
Using Bayesian Networks To Infer Product
Rankings From User Needs

Sven Radde and Burkhard Freitag

Institute for Information Systems and Software Technology
University of Passau, 94030 Passau, Germany

{sven.radde,burkhard.freitag}@uni-passau.de

http://www.ifis.uni-passau.de/

Abstract. Customers are commonly not able to provide preferences
that are technical enough to be used in the internal algorithms of knowl-
edge-based recommender systems. In this paper, we present an approach
to use a Bayesian network to infer technical preferences from customer
answers obtained through a conversational elicitation process. The in-
ferred preferences can be used in conjunction with a variety of common
database ranking technologies to generate product recommendations.

Key words: Bayesian inference, ranking databases

1 Introduction

When recommending complex products to customers, a knowledge-based rec-
ommender system has to base its reasoning on the mostly technical product
properties that can be obtained using datasheets or similar sources of informa-
tion. To this end, several well-known techniques exist, such as database ranking
based on multi-attribute utility-theory or preference-based databases. However,
as a prerequisite for applying these techniques, customers would need to be able
to specify their wishes in technical terms. Experience reveals that this is far more
than what can be expected from the average customer, in particular for complex
technical product damains.

In this paper, we present a way to elicit preferences from customers by asking
them “soft” questions about their needs and expectations. From their answers,
preferences that serve as inputs to the afore-mentioned recommendation algo-
rithms can be inferred by using a Bayesian network. We describe a utility-based
approach to obtain product recommendations and provide a method to use the
inferred knowledge as pareto-preferences.

The rest of this paper is organized as follows:
In section 2, we present a use case and describe the requirements arising

from it. The process of inferring utility values for technical product attributes
from customer answers is detailed in section 3. In section 4, we elaborate on how
to make use of the inferred knowledge by employing a MAUT-based approach
as well as other techniques such as pareto-based preferences. We review some
related work in section 5 before concluding in section 6.



2 Sven Radde and Burkhard Freitag

2 Use Case

Today’s cellphones are complex technical devices, fulfilling a wide range of func-
tions beyond the classic “make a phone call away from home” scenario, such as
navigation aid, MP3 player, digital camera, web / messaging client and many
more. Very few customers are able to make completely well-informed buying-
decisions in this field without a significant need for consultation. The situation
is made even worse by the frequently changing product domain. Retailers are
forced to permanently release new products to expand their share in a rather
saturated market. Also, the domain itself sees frequent technical innovations,
creating new products and sometimes even new business models (think of, e.g.,
location-based services made possible by the recent integration of GPS receivers
into many mobile phones). Therefore, even once-acquired domain knowledge ages
rapidly, for customers and salespersons alike.

Cellphones differentiate themselves primarily through their technical prop-
erties, whereas customers’ whishes commonly consist of “softer” needs that the
desired phone is supposed to satisfy. Salespersons bridge this discrepancy in a
natural way, translating the customers’ wishes into appropriate technical require-
ments before recommending cellphones based on these requirements.

However, many current online-recommenders for mobile phones, despite be-
ing aimed at end-users, e.g., in web stores, cannot handle this abstraction. Com-
monly, many online applications are merely product configurators that require
their users to specify technical constraints which are then used to restrict the
set of available products accordingly. To bridge the gap between a customer’s
wishes and technically evaluable preferences, an electronic recommender system
must be prepared to accept fuzzy user input and use an internal model to in-
fer the technical criteria. At the same time, the inference mechanism must be
flexible enough to be used in a dynamic dialogue environment, i.e., it cannot
rely on a particular order answers are given in. Some questions may well remain
unanswered throughout the dialogue, and for some questions the customers may
change their opinion at a later point in the dialogue.

