
Modelling Self-Management Requirements inServie-Oriented Systems using SelfMMLCarlos Rodríguez-Fernández1, Jorge J. Gómez-Sanz1, and Juan Pavón1Faultad de Informátia,C/ Prof. José Garía Santesmases, s/n,28040 Madrid, Spain{arlosro,jjgomez,jpavon}�fdi.um.esAbstrat. This paper introdues a language alled Self-ManagementModelling Language (SelfMML) whih supports the modelling of self-management apability requirements. The paper presents a ase studyrelated to the automati re-binding features in servies whih illustratesand analyses the language usage in servie-oriented systems.1 IntrodutionSoftware Systems intended to provide servies usually should be operative atpeak performane 24/7 to meet the end-user needs and the business require-ments. Therefore, it is desired that suh systems have the apability of man-aging themselves without human intervention, sine a system ould done suhoperations in a faster and more aurate way. This apability is alled self-management[1℄.The self-management de�nition is detailed by its four aspets: self-optimisation,self-on�guration, self-healing and self-protetion[1℄. Self-optimisation is the au-tomati looking and �nding of opportunities to tune the system to improve theperformane and the e�ieny; Self-on�guration is the automati on�guring ofthe system following high level poliies; Self-healing is the automati reoveringfrom unhealthy state; and Self-protetion is the proteting itself from attaksand asading errors, with antiipatory or reative ations [1℄.Obtaining suh apabilities in a servie-oriented system is not a trivial workand require a ostly engineering e�ort. This work ould be failitated if thedeveloper had speialised tools whih support the de�nition of those apabili-ties. To support this laim, this paper studies the impat of applying the Self-ManagementModelling Language (SelfMML) for the modelling of self-managementapability requirements in a servie-oriented system.The Self-Management Modelling Language (SelfMML) is a language whihintends to assist in the engineering of self-management apability requirements,providing visual representations related to the spei�ation of them. A visualeditor tool for this language is provided to reate, view, edit and store SelfMMLspei�ations. This tool an be downloaded at http://selfmml.sf.net.The hosen ase study for applying SelfMML is based on a well known se-nario in servie-oriented omputing: the re-binding. Spei�ally, the re-binding



apability requirement in an on-line blog system, whih is onsidered as a self-management apability requirement that will be modelled using the proposedlanguage.It is important to remark that we fous on the modelling aspets, not inthe requirement engineering proess. Hene, we intend to provide a modellinglanguage that permits a developer to e�etively apture and speify a self-management requirement, but we do not provide assistane for the requirementengineering proess that uses this language. The SelfMML sope is limited to theself-management requirement spei�ation. A self-management apability repre-sents an expeted behaviour from the system, whih should be implementedin some way during the hosen development proess. During the realisation ofthese, the engineer an identify elements and design the arhiteture of the �nalsystem aording to the spei�ed expeted behaviour, analogous to the reali-sation of use ases. The developer ould onsider some framework or referenearhiteture for self-management or just develop an ad-ho solution. A methodto realise and verify self-management requirements modelled by SelfMML is notstudy in this work.This work is strutured as follows. Setion 2 desribes the language SelfMML.Setion 3 presents a ase study used as illustrative example of the languageusage. Setion 4 shows some related work that has been taken into aount forthis language. Setion 5 introdues the onlusions.2 The Self-Management Modelling Language (SelfMML)The Self-Management Modelling Language (SelfMML) is a language to be usedin the modelling of self-management apabilities that a system should have,that is, self-management apability requirements. This language is made fromUML 2.2 Superstruture, onretely, opies all elements from the Use Cases andAtivities pakages and extends them with new elements. Also imports elementsfrom the Kernel pakage for the de�nition of the elements.The language has a meta-model that de�nes its abstrat syntax. Furtherinformation about the meta-model an be found in http://selfmml.sf.net.The language is desribed below (see �gures 1, 2 and 3).
Fig. 1. SelfMML (1)



