

The Application-based Domain Modeling (ADOM) is rooted in the domain
engineering discipline [16, 17], which is concerned with building reusable assets on
the one hand, and representing and managing knowledge in specific domains on the
other hand. ADOM supports the representation of reference (domain) models,
construction of enterprise-specific models, and validation of the enterprise-specific
models against the relevant reference models.

The architecture of ADOM is based on three layers: The language layer
comprises metamodels and specifications of the used languages. The domain layer
holds the building elements of the domain and the relations among them. It consists of

Bridging Programming Productivity, Expressiveness, and Applicability 51

specifications of various domains; these specifications capture the knowledge gained
in specific domains in the form of concepts, features, and constraints that express the
commonality and the variability allowed among applications in the domain. The
structure and the behavior of the domain layer are modeled using the language that
was defined in the language layer. The application layer consists of domain-specific
applications, including their structure and behavior. The application layer is specified
using the knowledge and constraints presented in the domain layer and the constructs
specified in the language layer. An application model uses a domain model as a
validation template. All the static and dynamic constraints enforced by the domain
should be applied in any application of that domain. In order to achieve this goal, any
element in the application is classified according to the elements declared in the
domain.

For describing variability and commonality, ADOM uses a multiplicity indicator
that can be associated to all elements, including classes, attributes, methods, and
more. The multiplicity indicators in the domain aim to represent how many times an
element of this type may appear in an application. This indicator has two associated
tagged values - min and max - which define the lowest and the upper most
multiplicity boundaries.

The relations between a generic (domain) element and its specific (application)
counterparts are maintained by a classification mechanism: each one of the elements
that appear in the domain can serve as a classifier of an application element of the
same type (e.g., a class that appears in a domain may serve as a classifier of classes in
an application). The application elements are required to fulfill the structural and
behavioral constraints introduced by their classifiers in the domain. Some optional
generic elements may be omitted and not be included in the application, while some
new specific elements may be inserted in the specific application; these are termed
application-specific elements and are not classified in the application.

ADOM also provides validation mechanism that prevents application developers
from violating domain constraints while (re)using the domain artifacts in the context
of a particular application. This mechanism also handles application-specific elements
that can be added in various places in the application in order to fulfill particular
application requirements.

While ADOM is general and language-independent, a specific language needs to
be selected as a basis for a workable dialect of ADOM. In order to apply ADOM, the
only requirement from the associated language is to have a classification mechanism
that enables categorization of elements.

4 The ADOM-Java Dialect

Since we refer to programming, in this paper we select Java as the language used in
conjunction with ADOM. We will refer to that ADOM dialect as ADOM-Java. In this
case, the required classification mechanism will be fulfilled by Java's annotation
construct due to its meta data qualities. Listing 1 demonstrates the usage of the Java
annotation in both the domain and application layers. In the domain layer the

52 O. Kramer and A. Sturm

multiplicity indicator is used to constrain the domain's applications to have classes
classified as someDomainClass at least A times and no more than B times. This type
of constraints in ADOM is referred to as the multiplicity constraint. In the application
layer the someClassApplication class is classified by the someDomainClass class.

// domain layer code
@multiplicity(min = A, max = B)
public class someDomainClass {
 …
}
// application layer code
@someDomainClass
public class someApplicationClass {
 …
}

Listing 1: The Java annotation classifications

4.1. Structural constraints

Using the multiplicity indicator one can express a great deal of the structural
commonality and variability captured and identified in the domain. For example,
small scale information systems based on three layered architecture may be
considered as a domain.
Applications in that domain use a relational DBMS, the JDBC API to interface with
it, and the Java Swing API for the presentation layer. Applications in that domain may
include a conference management system, a university registration system, and a
laboratory management system.

In Figure 1, the applications of a conference management system and a laboratory
management system are depicted along with their corresponding domain2. In this case
the domain layer consists of five different types of classes GUI, Controller, and
DBmapper, which represent the three classic layers, and SingleStatedObject and,
MultiStatedObject which represent domain elements that have a single state or more,
respectively.

In Listing 2, it is shown that the applications are expected to have exactly one
class classified as a controller. This is indicated by the multiplicity annotation
assigned to the class declaration as noted above. Moreover, it is shown that this class
must have exactly one field classified as db, which is of a type that is classified as a
DBmapper. This is noted by the DBmapper type of db in the domain code. This is
effectively the composition relationship between these two classes that is shown in
Figure 1. If the matching application field will be of any other type it will be a

2 Note that domain models in ADOM-Java are expressed in Java. In Figure 1 we use UML to

visualize the structural outline that was extracted.

