A Course on Web Programming

Tuomas Turto and Tommi Mikkonen

Department of Software Systems

Tampere University of Technology

PL 553, 33101 Tampere, Finland
{tuomas.turto, tommi.mikkonen}@tut.fi

Abstract. We faced the problem of deciding what is important when
revising the contents of a Web Programming course. Torn between bal-
ancing industrial expectations and our vision of Web development based
on research conducted at our University, we formed a set of topics that
were first used during the Spring 2010. In this paper we report on the
driving forces for the changes, how we structured the content and an
outline of the course.

1 Introduction

Considering the current prevalence of different Web applications, for many stu-
dents the de facto platform for new applications is the browser. Although en-
couraging from a motivational point of view, this is also somewhat unfortunate
since web programming is a difficult topic that requires certain maturity with
respect to software engineering. Paradoxically the situation is worsened by the
availability of good tools and frameworks. The tools and frameworks make it rel-
atively easy to get started and apply them to solve problems that fit nicely into
the tools’ problem domain. On the other hand, in order to understand and utilize
the Web as a programming environment, a multitude of skills are required.

The required skills range from understanding dynamic programming lan-
guages to replication in distributed systems. These skills and the hands-on at-
titude required by the often substandard libraries are usually only found in the
top part of a class. However, precisely these skills are favored by the industry.
On the other hand, investing a lot of effort in technologies does not serve the
academic aims of the course. From an academic perspective we should study the
solid foundation of web engineering and critically investigate the weak points.

A course on web programming, in one form or another, has been lectured
at the Tampere University of Technology since the late 1990s. From time to
time larger changes were made in its contents but for a few years the course
has been given in the same form. For the academic year 2010, however, changes
were made that, hopefully, better enable to students to understand how the Web
works and how it should be programmed. At the time of the writing, the first
instance of the new course has just been completed. In this paper we report our
motivation for the changes, our reasoning behind the content on the course and
lessons learned from the first implementation.

2 Motivation and Expectations

There was no single issue that required the contents of the web programming
course to be reviewed in full, instead it could be seen that a number of smaller
issues started to appear. After they had been accumulating for a while, it seemed
sensible to try to tackle most of them at the same time. The origins of the issues
can be divided into developments in the field of web engineering and the practical
applications, the skills required by the industry from our graduates and our own
purely academic view of the future of web development. We review each of these
in the following.

2.1 Recent developments

Due to the industrial significance of the Web, much of the innovative work done
on web engineering and especially its practical applications is done outside the
academia. We can divide the output from industry broadly into three categories

— standard-setting applications
— novel technologies and standards
— innovative solutions using existing techniques.

Each of these has a two-fold effect. Consider the standard-setting applica-
tions such as Google’s GMail or Facebook. Firstly this affects the view students
taking the course on web engineering have. Students take the course with the
expectation that after the course they should have some understanding on how
the standard-settings applications work — in an ideal case they should themselves
be equipped with the tools to implement them. On the other hand the teaching
staff should themselves have a clear grasp on how to implement such systems in
order to identify the most important techniques used.

The same is true for the novel technologies and standards that easily fly under
the radar but are, from an academic point of view, suddenly adopted by a range
of significant users. Take, for example, the OpenID[4] and OAuth[3] protocols.
The first one is used for single sign-on authentication and the second can be
used to authorize resource sharing between web service providers. Both of these
standards emerged out of vendor specific systems and were soon adopted by a
wide audience. Although practical applications by their nature, the significance
of these systems for general web ecosystem is so large that they have to be taken
into account.

Innovative solutions using existing techniques might be considered as an eu-
phemism for a kludge or a hack by some developers. Take, for example, the
Bayeux protocol for implementing the transportation of asynchronous messages
with low latency between the server and the client. The practical applications
for such long-polling systems to enable asynchronous communication for use in,
say, chat systems are evident. They go, however, against the basic principles of
the HT'TP protocol itself. Nevertheless, even in these cases we felt that we need
to account for such systems. For good or bad, they are an inherit part of many
practical systems built today.