3 Eliciting Preferences

Our approach to infer technically useful information from customer answers is
based on a Bayesian network (cf., e.g., chapter 14 in [12]) which is automatically
generated from a metamodel-based description of the targeted market domain.
Bayesian networks can be applied to model causal relationships between obser-
vations and their possible effects based on conditional probabilities. Once having
evidence of (part of) the observations, a Bayes engine can infer the probabilities
of the possible outcomes by probability propagation through the network. In the
work reported on here, we use a Bayesian network to model the relationships of
user needs (observations) and technical properties of products (outcomes).

Fig. 1 shows a UML diagram of a portion of the domain metamodel which
is relevant to the process of eliciting preferences. The Articles in the targetted



Using Bayesian Networks To Infer Product Rankings From User Needs 3

-name : String

-questiontext : String

-answeroptions : List<String>

Need

-name : String

Value

-name : String

-weight : Integer

Attribute

1

*
allowed_values4 

-positive : Boolean

-weight : Integer

Influence

*

*

«interface»

Influencer

«interface»

Influenceable

1

*

described_by4 

-name : String

Article

Fig. 1. UML diagram of the domain metamodel

domain are described by an explicit aggregation of their technical Attributes.
To be able to distinguish the relative importances of Attributes during the rec-
ommendation process, they are assigned a numerical weight (cf. definition 4 for
a detailed explanation). Also, each Attribute explicitly lists its allowed Values,
defining the possible characteristics of the products in the target domain. Rec-
ommendations will then be obtained based on the modeled description of the
technical properties of the target domain. The implied restriction to finite, dis-
crete value ranges for Attributes has proven to be not a significant limitation,
since, for our purpose, the value ranges of typically continuous Attributes (e.g.,
prices or sizes) can easily be classified into discrete ranges.

The dialogue used to obtain information from the customer is specified by
modelling a number of Needs. The Need entity contains properties that are used
to formulate a specific question that can be asked during the course of the
elicitation process, including the possible answer options.

Connecting the answers about Needs with the desired technical product prop-
erties that are required to obtain recommendations is accomplished by modelling
a number of Influences that represent the causal interdependencies between
Needs and other Needs, as well as between Needs and attribute Values. In-
fluences can be positive, i.e., have a strengthening effect, or not, i.e., have an
attenuating effect. The numerical weight of an Influence denotes the “strength”
of the Influence as we will detail further below.

Linking Needs with each other by means of an Influence is based on the
notion that answers to questions regarding one Need may influence answers that
the customer is likely to give when asked questions about other Needs in the
model, as can be observed in example 1. Influences between Needs and Values
model the influence an answer to a question has on the perceived utility of a
product, as we will show in definition 1.

Note that the diagram in Fig. 1 displays a metamodel, which must be in-
stantiated to a domain model with concrete Needs, Attributes, and Influences.
Examples 1, 2, and 3 will illustrate this process for a simplified mobile commu-
nications domain.



4 Sven Radde and Burkhard Freitag

Fig. 2. Screenshot of the dialogue in our web application

Example 1 (Needs). Let us consider a simplified example from the mobile com-
munications domain where the metamodel could have been instantiated by spec-
ifying the following exemplary Needs:

Need name Question text
“Will you use your new phone to...

multimedia ...play multimedia content?”
business ...use business functions?”
music ...listen to music?”
internet ...access the internet?”

It is immediately apparent that causal influences exist between some of these
Needs, which can be represented using Influences (cf. Fig. 1), as we show below.

For many questions it turns out in practice that they should be written in
a way so that they can be answered by customers on a Likert scale [9] (i.e.,
on a scale between “strongly agree” and “strongly disagree”). See Fig. 2 for a
screenshot that illustrates how questions are displayed in a web application that
implements the approach described in this paper.

Example 2 (Attributes and Values). A current real-life model instantiation for
the mobile telecommunications domain comprises about 70 technical Attributes
with about 500 possible attribute Values. In this paper, we focus on three exem-
plary attributes and their possible values: Does the cellphone have an integrated
MP3 player, does it have broadband internet connectivity via UMTS, and what
size has its internal memory?