Fig. 2. SelfMML (2)� Self-Management Capability. Self-Management Capabilities are the abil-ities of systems to do management operation by themselves on themselves.This element is provided for the representation of self-management apabilityrequirements in a system.Self-Management Capabilities are usually related to quality requirements asmaintainability, portability, reliability, usability, availability, among others [2,3℄,in a way that ontribute to the satisfation of them. The language has the QualityGoal and Quality Level elements for the representation of quality requirements(see �gure 1).� Quality Goal. This element represents a quality requirement desribed asa goal that the system should maintain. It has a harateristi property thatdesribes the harateristi or fator related to the quality requirements, andalso has a satisfation property that desribes how the quality goal is satis�edby the using of some expression in natural language or another languagesuh as Objet Constraint Language (OCL). Suh expressions ould desribewhat are aeptable values for the quality metris related to the qualityrequirement, following the IEEE 1062-1998 Standard reommendations.� Quality Level. This element represents a quality level whih groups qualitygoals that the system should maintain.The language lets developers model how self-management apabilities arerelated to Quality Requirements and Use Cases, by the using of the relationshipsontribute for quality goals and require for use ases. Also the inlude relationshipis provided to desribe what quality goals are inluded in a spei� quality level(see �gure 2). Quality Goals an be onneted to desribe ontribution with theontribute relationship too.Problems are the target of self-protetion and self-healing apabilities. Thelanguage provides elements to model possible problems in the system followingthe philosophy from the Failure Modes and E�et Analysis methods (FMEA)[4℄.These elements are:� Failure. This element desribes a failure that ould happen in the system.� Failure Case. This element desribes what is the wrong behaviour that asystem shows when some failure has happened (failure modes in FMEA).� Misuse Case. This element desribes a misuse of a system that an userdoes whih an lead to a failure[5,6,7℄.



� Attak. This element desribes an attak against the system.A failure, a misuse ase or an attak an be related to a quality goal withthe threaten relationship indiating that the �rst ones threaten the satisfationof the seond ones. Failures an be onneted to failure ases with the ativaterelationship indiating that the �rst ones ativate the wrong behaviour desribedin the seond ones. Also failures an be onneted to use ases with the a�etrelationship indiating that the �rst ones a�et the normal operation of thefuntionality desribed in the seond ones. Failures, misuse ases and attaksan be onneted to failures with the ause relationship indiating that the �rstones ause the seond ones.A self-management apability, as a self-protetion apability, an be on-neted to problems (failures, misuse ase and attaks) to indiate that the a-pability takes antiipatory ations to avoid, redue the onsequene or reduethe likelihood of suh problems using the avoid, redueConsequene and redue-Likelihood relationships respetively. Also, as a self-protetion apability, theelements an be onneted to attaks with the defend relationship to indiatethat the system reats to suh attaks; and an be related to failures with theisolate relationship to indiate that the system isolates suh failures to avoid theasading failures that they ould ause.A self-management apability, as a self-healing apability, an be onnetedto a failure with the reoverFrom relationship indiating that the apabilityreovers the system from the failure. Also, it an be onneted to a failure asewith the deativate relationship indiating that the apability deativates thewrong behaviour of the system.Aording to the self-on�guration and self-optimising aspet of the self-management, a self-management apability ould have the intention to tune aertain on�guration parameters to improve the performane of the system, andould also have the intention to omplete or update a ertain on�guration pa-rameters following high level poliies, in reation to hange events in the systemor in the environment. SelfMML provides two elements to model suh on�gu-rations and hange events:� Change Event. This element desribes a hange event in a system.� Con�guration. This element desribe a on�guration desription.A self-management apability ould be related to a on�guration with thefollowing relationships: tune, omplete and update, indiating that the apabilitytry to tune, ompete or update the on�guration. A apability ould be relatedto a hange event with treat relationship indiating that the apability treatsthe event.SelfMML provides a set of ativity nodes to speify the abstrat proess ofa self-management apability using ativities diagrams (see �gure 3). A self-management proess usually has a struture aording to four phases[1℄: moni-toring, analysis, planning, and plan exeution. In monitoring phase the interest-ing information is gathered; in the analysis phase, the information is proessedin order to infer some needed knowledge; in the planning phase the obtained