Bridging Programming Productivity, Expressiveness, and Applicability 53

Labs system Conference system

Common domain

violation of the code presented above. This type of constraints goes one step further
than the multiplicity constraint as it deals with the syntactic structure of the
application, for this reason it is referred to as the language constraint.

Figure 1: example of two applications and their common domain

The rest of Listing 2 expresses three methods, each of which are expected to appear at
least once in the controller class. All of these methods should be pubic, the last two
should return the boolean primitive type, and the first one should return a type
classified as SingleStatedObject. These constraints are indicated by the methods'
modifiers. Any other setting will be a violation of the language constraint. These
method attributes are stated explicitly, however, those that are stated implicitly will be
constrained by the language constraint as well. Effectively, all of the application
methods classified as one of this three will have to be non-static and non-final,
moreover the field that will be classified as db will have to be private-package.

ADOM-java enables to use other indicators to raise the flexibility of the language
constraint. For example, the addDomObject method which is responsible of adding
new objects to the system and returns the newly added object should be able to return
both the SingleStatedObject and the MultiStatedObject types. This requires a
correction to the code represented in Listing 2 as shown in Listing 3.

The typing indicator expresses this. It should be noted that the indicator overrides
the return type. This was used because there are no multiple return types in Java. It is
important to notice that this is not to say that the respected application method will
return both types, indeed it will return a single type, as accustomed in Java. However,
this type will be either classified as SingleStatedObject or as MultiStatedObject. This
is just one example of additional indicators that raise the flexibility level of the

54 O. Kramer and A. Sturm

language constraint. Others can be used to express that methods can be of a
combination of different access levels, final or non-final, and static or non-static.
Actually ADOM-Java supports all the Cartesian products of the different members'
modifiers.

//domain layer code
@Multiplicity(min = 1, max = 1)
public class Controller {

 @Multiplicity(min = 1, max = 1)
 DBmapper db;

@Multiplicity(min = 1)
 public SingleStatedObject addDomObect(String...
ObjectsData)

@Multiplicity (min = 1)
 public boolean addDomainAssociation ()

@Multiplicity(min = 1)
public boolean changeStatDomObj(MultiStatedObject mso) }

Listing 2: The controller class in the domain layer

//domain layer code
@typing ({" SingleStatedObject ", " MultiStatedObject "})
@Multiplicity(min = 1)
 public singleStatedObject addDomObect(String…
ObjectsData)

Listing 3: the addDomObject method from Listing 2 with the typing indicator

Listings 2 and 3 are neither a complete description of the entire domain model, as
the other 4 classes from Figure 1 are missing, nor a complete description of the entire
controller domain class. The full implementation of this class has more methods and
goes into the methods declarations themselves.
The matching application code regarding its controller class from the labs
management system is presented in Listing 4.

First of all, the AppController class is classified as the Controller class from the
domain; this is noted by the Controller annotation assigned to the class declaration.
Following there is a field declaration which is classified as the db field from Listing 2.
If the AppMapper type will be classified as DBmapper (not shown here) the language
constraint will be fulfilled. Following, there are two methods declarations classified as
addDomObect. Their public, non-final, and non-static modifiers indicate an adherence
to the language constraint in Listing 2. Their return types' classifications are not

Bridging Programming Productivity, Expressiveness, and Applicability 55

shown here as well, however in the full implementations they are of type
SingleStatedObject and MultiStatedObject and therefore correct. These methods are
responsible for adding two (Lab and Program) of the three classes that were presented
in Figure 1 to the labs management system. The number of these methods indicates an
adherence to the multiplicity constraint in Listing 2. Following, there is a method
classified as changeStatDomObj which adheres to both the multiplicity and the
language constraints on Listing 2. Finally, there is the reportMalfuctionWS method,
which is responsible of changing the state of workstation from functional to
malfunction, removing the workstation from its lab and updating the DB if the change
took place, and which has no classification. This method does not match any of the
domain's method types; therefore it can be of any linguistic structure and multiplicity,
and is considered as an application specific extension.