Attribute Allowed values weight
mp3 yes / no 2
umts yes / no 1
memory small / medium / large 1

While mp3 and umts are examples of boolean value ranges, memory illustrates
a discretized value range where the actual amount of memory has been mapped
to discrete values (using, e.g., <1GB / 1-4GB / >4GB as a classification rule).



Using Bayesian Networks To Infer Product Rankings From User Needs 5

Table 1. Exemplary Influences

from to type

business internet positive
business Memory small negative
business Memory medium positive
internet umts yes positive
internet umts no negative
multimedia music positive
multimedia Memory medium negative
multimedia Memory large positive
music mp3 yes positive
music mp3 no negative

Example 3 (Influences). Let our sample domain model contain Influences as
shown in table 1 connecting the model elements of examples 1 and 2. For sim-
plicity, assume further that all of them have an equal weight of 1.

Using Influences, arbitrary hierarchies of Needs may be specified, although
a real-life evaluation revealed that the hierarchy remains rather flat in the con-
sidered use case. In fact, there are merely three tiers, i.e., one tier of Needs that
influence other Needs on a middle tier which, in turn, influence the technical
Attributes that form the bottom tier.

From an instance of the domain metamodel, a corresponding Bayesian net-
work can be automatically generated. Needs and attribute Values are repre-
sented as random variables (i.e., nodes of the graph representing the network).
Need -variables have outcomes that correspond to the possible answers of the cor-
responding questions in the elicitations dialogue, so that a customer’s answers
can easily be represented in the Bayes net by introducing evidence for the ap-
propriate outcomes. On the other hand, each Value is represented by a random
variable with the outcomes of “true” and “false” that model the likelihood that
a certain Value fulfills the customer’s Needs. Modelling Values in this way (and
not, e.g., by representing one Attribute as a single variable with all Values as
possible outcomes) is necessary to model the fact that Values may be satisfying
independently of each other.

The Influences form the edges of the Bayesian network. Modeled causal de-
pendencies between source nodes (Influencers) and a target node (Influenceable)
are expressed by the entries in the conditional probability table (CPT) of the tar-
get node. The CPTs are constructed in such a way that, for positive Influences,
if the customer agreed to the question corresponding to the source’s Need, the
likelihood that he/she will also agree to the target Need is increased, weighted
relatively against other Influences by using the specified weight. If the target
node corresponds to a Value, the probability for “true” of that particular Value
is increased (i.e., it is more likely that products with this attribute value will be
acceptable for the customer). Negative Influences have the opposite effects.



6 Sven Radde and Burkhard Freitag

Fig. 3. Inference snapshot (modeled with GeNIe – http://dsl.sis.pitt.edu/)

For a detailed description of the overall generation method see [10]. Fig. 3
shows the Bayes net for the domain model as introduced in examples 1, 2, and
3. The main purpose of the Bayesian network is to derive utility estimations for
attribute Values from which preferences will be derived. To this end, the notion
of utility introduced below is based on the assumption that Values which are
more likely to satisfy the customer’s needs are also more useful (i.e., should have
a greater utility).

Definition 1 (Utility of a Value). We define the utility uav of an attribute
Value av as the posteriori-probability of the outcome “true” of the random vari-
able rav in the Bayesian network that corresponds to av:

uav := p(rav = true | . . .)

It immediately follows that all utility values are normalized between 0 and 1.
Also, the advantage of representing attribute Values as separate booleans becomes
apparent: It is reasonable that more than one Value for an Attribute can get a
utility of 1.0 (i.e., is useful with 100% probability). This situation can be taken
into account in a Bayes net as described above.