2.2 Industry Expectations

With the recent developments, also the demands the industry places on new
hires have changed. As outlined previously, the industry churns out novel solu-
tions to new problems in the domain of web engineering at an increasing pace.
The current expectation is that either the graduate knows about the techniques
or is equipped with suitable skills and with a solid understanding about the
fundamentals of web engineering so that there are no obstacles to learning the
new techniques.

This situation is in a striking contrast with respect to how things appeared to
be a few years ago. Then it seemed to be enough if an introductory course on web
programming taught how to utilize J2EE in the context of Web engineering. Now
there is no such homogeneity. Naturally familiarity with different Java-based
solutions is widely sought after in job advertisements but with the increasing
diversity of specific techniques employees look for, choosing a single technology
base for a course is not as straightforward as it used to be.

Moreover, the principles and techniques of Web have spread outside the Web
proper. Take for example the job advertisements that look for “— background
in Web Runtime (WRT) or Webkit development” combined with “~ Symbian,
Linux, Maemo or Windows platform —”’. Many also prefer some amount of
JavaScript fluency that was nowhere to be seen few years ago. In our opinion
this reflects the increasing significance of client-side programming on the Web
and on devices, such as mobile phones, that utilize the Web development model.

2.3 Academic Motivation

In addition to industry’s expectations and as a response to the recent develop-
ments we feel that each group discussing a course on Web programming at a
university should have a vision on the future of web development. It not only
helps to integrate some recent research into the course but hopefully also pro-
vides a means to navigate around too much industrial pressure and focus on
things that the faculty feels are important — if just including them in passing
during lectures.

As an example, in our case the academic movation for developing the cur-
riculum for a course on Web engineering can be divided into two parts, both
being under active research at our own institute. These are

— Web as a distributed application platform
— Web techniques outside the Web, e.g. on mobile devices.

The first one reflects our vision of the browser transforming itself into a
target for new applications. In a sense this has already happened with web-
based applications, but we believe that limits continue to be stretched, as was
the case with the Lively Kernel[5], for example. For a Web curriculum this view
means that we must take JavaScript seriously and provide even coverage between
programming the client and the server.

Using Web techniques outside the Web is gaining momentum, as could be also
seen from the industry’s requirements. In practice this means using lightweight
dynamic languages at the client and integrating the client and the resources at
the server using HT'TP. Client might expose additional resources for the scripting
language, which often is JavaScript, but the basic development environment is
familiar from the Web. For the course contents this means that general principles
should be favored over specific implementation techniques.

2.4 Department’s View

Also the department plays a role in forming the requirements for the course.
They do it by specifying the minimum requirements for passing the course. For
our course the department has decided on the following][6]

After completing the course OHJ-5101 Web Programming the student
can explain the behavior of a modern Web program from the view of

— HTTP protocol

— the server, and

— the client
During the course the student familiarizes himself with programming
both the server and the client in the context of Web. After the course
the student has the required know-how for developing new simple appli-
cations for the Web environment. Moreover, he can apply the skills in
practice. Student can give examples of the most common problems faced
while developing Web applications. In addition, the student can name
typical security issues in Web applications.

There are three things worth emphasizing. The first thing is the fact that the
previous quote from the Course Catalogue describes the minimum requirements.
The second item is the requirement for the ability to actually apply the skills
in a real setting reflecting the industry’s expectations. The third one is the note
on security issues. It is interesting that while others seem to take the security
issues for granted, the department’s requirements emphasize them.

It might seem somewhat disturbing that the department’s requirements do
not include anything that we might take to be academic in the sense that they
would not be directly applicable but useful in some wider sense — as a foundation
for future work. However, it must be noticed that the text above is meant for
students who are selecting which courses to take. Often they are interested in
the skills they acquire during a course — skills that might make them employ-
able later. Moreover, the quote reflects the minimum requirements required for
passing the course. There is a lot of room to cover interesting topics outside
minimum requirements.