//application layer code
@Controller
Public class AppController {

 @db
 AppMapper appDB;

 @addDomObject
 public Lab addLab()
 @addDomObject
 public Program addProgram()

 @changeStatDomObj
 public boolean fixWS(WorkStation ws)

 public boolean reportMalfucntionWS(WorkStation ws)

Listing 4: The matching application code with respect to Listings 2 and 3

The same goes for all other Java constructs: classes, fields, etc. Obviously, the code
presented in Listing 4 is not a complete description of the application's controller
implementation. Some method declarations were omitted and the bodies of the
methods were not presented due to space limitations. These will be presented and
elaborated in the next section

4.2. Behavioral constraints

In the previous section we presented how the multiplicity and language constraints are
used to impose structural knowledge over the applications. Language constraints by
nature cannot be extended to behavioral knowledge as they refer to syntactic structure
of the Java constructs. However, the notion of multiplicity constraints can be

56 O. Kramer and A. Sturm

introduced to behavioral aspects as well. This will be shown by yet another drill
down, this time to the controller's changeStatDomObj method as appears in Listing 5.

//domain layer code
@Multiplicity(min = 1)
public boolean changeStatDomObj(
@Multiplicity(min = 1, max = 1) MultiStatedObject mso) {

 @Multiplicity(min = 1, max = 1)
 if (dso.changeState()) {
 @Multiplicity(min = 1, max = 1)
 db.updateDomainObject(dso);
 @Multiplicity(min = 1, max = 1)
 return true;
 }
 @Multiplicity(min = 1, max = 1)
 return false;
}

Listing 5: The controller's changeStatDomObj method

First of all, this Listing presents this method's signature as it appeared in Listing 2
with the addition of the multiplicity indicator to the received parameter. This
method’s responsibility is to receive a business logic object, to change its internal
state, update the DB if the transition was successful, and finally to return a Boolean
statement indicating whether the action was successful or not. For this reason, the
matching application methods will have to receive a single parameter classified as
MultiStatedObject.
This is noted by the type of the mso parameter and by its multiplicity. Therefore, this
example illustrates that constraints over methods' parameters can be defined in the
same manner as over classes' fields. Following, inside the body of the method, there
are four execution statements, each with a multiplicity3 indicator constraining the
statement to appear once. This specification constrains any application method
classified as changeStatDomObj to contain each of these four statements exactly in
the order as they appeared in the domain and with the same scoping structure, with
the exception of method calls. Each method call in the domain will be replaced in the
application code by a call to a method that is classified as the called method in the
domain. For example, dso.changeState() method call in Listing 5 is replaced by the
p.accept call in Listing 6. This is correct only because p is of type Paper (as presented
in Figure 1), which is classified as statedObject and accept() is a call to its method

3 Notice that this use of Java annotation is not supported in standard Java and requires an
extension called @Java [2].

Bridging Programming Productivity, Expressiveness, and Applicability 57

that is classified as changeState(). Thus, the code in Listing 6 adheres to behavioral
constraints specified on Listing 5.

//application layer code
@changeStatDomObj
 public boolean acceptPaper(Paper p) {
 if (p.accept()) {
 db.updatePaperStatus(p);
 return true;
 }
 return false;
 }

Listing 6: an application method that adheres to the method presented in Listing 6

The example in Listing 6 presents an application method that did not introduce
application specific statements. These statements could have been introduced
anywhere in method body as long as the constraint mentioned above would not have
been violated.

4.3. Extension constraints

Up until now we presented two different kinds of types: primitive types that are part
of the language, and domain classified types, which means types that are classified as
one of the classes from the domain layer (Figure 1 presents these). However, there is a
third kind, types that belong to horizontal domains which are parts of software
systems that can be classified according to their functionality [4]. Examples of these
types are those from the Swing, JDBC, and collection APIs. Listing 7 presents the
DBmapper class (figure 1) which uses this kind of types.

//domain layer code
@Multiplicity(min = 1, max = 1)
public class DBmapper {

 @Multiplicity(min = 1, max = 1)
 Connection connection;
}

Listing 7: Horizontal domain types

This Listing specifies that a matching application class will have a single field
named connection of type Connection (a type from the JDBC API). This is not to say
that the Application's respected field will be of a type classified as connection, as was

58 O. Kramer and A. Sturm

demonstrated in Listing 3, rather that the type itself will be Connection. In fact, this is
a specification of how to interface with JDBC; in this case to (re)use by composition
of the Connection class

An application class that will be classified as DBmapper will violate the
specification in Listing 7 if it doesn’t have a single connection field of type
Connection. ADOM-java offers an additional way to constraint APIs extension. This
is referred to as the extension constraints. The usage of some APIs can be a quite a
difficult task [18]. This has many reasons. For example, the volume of some of the
APIs can be overwhelming (the Swing API has hundreds of classes). Moreover,
inheriting from a framework necessitates an understanding of its inner structure. This
can become quite difficult as the interdependencies of the classes force developers to
learn all the classes at once rather than each class at a time. ADOM-Java realizes that
for some domains only a small subset of the API will suffice. For example, of the
entire Swing API only a dozen classes are used in the aforementioned applications.
Here lies the motivation for the extension constraint (not shown here). It will be used
to define if a framework class can be extended in the application and by which
mechanism, where the possible mechanisms are: composition, inheritance, and none.
For example, some Swing components can be found too complicated or unnecessary
thus can be marked as not to be used for a given domain at all, others can be marked
as not to be extended (i.e., used only by composition).