knowledge is used to deide what plan exeutes or to build a new one; �nally inthe plan exeution phase the seleted or built plan is exeuted.
Fig. 3. SelfMML (3)The elements for monitoring and analysis are the following (see �gure 3):� Monitoring Node. This element desribes the monitoring ativities andit ontinually generates tokens after eah monitoring yle. The method toobtain information by monitoring ould be pulling, pushing, intereption orany other kind or variant; the node does not imply the using of any partiularmethod.� Analysis Node. This element desribes the analysis ativity to infer knowl-edge from the monitoring reports.The provided elements to model the seletion or onstrution of plans arethe following (see �gure 3):� Plan Seletion Node. This element is for the seletion of plans using OCLexpression, it reeives tokens from the inoming edge and opy one for eahoutgoing edges. The ontinuity of the token depends on the Plan SeletionGuard Node.� Plan Seletion Guard Node. This element is to onstrain the exeutionof plans, it reeives tokens from the inoming edge and presents them tothe outgoing edges only if the OCL expression desribed in the spei�ationproperty is evaluated to true.� Plan Seletion Proess Node. This element desribes a seletion whihis done by a more sophistiated proess that annot be expressed by OCL. Itopies all inoming tokens to all outgoing edges, but the ontinuity of suhtokens depends on the evaluation of the guards on the outgoing edges. Then,a simple terms in guards an be used to desribe what plan is seleted.� Plan Constrution Node. This element desribes a plan onstrution a-tivity.In order to speify the plan exeution ativities the language provides thefollowing elements (see �gure 3):� Plan Step Exeution Node. This element desribes a step of a ertainplan to be exeuted.



� Plan Exeution Node. This element desribes an unde�ned plan to beexeuted (useful when the plan is onstruted).3 Case Study: The Servie Re-bindingThe studied system is a blog system suh as blogger.om. Publisher an submitposts using a publishing servie. This publishing servie lets users write a postand attah to the post any kind of �les. It will use an external storage servieto store the attahed �les.This servie is onstrained by two quality requirements related to the avail-ability and the reliability. Both requirements are inluded in an aeptable qual-ity level for standard users. The �rst requirement onstrains the availability ofthe publishing servie in a value that should be equal or greater than 98%. Theseond requirement onstrains the reliability in a fault response likelihood valueequal or less than 0.05 (see �gure 4).Several problems an a�et the requirements ful�lment, this paper identi�edonly four of them. There are two failures that an a�et the normal operation ofthe servie: the used storage servie beomes unavailable; and the used storageservie gives too many fault responses, beoming unreliable. Both failures anause other two: the unavailability and the unreliability of the publishing servierespetively, and an threaten the quality requirements satisfation desribedbefore (see �gure 4).

Fig. 4. Failures and Quality Goals diagramBoth failures in the publishing servie ativate two failure ases (see �gure4). The Frequent Error Responses Submitting Posts desribes that �randomly�the system answers with an unexpeted error when the publisher is submitting anew post. The Publishing Servie Unavailable desribes that when the publisheraesses to the servie the system shows the message �The Publishing Servie isUnavailable, please try later�.



In order to treat these problems, there is a requirement: �The system shouldhave the apability of deteting suh problems and automatially re-bind toan alternative Storage Servie, following a given seletion riteria based on thequality levels o�ered by them. It assumes that exist a Registry that have afull desription of Storage Servies that an be used by the Publishing Servie.The system should try to selet the servie that o�ers the highest quality levelrelated to the availability and the reliability. But, when the seletion is notlear (beause exist an alternative with the highest availability but without thehighest reliability, or otherwise) the system should follow the poliy desribedby an administrator�. In order to avoid the re-seletion of a problemati serviethe system will manage a blak list of them and will use the list to subtratproblemati servies from the list given by the Registry. This apability shouldbe present in the provider software agents of the Publishing Servie.

