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Abstract. Productivity is the ability to create a quality software product in a 
limited period with limited resources. The software engineering community 
advocates that the future of productivity lies in the field of domain engineering. 
However, existing domain engineering approaches suffer from the tension 
between productivity and applicability. In this paper we propose an approach 
that reduces this tension by adopting a domain engineering method called 
Application-based DOmain Modeling (ADOM) as an infrastructure for a new 
programming approach. The adopted ADOM is applied on Java as its 
underlying language. This approach will offer guidance and validation for 
application developers as mechanisms for improving their productivity. This is 
done by keeping the regular Java development environment and thus 
maintaining the developer's expressiveness and not compromising the overall 
applicability of the approach. 
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1 Introduction 

Today’s software development is a complex process involving a set of activities that 
require orchestration. One of the most resource consuming activities is programming. 
In order to better utilize the programming activity we should seek for ways to increase 
its productivity. Productivity according to [ 13] is “the ability to create a quality 
software product within a limited period with limited resources”. The productivity of 
a programmer is affected by many factors. Jones [ 8] presented several of these: the 
design for reusability, experience, bugs or errors, management, creeping 
requirements, code structure and complexity, application size, supportive tools, and 
programming languages.  

Many efforts have been made in order to increase the programmers’ productivity 
from the technical point of view. These efforts are focused on providing techniques 
for increasing the code reusability, thus saving programming time. These techniques 
include generic programming which enables reuse by parameterizations, design 
patterns which provide solutions for specific situations, meta programming which 
enables programming at various levels of abstraction, as well as utilizing reflection 

I. Reinhartz-Berger, A. Sturm, Y. Wand, J. Bettin, T. Clark, S. Cohen, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop DE@CAiSE’10, Hammamet, Tunisia, pp. 47-60, 2010.



mechanisms, and frameworks which provide partial design and implementations but 
are difficult to compose [ 3]. However, most of these efforts are related to general 
purpose reuse techniques, thus they do not exploit the commonalities among similar 
applications of a given domain.  

Nowadays, the software engineering community advocates that the future of 
productivity lies in the field of domain engineering [ 3,  4,  11,  19]. According to 
Haarsu [ 7], domain engineering is a systematic process to provide common core 
architecture for similar applications. Its purpose is to provide reuse capabilities among 
these applications.  

Indeed significant productivity achievements have already been reported [ 11,  12], 
but the quest for better software development solutions is far from over. We claim 
that one of the reasons for this is the inherent tension between productivity and 
applicability that current domain engineering approaches suffer from. Solutions that 
offer potentially promising productivity results tend to be expensive and require 
radical changes to the accustomed programming paradigms, thus their applicability is 
low.  

A key factor that can aid in resolving this tension is expressiveness, which is the 
ability of developers to express desired semantics. Expressiveness is highly correlated 
with applicability. Solutions that reduce significantly the developer's expressiveness 
often require new development tools and processes. These tend to be expensive and 
require a learning curve that might seem to managers as risks that should be avoided. 
We assert that desired solutions should strive to keep the level of expressiveness as in 
general-purpose languages.  

In this paper we propose an approach that aims at partially resolving the above 
mentioned tension by adopting a domain engineering method called Application-
based DOmain Modeling [ 16,  17] (ADOM) as an infrastructure for a new 
programming approach. This approach offers guidance and validation for application 
developers as mechanisms for improving their productivity. The novelty of the 
proposed approach lies in using a standard programming language (including it 
supporting tools), thus maintaining the developer's expressiveness and increasing the 
applicability of the approach.  

 The structure of the rest of the paper is as follows. Section  2 discusses related 
work concerning DSLs and feature-oriented programming approaches, delving into 
the tension between productivity and applicability. Section  3 briefly introduces 
ADOM - the underlining framework of the proposed approach, which is presented in 
details in Section 4. Finally, Section 5 concludes and refers to future research 
directions. 

2 Related Work 

As domain engineering provides the platform for increasing productivity, in this 
section we analyze domain specific languages and feature-oriented approaches in 
view of the above mentioned tension.   
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2.1. DSLs 

Domain Specific Languages (DSLs) are computer languages that are tailored to 
specific domains [ 11,  14]. This reduction to a specific domain allows the elevation of 
the language abstraction level. A higher abstraction level is a sought out goal in the 
fields of DSLs [ 6,  9,  11,  14]. It leads to many benefits such as: increased productivity, 
improved quality, better maintainability, and reuse of experts’ knowledge. DSLs are 
divided into two distinct types:  external and internal DSLs. 