3 Surveying the Landscape

Based on the motivation and expectations, we next survey the concepts, tech-
niques and technologies that in our opinion should be a part of a modern web

Browser JavaScript APls
(Google, Digg)
XHTML Embedded applications
(Facebook)
(DOM I CSs J
(JavaScript
(XMLHttpRequest] HTTP server
N ’
) -
A\ /

Fig. 1. Division of Techniques

programming course table of contents. Depending on outside constraints, such as
the length and difficulty of the course, not necessarily all aspects can be covered
during a single course, though.

The crude division between different topics is presented in the Figure 1. We
divide the material between programming the browser, programming the server,
communication in web applications and being part of the Web ecosystem. Some
issues, such as security, affect multiple parts and have to be discussed either after
other material has been covered or in parts.

3.1 Browser

When revising the contents for the web programming course, the single most sig-
nificant weakness in the material concerned programming the browser. Although
the material was only a couple years old, the browser was neglected almost com-
pletely. Today the browser itself is the target of many interesting non-trivial
applications and in principle one can write applications solely for the browser,
even without any extra communication between the server[5].

The relevance of the browser programming is only increasing as modern
specifications include aspects that make it resemble even more a traditional
application platform. These enhancements include, for example, 3D bindings for
JavaScript and HTML5 features such as web sockets. Nevertheless, at the mo-
ment the key elements that are required are (X)HTML, CSS, DOM bindings
and JavaScript. Comparing to traditional courses on Software Engineering, in
the Web environment these form the assembler — or system — level program-
ming approach. Understanding these key techniques is mandatory in order to
appreciate the challenges that programming the browser entails.

The first three can be discussed as they are and should not present any sig-
nificant difficulties. Although for some students the concept of declarativeness
that creeps up from creating effect by changing the abstract internal form of the
page might be a bit unfamiliar, the APIs are themselves are quite straightfor-
ward. Pedagogically the best route might be to show how a selected client-side
JavaScript library, such as jQuery, abstracts these assembler level concepts into
a coherent whole. The workings of a client-side Ul library, such as jQuery UI,
can be explained in a similar fashion.

JavaScript, on the other hand, is a significantly more difficult subject. At an
institution, such as ours, where students start with statically typed traditional
languages such as C++ or Java, the whole dynamic nature of JavaScript might
be unfamiliar. At universities where dynamic languages, such as Python, are
used during undergraduate courses it might not be such an issue. Nevertheless,
JavaScript is a language of its own and most important difficulties arise in

— understanding the prototypal nature of the language
— applying good Software Engineering practices also with JavaScript
— tool support

Combined with the inherit dynamism of the language, the prototypal nature
of JavaScript makes it probably different from any other language the students
have accustomed to. JavaScript resembles more Self with substantial functional
influences than it does, say, Python. Although interesting in itself, this also
makes introducing JavaScript difficult as many of the libraries tend to emulate
class-based object system which in principle is foreign to JavaScript. A choice
must be made whether to present JavaScript as a programming language that
stands on its own or as a scripting language that can be made to resemble one
with a class system.

As the language itself can be a bit foreign, the emphasis must be put on the
use of proper software engineering principles. The problem is, however, that it is
not quite clear what these should be in case of the browser and JavaScript. The
language itself lacks proper support for modules and namespace handling. These
are often emulated by some convention in libraries and must be explained. Com-
pounded with varying tool support, developing includes challenges not present
in traditional systems programming. These must be taken into account when
discussing developing larger JavaScript applications|1].

3.2 Server

The use of programs at the server-side to generate HTML documents on the fly
represents the traditional form of web applications. As such this traditional form
of serving dynamic content must be discussed. However, the discussion should
focus on the first principles of web. In essence this consists of the HT'TP request
and response, how requests are processed by the web server, the protocol by
which the server transforms control over to the web application, and, to some
extent, the role of the database.

In our opinion it is easy to neglect the role of HI'TP as the fundamental
building block. Note that we discuss HT'TP under the topic of server program-
ming instead of communication. A solid understanding of the HT'TP protocol
right from the start equips the students to later on make objective comparisons,
say, between a RESTful and SOA architectures. Furthermore, in order to un-
derstand more complex scenarios with proxies and gateways, it is necessary to
appreciate why the client-server model was chosen and how the communication
between these two is configured through request and response headers.