Example 4 (Utility). Consider an (early) point in the preference elicitation dia-
logue where the customer has given the answer “I strongly agree.” to the question
for the Need business. The answer is entered as evidence into the Bayesian net-
work, leading to the posteriori probability-distributions shown in Fig. 3. Eval-
uating the Influences as described above, the elicitation algorithm infers that
the customer will need to access the internet using the cellphone which makes
UMTS connectivity a necessity, i.e., we have uumts yes = 1.0 and uumts no = 0.0

On the other hand, needing business functionality does not allow any con-
clusions towards multimedia support, which leads to ambivalent utilities for an
MP3 player:

ump3 yes = ump3 no = 0.5

As for the memory capacity, the system reasons that a too small capacity is
inacceptable in a business context, while a medium capacity is probably sufficient
(depending on whether additional storage is required for multimedia content).



Using Bayesian Networks To Infer Product Rankings From User Needs 7

As we have seen, the primary goal of the inference engine in our context is
to infer technical values from user needs according to the influence relations and
given conditional probabilities. However, it can also process direct user input to
allow for short-cuts by simply inserting a submitted value as evidence for the
node of the Bayesian network that corresponds to the appropriate Value-entity.
Thus, the preference elicitation dialogue is inherently adaptable to different levels
of customer expertise. Further uses of the described inference approach, e.g., to
control the dialogue flow by estimating the importance of unanswered Needs and
to predict a customer’s answers are presented in a broader context in [11].

4 Using Preferences

As shown above, the Bayesian network provides us with estimations about the
utility of every possible attribute value in the product domain. To use these
estimations to elicit preferences, we also need a notion of the relative importance
of the attributes relative to each other. In our approach, the importance of an
attribute depends on three factors:

(1) Those attributes customers show significant interest in should be regarded
as more important than others. In our model, “significant interest” is derived
from the fact that more distinctive predictions for the attribute values exist.

(2) The dialogue situation has influence on the importance of an attribute
for the elicitation process. Attributes that are not connected to any already
answered question, should not have any influence at all.

(3) A domain expert may assign a static numerical weight to each attribute
(cf. Fig. 1). Marketing research shows that some attributes are inherently more
important than others in a buying decision. Experiments indicate that it is
sufficient to classify attributes into a small number of weight “classes”, which is
considered to be rather simple for suitably knowledgeable experts.

Definition 2 (Distinctiveness of an Attribute). The Distinctiveness da of
Attribute a is defined as the average of the distances of the utilities of all possible
attribute values of a from the “indifferent” utility of 0.5, normalized to [0..1]:

da := 2 ∗
∑

v∈dom(a)(|uv − 0.5|)
|dom(a)|

Example 5 (Distinctiveness). To calculate the distinctiveness dmemory of the at-
tribute “memory”, assume that the following utilities have been inferred (cf. Fig.
3):

umemory small = 0.0
umemory medium = 0.75
umemory large = 0.5

dmemory = 2 ∗ |0.0−0.5|+|0.75−0.5|+|0.5−0.5|
3 = 0.5

The result fits our intuition: We are not yet sure about the customer’s opinion
regarding memory size at this point of the dialogue. Therefore, values derived
for this attribute should not be taken too seriously.



8 Sven Radde and Burkhard Freitag

Definition 3 (Situation Factor of an Attribute). Let Qanswered be the set
of all questions already answered in the current dialogue. For an Attribute a
let P(a) denote the set of all Influence-ancestors of a, i.e., the Needs connected
directly or transitively with a Value of a via an Influence-path in the network.
The Situation factor sa of a is defined as follows:

sa :=
{

0 if ∀q ∈ Qanswered : q /∈ P(a)
1 otherwise

Definition 4 (Importance of an Attribute). Let a be an Attribute and wa

be the weight of a as specified in the particular model under consideration. Let
da be the distinctiveness of a according to definition 2 and sa be the situation
factor of a (definition 3). The Importance ia of a is defined as

ia := da ∗ sa ∗ wa

Example 6 (Importance). Extending example 5, we determine imemory based on
the following parameters:

dmemory = 0.5 (example 5 )
smemory = 1.0 (memory is connected to the answered question, Fig . 3 )
wmemory = 2.0 (taken from the domainmodel)

imemory = 0.5 ∗ 1.0 ∗ 2.0 = 1.0

Note that distinctiveness and situation factor depend on the preferences
learned during the course of the elicitation dialogue. Therefore, they are up-
dated after each dialogue step to account for newly acquired knowledge.