2.1.1. External DSL 

The basic premise of external DSLs is that the underlying principles of a higher 
abstraction level and tailoring to specific domain necessitate the development of the 
DSL from scratch. Typically, there would be a domain expert whose expertise is on 
the semantics of the domain and an expert programmer whose expertise is on 
developing complicated and sophisticated software1 working on this process [ 11]. The 
design process includes defining domain concepts and their relationships, semantics, 
notations, and constraints. The implementation process includes building a code 
generator, an optional domain specific framework, and the DSL's integrated 
development environment (IDE) which includes the DSL’s supporting tools.  

The main two advantages of external DSLs are the improved productivity; 
reports have shown of increase in productivity of 300%-1000% [ 11] and enhanced 
application quality; due to a preliminary check of the model's consistency according 
to domain rules. This means that many of the programmers' mistakes can be detected 
and thus can be avoided at this early stage of development. The developers specify the 
solution on a higher level, which is then transformed automatically to another form of 
code. This means that they can avoid dealing with important but complicated issues 
such as design principles and architecture, as these are handled by the code generator. 

Yet, external DSLs suffer from various limitations. As mentioned, the design and 
implementation of external DSLs is by no means simple, it is complicated and time 
consuming. Even if the work is done by experts (both domain and programming), and 
some supporting tools are available it might not be enough to ensure a successful 
working DSL. According to [ 6] most DSLs are usually abandoned in the development 
process and the work is done eventually in regular general purpose languages. 
Additionally, to justify economically the investment of the DSL development process 
a quota of applications has to be exceeded. While this is true for all domain 
engineering techniques it is as harsh as the amount of emphasis that is put on the 
domain engineering process [6,  9]. Moreover, introducing the notion of DSL based 
development into an organization requires a significant change in the organization's 
development paradigm. This change requires both new tools and new processes. 
While some managers will be able to see the long terms advantages of DSLs, other 
might be reluctant to introduce radical, expensive and time consuming changes to 

                                                           
1 obviously, they could be the same person, however both kinds of expertise are required 
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their natural development process. All of these indicate that the applicability of 
external DSLs is problematic.   

Another limitation of external DSLs is the limited expressiveness of the 
application developer. Usually, this is considered to be an advantage – limiting the 
application developer's expressiveness means guiding him and controlling the quality 
of his work, and by that increasing his productivity and the overall quality of the end 
products. However, we consider this to be a disadvantage since the application 
developer has many constraints. The restrictions imposed on application developers 
are achieved by designating the domain to include a set of pre formulated 
commonality and variability. In case the application developers wish to express a 
newly encountered feature, they have to inform the DSL developers to update the 
DSL and wait for the change to be done. This process is time consuming and more 
importantly will make the procedure of incorporating new variants into the domain 
difficult, ultimately leading to narrow domains. Furthermore, this limitation is directly 
linked to the necessity to incorporate new tools and processes which lead to the 
problematic applicability of the DSL. 

2.1.2. Internal DSLs 

Internal DSLs drew their inspiration from the recognized drawbacks of external 
DSLs. Their basic premise is that DSLs should not be developed from scratch; rather 
they should be embedded on existing proven general purposed programming 
languages (GPPLs). In this sense internal DSLs are no different than regular domain 
specific application programming interfaces. However, they are different in the sense 
that the APIs are designed to have a language like flow to them. This is achieved by 
advanced coding techniques such as method chaining, expression builders, interface 
chaining, generics, etc. When these techniques are used correctly some domain 
semantics could be validated in compile time. 

The main advantage of internal DSLs is that they do not suffer from the above 
mentioned drawbacks of external DSLs. This is caused by three main reasons: (1) The 
development of internal DSLs is much easier with respect to external DSLs, mainly 
because the GPPL facilities already exist; (2) Internal DSLs do not necessitate a 
radical change in the organization's natural development paradigm as they permit 
using the same set of tools (such as a programming languages, IDEs, and compilers); 
and (3) Internal DSLs do not limit application developers’ expressiveness as they are 
allowed to use the GPPL regularly. These reasons indicate that internal DSLs are 
more applicable than external DSLs.  