Fig. 5. The Publishing Servie Re-binding Capability treating problems diagramThe apability will try to reover the system from the Storage Servie Un-available and Storage Servie Beomes Unreliable failures. It also deativates thefailure ases aused indiretly by the failures. These �intentions� are related tothe self-healing aspet of the apability (see �gure 5).Sine the apability selets the servie whih o�ers the highest quality levelin availability and reliability attributes, it redues the likelihood of the Publish-ing Servie Unavailable and Publishing Servie Beomes Unreliable failures (see�gure 5). Therefore, the apability ontributes to the satisfation of both qual-ity requirements: the high availability and the high reliability of the servie (see�gure 6).The apability requires the development of some use ases in order to operateproperly (see �gure 6). The alternative storage servies are found in a Registry,thus the apability needs the loation of this registry as input. The Con�gureRegistry Loation use ase desribes the funtionality of on�guring the loationof the registry. The apability will manage a blak list of servies, but problematiservies ould be healed and the administrator ould need remove it from theblak list at run-time. But even, the administrator ould need add problematiservies to the blak list beause it was deteted by another system. TheManage



Fig. 6. The Publishing Servie Re-binding Capability onneted to funtional and qual-ity requirements diagramBlak List use ase desribes this funtionality. Also the apability requires theCon�gure QoS Criteria for Seletion use ase to let the administrator on�gurewhat QoS riteria the apability should take into aount to selet alternatives;and also requires the View Re-binding Result Report use ase whih desribesthe funtionality of viewing, by the administrator, the re-binding logs that areprodued at run-time.This apability is detailed by a self-management proess model (�gure 7, 8and 9). There are two monitoring ativities: Storage Servie Faults Monitoringand Storage Servie Availability Monitoring. The former monitors the numberof faults in a period of time in order to update the urrent value of the qualitymetri �fault-response-likelihood� of the Storage Servie; and the latter monitorsthe urrent operational status (available, unavailable) of the Storage Servietoo. These monitoring ativities generate reports whih are onsumed by theAnalysis Of the Needs to Rebind. The Storage Servie Faults Monitoring ativitywill monitor the using of the Storage Servie in order to ath faults, and theStorage Servie Availability Monitoring ould monitor the using, but also oulddo the monitoring either diretly asking to the Storage Servie, or subsribingitself to some heartbeat signal.The Analysis Of the Needs to Rebind ativity deides if the rebinding isneeded or not. The deision is made using the monitoring reports and the qual-ity requirements of the storage servie. If the �fault-response-likelihood� metriof the Storage Servie is equal or greater than 0.05 the reliability of the Pub-lishing Servie will derease, and if the Storage Servie beomes unavailable thePublishing Servie will get into failure. Therefore, in these ases the rebindingwill be needed. However, the Storage Servie ould have a noti�ation systemthat inform to its lients of temporary unavailability for administration purpose.Then the analysis ativity ould take into aount suh informations to makea better deision alulating how the estimated period of time in unavailabilityan a�et the quality level of the Publishing Servie. Another ase where therebinding is not needed is when there is already a rebinding in exeution.If the rebinding is needed, then the proess get into a plan seletion phase(see �gure 7). The plan seletion is made heking if there are available servies



Fig. 7. The Publishing Servie Re-binding Proess (1) diagramandidates or not. There are two plans: update the blak list, blok the usingof the publishing servie, and do nothing, beause there are no andidates; orupdate the blak list and rebind, beause there is at less one andidate.
Fig. 8. The Publishing Servie Re-binding Proess (2) diagramThe �gure 8 shows the diagram of the part orresponding to the seletionand exeution of the plan when there are no andidates. The �rst elements in the�ow is the plan seletion guard node that ontains the OCL spei�ation whihonstrains the opy of the token to the outgoing edge. In this ase, the on-straint is: �if the andidates list is empty then lets the token ontinue�. The restof elements in the �ow are the updating of the blak list with the urrent stor-age servie, the unavailability noti�ation and the unregistering to isolate itselffrom the rest of the system. The Final Node indiates that the self-managementproess will stop ompletely, even the monitoring ativities.The �gure 9 shows the diagram of the part orresponding to the seletion andexeution of the plan when there is at less one andidate. As before, the �rst ele-ments in the �ow is the plan seletion guard that onstrains the opy of the tokento the outgoing edge. When there is at less one andidate in the list the token isopy and the �ow ontinue through the rest of plan step ativities. The plan �rstupdates the blak list and noti�es a temporary unavailability for administrationpurpose. After that, selets one servie aording to the given seletion riteriaand rebinds the publishing servie to it. Finally, noti�es the availability. TheFlow Final Node indiates that the �ow stop, but not the proess.