The approach to preference elicitation described here is based on Multi-
Attribute Utility-Theory (MAUT – cf., e.g., [13]) which is used to combine the
utility estimations of the various technical attributes into one global ordering
of the whole product catalogue. To achieve this, we formulate a utility function
for products which essentially computes a weighted sum over the utilities of all
technical attributes.

The utility function can be formulated as a standard SQL query. For the
sake of simplicity, we assume that all relevant data for an article is available
in a single table with one column for each technical attribute (cf. Fig. 1) and
an additional column containing the product’s name. Every tuple in this table
represents one concrete product (e.g., in the sample domain, one concrete cell-
phone). The following SELECT query computes a numerical UTILITY value for
each tuple and orders the answer set accordingly:

SELECT *, ($utilityfunction) AS UTILITY

FROM cellphones

ORDER BY UTILITY DESC

$utilityfunction calculates the overall utility of a given cellphone by sum-
ming up the utility of each attribute value uvalue (cf. definition 1), weighted by
that attribute’s importance iattribute (cf. definition 4). To this end, our imple-
mentation uses a set of CASE-WHEN clauses for each attribute.



Using Bayesian Networks To Infer Product Rankings From User Needs 9

Table 2. Exemplary Product Catalogue

Name mp3 memory umts

MobileA yes medium no
MobileB yes large no
MobileC no medium yes
MobileD no small no

Example 7 (Preference Order by MAUT). Assume that the current product cat-
alogue contains the entries as shown in table 2. The utility and distinctiveness
values are derived from the dialogue situation shown in Fig. 3:

uumts yes = 1.0
uumts no = 0.0 dumts = 1.0
umemory small = 0.0
umemory medium = 0.75
umemory large = 0.5 dmemory = 0.5
ump3 yes = 0.5
ump3 no = 0.5 dmp3 = 0.0

For simplicity, assume situation factors of 1.0 for all attributes. For this
constellation, the following ranking of catalogue entries according to the utility
values computed as shown above results:

1) MobileC (Utility: 1.375)
2) MobileA (Utility: 0.375)
3) MobileB (Utility: 0.25)
4) MobileD (Utility: 0.0)

Since UMTS capability is the most important feature for our sample business
customer, it is decisive in producing the utility-based rank (“MobileC” is the only
UMTS-capable device in table 2). In contrast, support for MP3 does not play a
role since the course of the dialogue did not yet allow any conclusions about the
customer’s wishes in this respect.

The structure of the query is known at the time of domain model design.
Therefore, the query can be implemented as a stored procedure that can be
called with the current importances and utility values as parameters. In our
experiments, the actual query execution times were only a few millliseconds.
It should be noted, however, that there are less than 1,000 different cellphones
on the market today, leading to a rather small product catalogue and thus a
small domain size. It is worth noting that, in general, the calculated utility for a
product does not have an absolute meaning (i.e., a statement about how useful
the product is, cannot be made). The value can only be interpreted in a relative
way, i.e., a higher utility means greater usefulness and hence a higher rank.

The method described so far can also be used to provide the necessary inputs
for more general approaches to rank query answers using boolean predicates,
such as the one presented in [2]. To take full advantage of the more elaborate
possibilites offered there, it would be necessary to extend our product modelling



10 Sven Radde and Burkhard Freitag

by ways to express the potentially hierarchical structure of complex boolean
conditions. Also, preferences for approaches based on pareto-optimality such as
PreferenceSQL [7, 8] can be derived using a Bayesian network as described in
this paper. In effect, the Bayesian network provides an ordering for all values of
a technical attribute by interpreting the calculated utility values as the pareto-
preferences serving as an input for PreferenceSQL.