However, internal DSLs introduce the following limitations: (1) Current reports 
[6,  9] of internal DSLs focused on code readability and maintainability. Although this 
should have positive effects over productivity it is hard to see how sophisticated APIs 
raise the level of abstraction similarly to external DSLs; (2) External DSLs achieved 
improved code quality through pre code generating validation algorithms and higher 
abstraction levels. Although internal DSLs can exploit coding techniques to assure 
some domain semantics, they cannot implement validation algorithms that examine 
the specified code according to domain constraints. Ultimately, application 
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programmers can use the API in any desirable way. Thus, in that sense internal DSLs 
are less productive than external DSLs. 

2.2. Feature-oriented approaches 

Feature oriented approaches rely on features which are system properties that are 
relevant to the stakeholders and are used to capture commonalities or discriminate 
among systems in a product family [ 3]. The various approaches consist of a feature 
model that contains all features covered by the product family along with their 
dependencies and their variability [ 15]. Each application will be comprised by a 
unique subset of the features presented in the feature model. Typically, the feature 
model will be expressed using the tree diagram that was firstly introduced by the 
Feature-Oriented Domain Analysis (FODA) method [ 10]. 

The different feature oriented approaches focus on different levels of abstractions 
and on different stages of the development cycle. For example: FODA focuses on the 
domain analysis phase, Hyper/UML [ 15] and the work presented in [ 5] focus on 
feature oriented design by mapping features to other models (e.g., UML models). 
Feature Oriented Programming (FOP) [ 1] and HyperJ [ 18] focus on mapping features 
to code increments.  

Many feature-oriented approaches suffer from the tension that was presented in 
the previous section. For example, feature modeling can help facilitate DSL design 
and DSLs may be used to specify the family members [ 4]. In that case, the 
applicability of the feature-oriented approach is problematic, similarly to that of the 
external DSLs. Furthermore, some approaches limit the expressiveness of application 
developers to the extent of only selecting appropriate features that are mapped 
automatically to code pieces (e.g., FOP and HyperJ [ 15,  18]). These, as in external 
DSLs, also may suffer from extensive domain engineering efforts, radical changes to 
the programming paradigm and narrow domains which will presumably lead to poor 
applicability.  

To overcome the aforementioned limitations with respect to the tension between 
productivity and applicability, we utilize a domain engineering approach called 
Application-based Domain Modeling (ADOM). 

3 The ADOM Approach 

The Application-based Domain Modeling (ADOM) is rooted in the domain 
engineering discipline [ 16,  17], which is concerned with building reusable assets on 
the one hand, and representing and managing knowledge in specific domains on the 
other hand. ADOM supports the representation of reference (domain) models, 
construction of enterprise-specific models, and validation of the enterprise-specific 
models against the relevant reference models.  

The architecture of ADOM is based on three layers: The language layer 
comprises metamodels and specifications of the used languages. The domain layer 
holds the building elements of the domain and the relations among them. It consists of 
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specifications of various domains; these specifications capture the knowledge gained 
in specific domains in the form of concepts, features, and constraints that express the 
commonality and the variability allowed among applications in the domain. The 
structure and the behavior of the domain layer are modeled using the language that 
was defined in the language layer. The application layer consists of domain-specific 
applications, including their structure and behavior. The application layer is specified 
using the knowledge and constraints presented in the domain layer and the constructs 
specified in the language layer. An application model uses a domain model as a 
validation template. All the static and dynamic constraints enforced by the domain 
should be applied in any application of that domain. In order to achieve this goal, any 
element in the application is classified according to the elements declared in the 
domain.  

For describing variability and commonality, ADOM uses a multiplicity indicator 
that can be associated to all elements, including classes, attributes, methods, and 
more. The multiplicity indicators in the domain aim to represent how many times an 
element of this type may appear in an application. This indicator has two associated 
tagged values - min and max - which define the lowest and the upper most 
multiplicity boundaries.  

The relations between a generic (domain) element and its specific (application) 
counterparts are maintained by a classification mechanism: each one of the elements 
that appear in the domain can serve as a classifier of an application element of the 
same type (e.g., a class that appears in a domain may serve as a classifier of classes in 
an application). The application elements are required to fulfill the structural and 
behavioral constraints introduced by their classifiers in the domain. Some optional 
generic elements may be omitted and not be included in the application, while some 
new specific elements may be inserted in the specific application; these are termed 
application-specific elements and are not classified in the application. 

ADOM also provides validation mechanism that prevents application developers 
from violating domain constraints while (re)using the domain artifacts in the context 
of a particular application. This mechanism also handles application-specific elements 
that can be added in various places in the application in order to fulfill particular 
application requirements. 