In practice some framework is always used to implement server-side pro-
grams. However, understanding the division of work between the web server and
the framework is mandatory. Moreover, students should know the details of how
communication between the two is achieved. To this end, a comparison of dif-
ferent techniques, say FastCGI and mod_python, gives the students an overview
why we have distinct application servers and serve static content from elsewhere.

Of the basic building blocks for a server-side program, in our discussions we
have found that opinions over what should be covered about databases vary the
most. Many web programming courses require a database course as a manda-
tory prerequisite. As such, some argue that students with some background in
SQL and with a working knowledge of databases do not need other instruction
than that of how different frameworks implement the ORM layer. Others, how-
ever, would expect even an introductory course on web programming to include
somewhat more discussion on persistence layer. They justify this by arguing that
often database is the first bottleneck in real-life applications.

Arguably the only reason not to discuss databases in more depth would
be the either to have a distinct course for database scalability or, as is more
likely, because of time limitations. Discussion on databases and the new proposed
alternatives, such as the key-value stores, would bring cutting edge work into the
classroom and make it possible to discuss solutions aimed at scalability, such as
memcached, that might be difficult to integrate into the course without an added
discussion on key-value stores.

Finally, everything above is about inclusion. However, it is also important to
make explicit what we exclude. In our reasoning, the large WS-* stack of web
services does not belong to an introductory course on web programming. Some
argue that it should not even belong to an advanced course. This is a matter
of taste but in our discussions we felt that traditional big web services are too
bulky for us to go through them in class. Moreover, the APIs published by major
providers tend to be more or less RESTful.

3.3 Communication and the Web Ecosystem

Discussion of communication focuses on the client-server model — its benefits
and limitations. In practice this means discussing how the massive scalability of
the Web has been achieved, but at the same time noting how the model restricts
the communication to be always client initiated, at least in principle.

The most important practical issue with respect to communication is the
behavior of XMLHttpRequest in client-side JavaScript. XMLHttpRequest is also

the natural place to discuss the same-origin requirements for network access,
and also with regard to DOM and cookies. This is a natural starting point for
discussion on web security.

Security can be discussed in conjunction with communication. For the obvi-
ous reasons, all of the attacks are based on communication patterns of different
kinds. The only difference is that in the attacks, the communication is formed
with the intent of generating undesired behavior. Looking at the current envi-
ronment, the most significant security issues relate to different injection attacks,
including the cross-site scripting vulnerabilities, and to cross-site request forgery.
At least these should be covered in any introductory course. Understanding why
they work also strengthens the general understanding of the underpinnings of
the Web.

Depending on the time available, we envisage that the discussion of commu-
nication methods should also include mashups and remote resource loading for
JavaScript. In addition to being timely, mashups also demonstrate the power of
Web as an ecosystem for applications.

4 Implementation

Based on the motivation presented, we have implemented an introductory course
on web programming that includes some parts of the ideal course structure
presented in the previous section. In this section we describe the course contents,
present how it was implemented during Spring 2010, and conclude with some
final remarks.

4.1 The Course

The size of the course OHJ-5101 Web Programming is 4 ECTS units. Each ECTS
unit corresponds to approximately 27 hours of work performed. In calendar time
the course lasts 14 weeks and divided into two halves. The course includes 24
hours of lectures given two hours at a time. In addition to this the students
have to implement a mandatory project work in pairs. If no weekly exercises are
arranged, it can be seen from the sizing that in this case the mandatory project
can be of substantial size.

Our division of material is depicted in Table 1. The table shows how during
the first half the server side programming was discussed and how in the second
half the emphasis was on the client-side programming and security issues. As can
be seen from the content, we had to exclude much of the interesting material that
we deemed fit for a introductory course. Moreover, the table shows the realized
lecture schedule. Thus we have the odd ends lecture when previous material took
more time than expected.

