
Modelling Self-Management Requirements inServi
e-Oriented Systems using SelfMMLCarlos Rodríguez-Fernández1, Jorge J. Gómez-Sanz1, and Juan Pavón1Fa
ultad de Informáti
a,C/ Prof. José Gar
ía Santesmases, s/n,28040 Madrid, Spain{
arlosro,jjgomez,jpavon}�fdi.u
m.esAbstra
t. This paper introdu
es a language 
alled Self-ManagementModelling Language (SelfMML) whi
h supports the modelling of self-management 
apability requirements. The paper presents a 
ase studyrelated to the automati
 re-binding features in servi
es whi
h illustratesand analyses the language usage in servi
e-oriented systems.1 Introdu
tionSoftware Systems intended to provide servi
es usually should be operative atpeak performan
e 24/7 to meet the end-user needs and the business require-ments. Therefore, it is desired that su
h systems have the 
apability of man-aging themselves without human intervention, sin
e a system 
ould done su
hoperations in a faster and more a

urate way. This 
apability is 
alled self-management[1℄.The self-management de�nition is detailed by its four aspe
ts: self-optimisation,self-
on�guration, self-healing and self-prote
tion[1℄. Self-optimisation is the au-tomati
 looking and �nding of opportunities to tune the system to improve theperforman
e and the e�
ien
y; Self-
on�guration is the automati
 
on�guring ofthe system following high level poli
ies; Self-healing is the automati
 re
overingfrom unhealthy state; and Self-prote
tion is the prote
ting itself from atta
ksand 
as
ading errors, with anti
ipatory or rea
tive a
tions [1℄.Obtaining su
h 
apabilities in a servi
e-oriented system is not a trivial workand require a 
ostly engineering e�ort. This work 
ould be fa
ilitated if thedeveloper had spe
ialised tools whi
h support the de�nition of those 
apabili-ties. To support this 
laim, this paper studies the impa
t of applying the Self-ManagementModelling Language (SelfMML) for the modelling of self-management
apability requirements in a servi
e-oriented system.The Self-Management Modelling Language (SelfMML) is a language whi
hintends to assist in the engineering of self-management 
apability requirements,providing visual representations related to the spe
i�
ation of them. A visualeditor tool for this language is provided to 
reate, view, edit and store SelfMMLspe
i�
ations. This tool 
an be downloaded at http://selfmml.sf.net.The 
hosen 
ase study for applying SelfMML is based on a well known s
e-nario in servi
e-oriented 
omputing: the re-binding. Spe
i�
ally, the re-binding




apability requirement in an on-line blog system, whi
h is 
onsidered as a self-management 
apability requirement that will be modelled using the proposedlanguage.It is important to remark that we fo
us on the modelling aspe
ts, not inthe requirement engineering pro
ess. Hen
e, we intend to provide a modellinglanguage that permits a developer to e�e
tively 
apture and spe
ify a self-management requirement, but we do not provide assistan
e for the requirementengineering pro
ess that uses this language. The SelfMML s
ope is limited to theself-management requirement spe
i�
ation. A self-management 
apability repre-sents an expe
ted behaviour from the system, whi
h should be implementedin some way during the 
hosen development pro
ess. During the realisation ofthese, the engineer 
an identify elements and design the ar
hite
ture of the �nalsystem a

ording to the spe
i�ed expe
ted behaviour, analogous to the reali-sation of use 
ases. The developer 
ould 
onsider some framework or referen
ear
hite
ture for self-management or just develop an ad-ho
 solution. A methodto realise and verify self-management requirements modelled by SelfMML is notstudy in this work.This work is stru
tured as follows. Se
tion 2 des
ribes the language SelfMML.Se
tion 3 presents a 
ase study used as illustrative example of the languageusage. Se
tion 4 shows some related work that has been taken into a

ount forthis language. Se
tion 5 introdu
es the 
on
lusions.2 The Self-Management Modelling Language (SelfMML)The Self-Management Modelling Language (SelfMML) is a language to be usedin the modelling of self-management 
apabilities that a system should have,that is, self-management 
apability requirements. This language is made fromUML 2.2 Superstru
ture, 
on
retely, 
opies all elements from the Use Cases andA
tivities pa
kages and extends them with new elements. Also imports elementsfrom the Kernel pa
kage for the de�nition of the elements.The language has a meta-model that de�nes its abstra
t syntax. Furtherinformation about the meta-model 
an be found in http://selfmml.sf.net.The language is des
ribed below (see �gures 1, 2 and 3).
Fig. 1. SelfMML (1)