While ADOM is general and language-independent, a specific language needs to 
be selected as a basis for a workable dialect of ADOM. In order to apply ADOM, the 
only requirement from the associated language is to have a classification mechanism 
that enables categorization of elements.  

4 The ADOM-Java Dialect 

Since we refer to programming, in this paper we select Java as the language used in 
conjunction with ADOM. We will refer to that ADOM dialect as ADOM-Java. In this 
case, the required classification mechanism will be fulfilled by Java's annotation 
construct due to its meta data qualities. Listing 1 demonstrates the usage of the Java 
annotation in both the domain and application layers. In the domain layer the 
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multiplicity indicator is used to constrain the domain's applications to have classes 
classified as someDomainClass at least A times and no more than B times. This type 
of constraints in ADOM is referred to as the multiplicity constraint. In the application 
layer the someClassApplication class is classified by the someDomainClass class.  
 
// domain layer code 
@multiplicity(min = A, max = B) 
public class someDomainClass { 
    … 
} 
// application layer code 
@someDomainClass 
public class someApplicationClass { 
    … 
} 

Listing 1: The Java annotation classifications 

4.1. Structural constraints 

Using the multiplicity indicator one can express a great deal of the structural 
commonality and variability captured and identified in the domain. For example, 
small scale information systems based on three layered architecture may be 
considered as a domain.  
Applications in that domain use a relational DBMS, the JDBC API to interface with 
it, and the Java Swing API for the presentation layer. Applications in that domain may 
include a conference management system, a university registration system, and a 
laboratory management system. 

In Figure 1, the applications of a conference management system and a laboratory 
management system are depicted along with their corresponding domain2. In this case 
the domain layer consists of five different types of classes GUI, Controller, and 
DBmapper, which represent the three classic layers, and SingleStatedObject and, 
MultiStatedObject which represent domain elements that have a single state or more, 
respectively.  

In Listing 2, it is shown that the applications are expected to have exactly one 
class classified as a controller. This is indicated by the multiplicity annotation 
assigned to the class declaration as noted above. Moreover, it is shown that this class 
must have exactly one field classified as db, which is of a type that is classified as a 
DBmapper. This is noted by the DBmapper type of db in the domain code. This is 
effectively the composition relationship between these two classes that is shown in 
Figure 1. If the matching application field will be of any other type it will be a 

                                                           
2 Note that domain models in ADOM-Java are expressed in Java. In Figure 1 we use UML to 

visualize the structural outline that was extracted.  
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Labs system Conference system 

Common domain 

violation of the code presented above. This type of constraints goes one step further 
than the multiplicity constraint as it deals with the syntactic structure of the 
application, for this reason it is referred to as the language constraint.  

 
 

 

 
 
 
 
 

 
Figure 1: example of two applications and their common domain 

 
The rest of Listing 2 expresses three methods, each of which are expected to appear at 
least once in the controller class. All of these methods should be pubic, the last two 
should return the boolean primitive type, and the first one should return a type 
classified as SingleStatedObject. These constraints are indicated by the methods' 
modifiers. Any other setting will be a violation of the language constraint. These 
method attributes are stated explicitly, however, those that are stated implicitly will be 
constrained by the language constraint as well. Effectively, all of the application 
methods classified as one of this three will have to be non-static and non-final, 
moreover the field that will be classified as db will have to be private-package. 

ADOM-java enables to use other indicators to raise the flexibility of the language 
constraint. For example, the addDomObject method which is responsible of adding 
new objects to the system and returns the newly added object should be able to return 
both the SingleStatedObject and the MultiStatedObject types. This requires a 
correction to the code represented in Listing 2 as shown in Listing 3.  

The typing indicator expresses this. It should be noted that the indicator overrides 
the return type. This was used because there are no multiple return types in Java. It is 
important to notice that this is not to say that the respected application method will 
return both types, indeed it will return a single type, as accustomed in Java. However, 
this type will be either classified as SingleStatedObject or as MultiStatedObject. This 
is just one example of additional indicators that raise the flexibility level of the 
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language constraint. Others can be used to express that methods can be of a 
combination of different access levels, final or non-final, and static or non-static. 
Actually ADOM-Java supports all the Cartesian products of the different members' 
modifiers.  
 