5 Summary

In this paper we presented the tension between productivity and applicability in
common domain engineering approaches. We pointed that a key factor for reducing
this tension is the expressiveness of the application developer. To address this tension,
we utilize a domain engineering approach called ADOM based on the Java
programming language for guiding the application developer by providing models
that express the expected structure and behavior of the domain’s applications.
Moreover, ADOM-Java validates the developer's code according to these models.
Thus, it enables error detections at an early stage of development. These factors,
presumably will lead to increased productivity. Furthermore, ADOM-Java is
embedded into a general purposed programming language (Java), thus it ensures that
the expressiveness of the application developer will not be compromised and that the
overall approach, as it does not necessitate radical expansive changes to the
programming paradigm, will be applicable.

While ADOM-Java looks promising in bridging the gap between productivity,
expressiveness and applicability. It is clear that additional examination is required. In
the near future, we plan to conduct and experiment that aims at checking the
applicability of ADOM-Java.

Bridging Programming Productivity, Expressiveness, and Applicability 59

6 References

1. Batory, D., Sarvela, J.N., and Rauschmayer, A. Scaling step-wise refinement. Proceedings
of the 25th International Conference on Software Engineering, 187–197, 2003.

2. Cazzola, W. @Java: A Java Annotation extension,
http://homes.dico.unimi.it/~cazzola/atjava.html, 2010.

3. Czarnecki, K. and Eisenecker, U. W. Generative Programming - Methods, Tools, and
Applications, Addison-Wesley, 2000.

4. Czarnecki, K. Overview of Generative Software Development. Proceedings of the
European Commission and US National Science Foundation Strategic Research Workshop
on Unconventional Programming Paradigms, September, 15–17, 2004.

5. Czarnecki, K. Mapping features to models: A template approach based on superimposed
variants, in GPCE’05, Lecture Notes in Computer Science 3676, 422-437, 2005.

6. Freeman, S. and Pryce, N. Evolving an embedded domain-specific language in Java. In
Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications, 855-865, 2006.

7. Harsu, M. A survey on domain engineering, Report 31, Institute of Software Systems,
Tampere University of Technology, 2002.

8. Jones, C. Estimating Software Costs, McGraw-Hill, 2007.
9. Kabanov, J. and Raudjärv, R. Embedded typesafe domain specific languages for Java.

Proceedings of the 6th international Symposium on Principles and Practice of
Programming in Java, 189-197, 2008.

10. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA., 1990.

11. Kelly, S. and Tolvanen, J-P. Domain-Specific Modeling: Enabling Full Code Generation,
Wiley, 2008.

12. Kieburtz, R. B., McKinney, L., Bell, J. M., Hook, J., Kotov, A., Lewis, J., Oliva, D. P.,
Sheard, T., Smith, I., and Walton, L. A software engineering experiment in software
component generation. Proceedings of the 18th international Conference on Software
Engineering, 542-552, 1996.

13. Lowell, A. J. Programmer Productivity: Myths, Methods, and Murphology. A Guide for
Managers, Analysts, and Programmers. John Wiley and Sons, 1983.

14. Mernik, M., Heering, J., and Sloane, A. M. When and how to develop domain-specific
languages. ACM Comput. Survev. 37 (4), 316-344, 2005.

15. Philippow, I., Riebisch, M., and Boellert, K. The hyper/UML approach for feature based
software design. The 4th AOSD Modeling With UML Workshop, 2003.

16. Reinhartz-Berger, I. and Sturm, A. Enhancing UML Models: A Domain Analysis
Approach, Journal on Database Management, 19 (1), special issue on UML Topics, 74-94,
2007.

17. Reinhartz-Berger, I., Sturm, A. Utilizing Domain Models for Application Design and
Validation. Information and Software Technology, 51(8), pp. 1275-1289, 2009.

18. Tarr, P. and Ossher, H.: Hyper/J User and Installation Manual. In: Multi-Dimensional
separation of Concerns: Software Engineering using Hyperspaces, 2001.

19. Weiss, D. M. and Tau, C., and Lai, R. Software Product Line Engineering: A Family-
Based Software Development Process, Addison-Wesley, 1999.

60 O. Kramer and A. Sturm