Fig. 2. SelfMML (2)� Self-Management Capability. Self-Management Capabilities are the abil-ities of systems to do management operation by themselves on themselves.This element is provided for the representation of self-management 
apabilityrequirements in a system.Self-Management Capabilities are usually related to quality requirements asmaintainability, portability, reliability, usability, availability, among others [2,3℄,in a way that 
ontribute to the satisfa
tion of them. The language has the QualityGoal and Quality Level elements for the representation of quality requirements(see �gure 1).� Quality Goal. This element represents a quality requirement des
ribed asa goal that the system should maintain. It has a 
hara
teristi
 property thatdes
ribes the 
hara
teristi
 or fa
tor related to the quality requirements, andalso has a satisfa
tion property that des
ribes how the quality goal is satis�edby the using of some expression in natural language or another languagesu
h as Obje
t Constraint Language (OCL). Su
h expressions 
ould des
ribewhat are a

eptable values for the quality metri
s related to the qualityrequirement, following the IEEE 1062-1998 Standard re
ommendations.� Quality Level. This element represents a quality level whi
h groups qualitygoals that the system should maintain.The language lets developers model how self-management 
apabilities arerelated to Quality Requirements and Use Cases, by the using of the relationships
ontribute for quality goals and require for use 
ases. Also the in
lude relationshipis provided to des
ribe what quality goals are in
luded in a spe
i�
 quality level(see �gure 2). Quality Goals 
an be 
onne
ted to des
ribe 
ontribution with the
ontribute relationship too.Problems are the target of self-prote
tion and self-healing 
apabilities. Thelanguage provides elements to model possible problems in the system followingthe philosophy from the Failure Modes and E�e
t Analysis methods (FMEA)[4℄.These elements are:� Failure. This element des
ribes a failure that 
ould happen in the system.� Failure Case. This element des
ribes what is the wrong behaviour that asystem shows when some failure has happened (failure modes in FMEA).� Misuse Case. This element des
ribes a misuse of a system that an userdoes whi
h 
an lead to a failure[5,6,7℄.



� Atta
k. This element des
ribes an atta
k against the system.A failure, a misuse 
ase or an atta
k 
an be related to a quality goal withthe threaten relationship indi
ating that the �rst ones threaten the satisfa
tionof the se
ond ones. Failures 
an be 
onne
ted to failure 
ases with the a
tivaterelationship indi
ating that the �rst ones a
tivate the wrong behaviour des
ribedin the se
ond ones. Also failures 
an be 
onne
ted to use 
ases with the a�e
trelationship indi
ating that the �rst ones a�e
t the normal operation of thefun
tionality des
ribed in the se
ond ones. Failures, misuse 
ases and atta
ks
an be 
onne
ted to failures with the 
ause relationship indi
ating that the �rstones 
ause the se
ond ones.A self-management 
apability, as a self-prote
tion 
apability, 
an be 
on-ne
ted to problems (failures, misuse 
ase and atta
ks) to indi
ate that the 
a-pability takes anti
ipatory a
tions to avoid, redu
e the 
onsequen
e or redu
ethe likelihood of su
h problems using the avoid, redu
eConsequen
e and redu
e-Likelihood relationships respe
tively. Also, as a self-prote
tion 
apability, theelements 
an be 
onne
ted to atta
ks with the defend relationship to indi
atethat the system rea
ts to su
h atta
ks; and 
an be related to failures with theisolate relationship to indi
ate that the system isolates su
h failures to avoid the
as
ading failures that they 
ould 
ause.A self-management 
apability, as a self-healing 
apability, 
an be 
onne
tedto a failure with the re
overFrom relationship indi
ating that the 
apabilityre
overs the system from the failure. Also, it 
an be 
onne
ted to a failure 
asewith the dea
tivate relationship indi
ating that the 
apability dea
tivates thewrong behaviour of the system.A