//domain layer code 
@Multiplicity(min = 1, max = 1) 
public class Controller { 
 
 @Multiplicity(min = 1, max = 1) 
  DBmapper db; 
 
@Multiplicity(min = 1) 
 public SingleStatedObject addDomObect(String... 
ObjectsData) 
 
@Multiplicity (min = 1) 
 public boolean addDomainAssociation () 
 
@Multiplicity(min = 1) 
public boolean changeStatDomObj(MultiStatedObject mso) } 

Listing 2: The controller class in the domain layer 
 

//domain layer code 
@typing ({" SingleStatedObject ", " MultiStatedObject "}) 
@Multiplicity(min = 1) 
 public singleStatedObject addDomObect(String… 
ObjectsData) 

Listing 3: the addDomObject method from Listing 2 with the typing indicator 
 

Listings 2 and 3 are neither a complete description of the entire domain model, as 
the other 4 classes from Figure 1 are missing, nor a complete description of the entire 
controller domain class. The full implementation of this class has more methods and 
goes into the methods declarations themselves.  
The matching application code regarding its controller class from the labs 
management system is presented in Listing 4.  

First of all, the AppController class is classified as the Controller class from the 
domain; this is noted by the Controller annotation assigned to the class declaration. 
Following there is a field declaration which is classified as the db field from Listing 2. 
If the AppMapper type will be classified as DBmapper (not shown here) the language 
constraint will be fulfilled. Following, there are two methods declarations classified as 
addDomObect. Their public, non-final, and non-static modifiers indicate an adherence 
to the language constraint in Listing 2. Their return types' classifications are not 
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shown here as well, however in the full implementations they are of type 
SingleStatedObject and MultiStatedObject and therefore correct. These methods are 
responsible for adding two (Lab and Program) of the three classes that were presented 
in Figure 1 to the labs management system. The number of these methods indicates an 
adherence to the multiplicity constraint in Listing 2. Following, there is a method 
classified as changeStatDomObj which adheres to both the multiplicity and the 
language constraints on Listing 2. Finally, there is the reportMalfuctionWS method, 
which is responsible of changing the state of workstation from functional to 
malfunction, removing the workstation from its lab and updating the DB if the change 
took place, and which has no classification. This method does not match any of the 
domain's method types; therefore it can be of any linguistic structure and multiplicity, 
and is considered as an application specific extension.  

 
//application layer code 
@Controller  
Public class AppController { 
 
   @db  
   AppMapper appDB; 
 
   @addDomObject 
   public Lab addLab() 
   @addDomObject 
   public Program addProgram() 
 
   @changeStatDomObj 
   public boolean fixWS(WorkStation ws) 
 
   public boolean reportMalfucntionWS(WorkStation ws) 

Listing 4: The matching application code with respect to Listings 2 and 3 
 
The same goes for all other Java constructs: classes, fields, etc. Obviously, the code 
presented in Listing 4 is not a complete description of the application's controller 
implementation. Some method declarations were omitted and the bodies of the 
methods were not presented due to space limitations. These will be presented and 
elaborated in the next section 

4.2. Behavioral constraints 

In the previous section we presented how the multiplicity and language constraints are 
used to impose structural knowledge over the applications. Language constraints by 
nature cannot be extended to behavioral knowledge as they refer to syntactic structure 
of the Java constructs. However, the notion of multiplicity constraints can be 
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introduced to behavioral aspects as well. This will be shown by yet another drill 
down, this time to the controller's changeStatDomObj method as appears in Listing 5.  
 
//domain layer code 
@Multiplicity(min = 1) 
public boolean changeStatDomObj( 
@Multiplicity(min = 1, max = 1) MultiStatedObject mso) { 
 
   @Multiplicity(min = 1, max = 1) 
   if (dso.changeState()) { 
        @Multiplicity(min = 1, max = 1 ) 
       db.updateDomainObject(dso); 
           @Multiplicity(min = 1, max = 1) 
            return true; 
        } 
   @Multiplicity(min = 1, max = 1 ) 
   return false; 
} 

Listing 5: The controller's changeStatDomObj method 
 

First of all, this Listing presents this method's signature as it appeared in Listing 2 
with the addition of the multiplicity indicator to the received parameter. This 
method’s responsibility is to receive a business logic object, to change its internal 
state, update the DB if the transition was successful, and finally to return a Boolean 
statement indicating whether the action was successful or not. For this reason, the 
matching application methods will have to receive a single parameter classified as 
MultiStatedObject.  
This is noted by the type of the mso parameter and by its multiplicity. Therefore, this 
example illustrates that constraints over methods' parameters can be defined in the 
same manner as over classes' fields. Following, inside the body of the method, there 
are four execution statements, each with a multiplicity3 indicator constraining the 
statement to appear once. This specification constrains any application method 
classified as changeStatDomObj to contain each of these four statements exactly in 
the order as they appeared in the domain and with the same scoping structure, with 
the exception of method calls. Each method call in the domain will be replaced in the 
application code by a call to a method that is classified as the called method in the 
domain. For example, dso.changeState() method call in Listing 5 is replaced by the 
p.accept call in Listing 6. This is correct only because p is of type Paper (as presented 
in Figure 1), which is classified as statedObject and accept() is a call to its method 