PreferenceSQL supports “LAYERED” preferences (cf. [7]) for situations where
a domain dom(A) of an attribute can be partitioned into subsets that are ordered
according to a “better than” relation. In our approach, all attribute values that
have the same utility are grouped together in the same “layer”, leading to a
straight-forward application of the LAYERED preference constructor. Clustering
techniques may be used to limit the number of subsets that are to be considered
by interpreting some values as equally preferred, despite minimal differences in
their numerial utility values.

Since the semantics of our approach relies on the notion that the customer is
generally indifferent about attribute values with the same utility (i.e., all values
with the same value are mutually substitutable), we annotate each LAYERED
preference with the additional “regular” keyword (cf. section 4 in [7]). These
preferences are combined using the pareto “AND” operator to form the complete
PreferenceSQL query.

Example 8 (PreferenceSQL). We re-use the dialogue situation of example 7 to
formulate a query in PreferenceSQL. Using the pattern described above leads to
the following statement:

SELECT * FROM cellphones PREFERRING

umts LAYERED ((’yes’), (’no’), others) regular AND

memory LAYERED ((’medium’), (’large’), (’small’), others) regular AND

mp3 LAYERED ((’yes’, ’no’), others) regular

Executing this statement against the product catalogue of table 2 yields
“MobileC ” as the query result, which is the pareto-optimal tuple of the relation
and therefore the only result according to the “Best-Matches-Only” semantics
of PreferenceSQL. Successively re-executing the query with added WHERE-clauses
to exclude the already-retrieved tuples yields the following results which are
ordered exactly as those obtained using our MAUT-approach in example 7 (NB:
in general, the orderings defined by both approaches are not equivalent):

1) MobileC
2) MobileA (WHERE name <> ’MobileC’)
3) MobileB (AND name <> ’MobileA’)
4) MobileD (AND name <> ’MobileB’)

Generated in this straight-forward way, the PreferenceSQL query would con-
sist of a very large number of pareto-preferences. To reduce the number of prefer-
ences, the importance of an attribute (cf. definition 4) may be exploited to limit
the preferences to a fixed number or to consider only preferences for attributes
having an inportance that exceeds a certain threshold.



Using Bayesian Networks To Infer Product Rankings From User Needs 11

5 Related Work

The knowledge-based elicitation approach described here is notably different
from collaborative filtering methods (cf., e.g., [4, 6]) since it does not require item
ratings. Assuming that a user will not interact with the system very frequently,
we cannot rely on buying histories to build our model of the user. While eliciting
explicit ratings may be acceptable in an online context, it seems not to be an
adequate form of interaction between salespersons and customers. Hence, our
user-model builds on preferences that can be elicited during the course of a
natural sales dialogue.

Ardissono et al. [1] present a personalized recommender system for config-
urable products. Their approach involves preference elicitation techniques that
employ reasoning about customer profiles to tailor the dialogue to a particular
customer by providing explanations and smartly chosen default values wherever
possible. The customer preferences learned this way are then used as constraints
in the configuration problem at hand to generate the recommended product
configuration, which might result in empty recommendations (i.e., the specified
constraints are not satisfyable), requiring repair actions. Our approach does not
directly exploit the elicited preferences as constraints but rather uses them as
an input to ranking database queries which return a list of products ordered
according to the customer’s preferences.

In [3], the dialogue-oriented recommender suite CWAdvisor is presented.
Their knowledge-base is similar to ours but it includes an explicit representa-
tion of the “recommender process definition”, i.e. all possible dialogue paths in
a tree-like structure. While obviously able to specify a fine-grained dialogue, the
achievable level of detail is limited by the complexity of the dialogue specifica-
tion. Our approach generates the (equally complex) dialogue specification from a
much more compact model and is more flexible by incorporating mixed-initiative
selection of questions, easy belief revision and adaptive personalization.