Fig. 9. The Publishing Servie Re-binding Proess (3) diagram4 Related WorkThe Related Work fous on the works whih try to develop a language that anbe used to model self-management aspets. There are some works that are morerelated to the topi of this paper.One of them is the �UML Pro�le for Modelling Quality of Servie and FaultTolerane Charateristis and Mehanisms Spei�ation� [8℄. This one has threeparts: an UML Pro�le and a Catalog for Quality of Servie; an UML Pro�le forRisk Assessment; an UML Pro�le for Fault Tolerane Mitigation.The QoS part is for modelling QoS requirements. This pro�le is limited toquality of servie modelling. SelfMML lets developers model not only quality ofservie requirements but rather any kind of software quality requirements thatould be related to self-management.The Risk Assessment part is to be used for risk assessment modelling, butalso inluded treatment of risks. This part is based on the CORAS method forseurity analysis[9℄. The interesting part for this work is the meta-model andthe modelling language of the treatment of risk by use ases and ators. Thethreats are personi�ed and modelled as ators, the threat senarios as use ases,and the treatments as use ases too. The onnetion with QoS is the modellingof risks that ould a�et the QoS Level of the system. The treatment of risk isspei�ed by use ases. SelfMML makes a di�erene between a apability of thesystem to do some management operation by itself and the use ases that suh aapability ould require. This di�erene allows the modelling of self-managementapabilities that ould not require any use ase. But also there are ases whena treatment of problems is not well desribed by an use ase but rather by andediated entity, e.g. the ase study presented in this work, the rebinding ouldnot be well desribed if only use ases are used.Finally, the Fault Tolerane Mitigation meta-model and Pro�le part is formodelling fault tolerane mehanisms for the system. It is mainly for modellingstrutures that will enable a system to support faults. It inludes the modellingof redundany on�guration, monitoring ollaborations, fault detetion poliies,among others. Our work will inlude fault tolerane, sine the fault tolerane



ould be onsidered as part of autonomi omputing [3℄, speially when it isrelated with self-protetion and self-healing. The struture of systems for themaintenane of health is not addressed by the language presented here, but willbe onsidered in future works.Another work omes from Ian Alexander [7℄. This work does not proposea meta-model, what makes that work more informal, but de�nes a graphiallanguage that suggest a onepts related to some aspet of self-management,e.g. �misuse ase�, �mitigates�, �threat�, or �threatens�. It was used to inspirepart of the work presented here.Finally, there are several works whih present graphial languages for sup-porting goal-oriented requirement engineering. Some of them are i* [10℄, TRO-POS [11℄ and GRL[12℄. In these works requirements are identi�ed as goals whihan represent funtional requirements and non-funtional requirements (namedas �soft-goal�). Also the languages provide another onepts, whih an help inrequirement engineering works, suh as: ator, task (or plan) and several relation-ships . Using these languages, self-management requirements an be modelledas goals. However, these languages lak ertain elements whih an help in theapturing, traing and spei�ation of these kind of requirements. Some of themare provided by SelfMML, spei�ally, elements and relationships for modellingfailures, their auses and their e�ets, the require relationship, and the elementsrelated to the spei�ation of self-management proesses.5 ConlusionThis work has presented the Self-Management Modelling Language as a languagethat an be used in the modelling of self-management apabilities in servie-oriented systems. Also a ase study has been presented to study the appliation ofthe language to model self-management requirements in servie-oriented systems.This language has enabled the modelling of a self-management apability inthe ase study as a requirement in the system, failitating the apturing andspei�ation of it. However, there are other issues, that ould be identi�ed inthe ase study, whih would be interesting to model in servie-oriented systems,but the language at this moment did not provide any spei� way to do it.The requirement required the spei�ation of some poliies in order to make aseletion. A model of what poliy options the administrator has and how thepoliies are used to make the seletion ould be interesting to have. Also, theloation of the apability ould be inferred by the name of the apability, but itwould be interesting to assoiate the apability to a spei� servie in a serviearhiteture model. The integration of SelfMML with a language that an be usedto model servie arhitetures like Soa Modelling Language (SoaML), ould �llthis gap. We would like to study both issues as future works in order to developa more ompleted language.A method for realising and verifying self-management requirement spei�edwith SelfMML is an open issue for future work. We would also like to exploremodel to model transformation from self-management elements to design ele-