                                                           
3 Notice that this use of Java annotation is not supported in standard Java and requires an 
extension called @Java [ 2]. 
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that is classified as changeState(). Thus, the code in Listing 6 adheres to behavioral 
constraints specified on Listing 5. 
 
//application layer code 
@changeStatDomObj  
 public boolean acceptPaper(Paper p)  { 
        if (p.accept()) { 
            db.updatePaperStatus(p); 
            return true; 
        } 
        return false;    
 } 

Listing 6: an application method that adheres to the method presented in Listing 6 
 

The example in Listing 6 presents an application method that did not introduce 
application specific statements. These statements could have been introduced 
anywhere in method body as long as the constraint mentioned above would not have 
been violated. 

4.3. Extension constraints 

Up until now we presented two different kinds of types: primitive types that are part 
of the language, and domain classified types, which means types that are classified as 
one of the classes from the domain layer (Figure 1 presents these). However, there is a 
third kind, types that belong to horizontal domains which are parts of software 
systems that can be classified according to their functionality [4]. Examples of these 
types are those from the Swing, JDBC, and collection APIs. Listing 7 presents the 
DBmapper class (figure 1) which uses this kind of types.  
 
 
//domain layer code 
@Multiplicity(min = 1, max = 1) 
public class DBmapper { 
 
    @Multiplicity(min = 1, max = 1) 
    Connection connection; 
} 

Listing 7:  Horizontal domain types 
 

This Listing specifies that a matching application class will have a single field 
named connection of type Connection (a type from the JDBC API). This is not to say 
that the Application's respected field will be of a type classified as connection, as was 
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demonstrated in Listing 3, rather that the type itself will be Connection. In fact, this is 
a specification of how to interface with JDBC; in this case to (re)use by composition 
of the Connection class  

An application class that will be classified as DBmapper will violate the 
specification in Listing 7 if it doesn’t have a single connection field of type 
Connection. ADOM-java offers an additional way to constraint APIs extension. This 
is referred to as the extension constraints. The usage of some APIs can be a quite a 
difficult task [ 18]. This has many reasons. For example, the volume of some of the 
APIs can be overwhelming (the Swing API has hundreds of classes). Moreover, 
inheriting from a framework necessitates an understanding of its inner structure. This 
can become quite difficult as the interdependencies of the classes force developers to 
learn all the classes at once rather than each class at a time. ADOM-Java realizes that 
for some domains only a small subset of the API will suffice. For example, of the 
entire Swing API only a dozen classes are used in the aforementioned applications. 
Here lies the motivation for the extension constraint (not shown here). It will be used 
to define if a framework class can be extended in the application and by which 
mechanism, where the possible mechanisms are: composition, inheritance, and none. 
For example, some Swing components can be found too complicated or unnecessary 
thus can be marked as not to be used for a given domain at all, others can be marked 
as not to be extended (i.e., used only by composition).  

5 Summary 

In this paper we presented the tension between productivity and applicability in 
common domain engineering approaches. We pointed that a key factor for reducing 
this tension is the expressiveness of the application developer. To address this tension, 
we utilize a domain engineering approach called ADOM based on the Java 
programming language for guiding the application developer by providing models 
that express the expected structure and behavior of the domain’s applications.  
Moreover, ADOM-Java validates the developer's code according to these models. 
Thus, it enables error detections at an early stage of development. These factors, 
presumably will lead to increased productivity. Furthermore, ADOM-Java is 
embedded into a general purposed programming language (Java), thus it ensures that 
the expressiveness of the application developer will not be compromised and that the 
overall approach, as it does not necessitate radical expansive changes to the 
programming paradigm, will be applicable.  

While ADOM-Java looks promising in bridging the gap between productivity, 
expressiveness and applicability. It is clear that additional examination is required. In 
the near future, we plan to conduct and experiment that aims at checking the 
applicability of ADOM-Java.   
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