An approach similar to ours is presented in [5]. However, the utility estima-
tions (the “value tree”) of Jameson et al. do not seem to be built on an explicit
model of the currently served customer but rather on the assumed properties
of an average user of their system. Hence, the derived preferences are not per-
sonalized as strongly as in our approach. Also, as the value tree is a strictly
hierarchical structure, it cannot capture the fact that a technical attribute may
be influenced by more than one single need.

6 Conclusion

We presented an approach to inferring utility estimations usable for preference-
based or ranking-based database queries, which is accomplished by using a
Bayesian network that can be generated from a domain model. The approach
described in this paper has been implemented in a joint project together with an
industry partner. Their business experts designed a domain model comprising
about 25 needs and more than 100 technical attributes. The model is considered



12 Sven Radde and Burkhard Freitag

to adequately represent the marketing-relevant aspects of the mobile commu-
nications domain from the industry point of view. Although the effort for this
first real-life instantiation of the model was significant, the task was regarded
as feasible and the routine model maintenance has turned out to be inexpensive
under operational conditions. Evaluations of the overall recommendation con-
cept by marketing research experts have shown convincing results concerning
the adequacy of the model and the acceptance of the overall approach.

Our current work focuses on conducting a thorough field evaluation of the
system with a larger number of volunteers to obtain more statistical evidence
about the quality of the derived preferences and related product rankings. An-
other field of ongoing research is the design of an explanation component which
is able to explain the reasoning that led to the generated recommendations and
to exploit user feedback about the recommendations to automatically adjust
some parts of the domain model.

References

1. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schae-
fer, R., Zanker, M.: A Framework for the Development of personalized, distributed
Web-Based Configuration Systems. AI Magazine 24, 93–110 (2003)

2. Beck, M., Freitag, B.: Weighted Boolean Conditions for Ranking. In: Proc. of the
ICDE-08 Workshop on Ranking in Databases (DBRank’08) (2008)

3. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An Integrated environment
for the Development of Knowledge-Based Recommender Applications. Intl. Journal
of Electronic Commerce 11(2), 11–34 (2006)

4. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering
Recommender Systems. ACM Transactions on Information Systems (TOIS) 22(1),
5–53 (2004)

5. Jameson, A., Schaefer, R., Simons, J., Weis, T.: Adaptive Provision of Evaluation-
Oriented Information: Tasks and Techniques. In: Proc. of the 14th International
Joint Conference on Artificial Intelligence (IJCAI) (1995)

6. Jin, R., Si, L., Zhang, C.: A Study of Mixture Models for Collaborative Filtering.
Information Retrieval 9(3), 357–382 (2006)

7. Kießling, W.: Preference Queries with SV-Semantics. In: Proc. of the 11th Inter-
national Conference on Management of Data (COMMAD). pp. 15–26. Computer
Society of India (2005)

8. Kießling, W., Köstler, G.: Preference SQL – Design, Implementation, Experiences.
In: Proc. of the 28th Intl. Conference on Very Large Data Bases (VLDB) (2002)

9. Likert, R.: A Technique for the Measurement of Attitudes. Archives of Psychology
22(140), 55ff (1932)

10. Radde, S., Kaiser, A., Freitag, B.: A Model-Based Customer Inference Engine. In:
Proc. of the ECAI-08 Workshop on Recommender Systems (2008)

11. Radde, S., Zach, B., Freitag, B.: Designing a Metamodel-Based Recommender Sys-
tem. In: Proc. of the 10th International Conference on Electronic Commerce and
the Web (EC-WEB) (2009)

12. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
International Editions (1995)

13. Schaefer, R.: Rules for Using Multi-Attribute Utility Theory for Estimating a
User’s Interests. In: Workshop on Adaptivity and User Modelling (2001)