From a practical point of view, we took the Django framework, written in
Python, as the example framework. Django served a two-fold purpose. Firstly, it
was used as an example implementation. Consequently, we were able to discuss
handling of state, for example, in the context of an actual implementation and

Lecture 1: Introduction Lecture 7: JavaScript
— Web as a distributed system|[2] — JavaScript: The Good Parts[1]
— The HTTP protocol — What makes JavaScript different

Lecture 2: From HTTP to Programming Lecture 8: JavaScript in the Browser

— Dynamic resources — Browser as host environment
— Web server and programs — HTML, CSS and the DOM interfaces
— Examples

Lecture 3: Server-side Frameworks Lecture 9: Visiting Lecture
— Model-View-Controller — Lecture given by a practicing web en-
— Django gineer

— ORMSs and the Model Layer

Lecture 4: Web and State Lecture 10: Communication
— Concluded frameworks — XMLHttpRequest
— Statelessness of HT'TP — Abstracting communication
— Cookies — Same-Origin Policy

Effect of State on Server

Lecture 5: Authentication Lecture 11: Security
— Protocol support (Basic, Digest) — CSRF and Login CSRF
— Modern authentication (OpenID) — Injection attacks (SQL, XSS)
— Framework support — Session Fixation
Lecture 6: Odd ends Lecture 12: Wider Web
— Authorization (OAuth) — Mashups
— Basics of REST — Being Part of Web

Table 1. Course Outline

browse through the code. This, we believe, made it more concrete for students.
Secondly, we needed a framework for the course project for the students to
use. As we discussed during lectures how Django implements the different parts
required by a web application, students could apply this knowledge during the
course project.

The course project was a simple CD database. Ignoring the switch from
J2EE to Django, the only significant difference between the course project in
the new version of the course compared to the old one was the emphasis on
programmable API. In all the previous courses the application was meant to be
used by humans utilizing a normal web browser. In the new course, however, in
addition to the traditional browser interface a RESTful API was present. The
APIT was used as an example of an interface callable from client-side JavaScript
using XMLHttpRequest in addition to being an example of a public interface
that might be offered by some real service.

4.2 Lessons Learned

The most important lesson learned was that giving a good introduction to web
engineering takes time. The twelve two-hour lectures are not enough to cover
in suitable depth all the required aspects of an introductory course. During the
next academic year we will have four additional weeks of calendar time which
corresponds to eight lecture hours. This will helps us get further, or at least to
discuss the issues at necessary depth, but the only reasonable solution seems
to be to divide the course into two parts. This, however, would again entail a
discussion how to divide the material.

In retrospect, we also had to spend too much time on Django issues, such
as rendering templates, just for the sake of the course project. In the future,
as time is the limiting factor, we plan to move all these mundane details to
weekly exercises and discuss Django only during lectures when the framework’s
implementation of some issues helps to clarify how an abstract web programming
concept is realized in an actual implementation. Otherwise the switch from J2EE
to Django seems to have been a success. Documentation is easily available and
it is easy to get started.

In our opinion, having a large enough course project is a necessity. As the
problem domain does not contain any significant theoretical hurdles but instead
most of the problems are very much oriented towards engineers, showing real
working code is the best proof of understanding. This also helps us to convince
the industry of our approach — they get graduates who can produce real working
software.

5 Conclusions

We have presented a motivation, a landscape and an outline for what we believe
should form an introductory course in web engineering. During our first imple-
mentation round, we have found the biggest problem to be time available for
the course. Time allowing, even more emphasis should be put on the client-side
programming.

References

1. Crockford, D.: JavaScript: The Good Parts. O’Reilly (2008)

2. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Ar-

chitectures. Ph.D. thesis, University of California, Irvine (2000)

Hammer-Lahav, E.: The OAuth 1.0 Protocol. IETF Internet-Draft (August 2010)

4. OpenlD Authentication 2.0 - Final, http://openid.net/specs/openid-authentication-
2_0.html

5. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web Browser as an Applica-
tion Platform: The Lively Kernel Experience. Tech. Rep. SMIL TR-2008-175, Sun
Labs (January 2008)

6. Tampere University of Technology Course Catalog (2010-2011)

@