ments to support more ompletely the engineering of self-management apa-bilities of a target system. Spei�ally, sine agents are suitable to realise self-management apabilities [1,13℄, self-management elements seem suitable to bemapped to design elements related to agent approahes.AknowledgementsThis work has been developed with support of the program "Grupos UCM-Comunidad de Madrid" with grant CCG07-UCM/TIC-2765, and the projetTIN2005-08501-C03-01, funded by the Spanish Counil for Siene and Tehnol-ogy.Referenes1. Kephart, J.O., Chess, D.M.: The vision of autonomi omputing. IEEE Computer36(1) (2003) 41�502. Nami, M.R., Shari�, M.: Autonomi Computing: A New Approah. In: AMS '07.(Marh 2007) 352�3573. Sterritt, R., Bustard, D.: Autonomi omputing � a means of ahieving depend-ability? IEEE ECBS 0 (2003) 2474. : Failure modes and e�ets analysis. Tehnial Report MIL-P-1629, U.S. Army(1949)5. Sindre, G., Opdahl, A.: Eliiting seurity requirements by misuse ases. In:TOOLS-Pai� 2000. (2000) 120�1316. Andreas, G.S., Opdahl, A.L.: Templates for misuse ase desription. In: REFSQ'01.(2001) 4�57. Alexander, I.: Misuse ases: Use ases with hostile intent. IEEE Software 20 (2003)58�668. : UML Pro�le for Modeling Quality of Servie and Fault Tolerane Charateristisand Mehanisms Spei�ation. OMG. v1.1 edn. (April 2008)9. Braber, F., Hogganvik, I., Lund, M.S., Stølen, K., Vraalsen, F.: Model-based seu-rity analysis in seven steps � a guided tour to the oras method. BT TehnologyJournal 25(1) (2007) 101�11710. Yu, E.S.K.: Modelling strategi relationships for proess reengineering. PhD thesis,Toronto, Ont., Canada, Canada (1996)11. Giunhiglia, F., Mylopoulos, J., Perini, A.: The tropos software developmentmethodology: Proesses, models and diagrams. In Giunhiglia, F., Odell, J., Weiÿ,G., eds.: AOSE'02. Volume 2585 of Leture Notes in Computer Siene., Springer(2002) 162�17312. Amyot, D., Mussbaher, G.: URN: Towards a new standard for the visual desrip-tion of requirements. In: Teleommuniations and beyond: The BroaderApplia-bility of SDL and MSC: Third International Workshop, SAM 2002, Aberystwyth,UK, June 24-26, 2002. Revised Papers. Volume 2599 of Leture Notes in ComputerSiene., Springer Berlin / Heidelberg (2003) 21�3713. Kota, R., Gibbins, N., Jennings, N.R.: Deentralised strutural adaptation in agentorganisations. In: Organized Adaption in Multi-Agent Systems. Volume 5368 ofLeture Notes in Computer Siene., Springer Berlin / Heidelberg (2009) 54�71