ording to the self-
on�guration and self-optimising aspe
t of the self-management, a self-management 
apability 
ould have the intention to tune a
ertain 
on�guration parameters to improve the performan
e of the system, and
ould also have the intention to 
omplete or update a 
ertain 
on�guration pa-rameters following high level poli
ies, in rea
tion to 
hange events in the systemor in the environment. SelfMML provides two elements to model su
h 
on�gu-rations and 
hange events:� Change Event. This element des
ribes a 
hange event in a system.� Con�guration. This element des
ribe a 
on�guration des
ription.A self-management 
apability 
ould be related to a 
on�guration with thefollowing relationships: tune, 
omplete and update, indi
ating that the 
apabilitytry to tune, 
ompete or update the 
on�guration. A 
apability 
ould be relatedto a 
hange event with treat relationship indi
ating that the 
apability treatsthe event.SelfMML provides a set of a
tivity nodes to spe
ify the abstra
t pro
ess ofa self-management 
apability using a
tivities diagrams (see �gure 3). A self-management pro
ess usually has a stru
ture a

ording to four phases[1℄: moni-toring, analysis, planning, and plan exe
ution. In monitoring phase the interest-ing information is gathered; in the analysis phase, the information is pro
essedin order to infer some needed knowledge; in the planning phase the obtained



knowledge is used to de
ide what plan exe
utes or to build a new one; �nally inthe plan exe
ution phase the sele
ted or built plan is exe
uted.
Fig. 3. SelfMML (3)The elements for monitoring and analysis are the following (see �gure 3):� Monitoring Node. This element des
ribes the monitoring a
tivities andit 
ontinually generates tokens after ea
h monitoring 
y
le. The method toobtain information by monitoring 
ould be pulling, pushing, inter
eption orany other kind or variant; the node does not imply the using of any parti
ularmethod.� Analysis Node. This element des
ribes the analysis a
tivity to infer knowl-edge from the monitoring reports.The provided elements to model the sele
tion or 
onstru
tion of plans arethe following (see �gure 3):� Plan Sele
tion Node. This element is for the sele
tion of plans using OCLexpression, it re
eives tokens from the in
oming edge and 
opy one for ea
houtgoing edges. The 
ontinuity of the token depends on the Plan Sele
tionGuard Node.� Plan Sele
tion Guard Node. This element is to 
onstrain the exe
utionof plans, it re
eives tokens from the in
oming edge and presents them tothe outgoing edges only if the OCL expression des
ribed in the spe
i�
ationproperty is evaluated to true.� Plan Sele
tion Pro
ess Node. This element des
ribes a sele
tion whi
his done by a more sophisti
ated pro
ess that 
annot be expressed by OCL. It
opies all in
oming tokens to all outgoing edges, but the 
ontinuity of su
htokens depends on the evaluation of the guards on the outgoing edges. Then,a simple terms in guards 
an be used to des
ribe what plan is sele
ted.� Plan Constru
tion Node. This element des
ribes a plan 
onstru
tion a
-tivity.In order to spe
ify the plan exe
ution a
tivities the language provides thefollowing elements (see �gure 3):� Plan Step Exe
ution Node. This element des
ribes a step of a 
ertainplan to be exe
uted.



� Plan Exe
ution Node. This element des
ribes an unde�ned plan to beexe
uted (useful when the plan is 
onstru
ted).3 Case Study: The Servi
e Re-bindingThe studied system is a blog system su
h as blogger.
om. Publisher 
an submitposts using a publishing servi
e. This publishing servi
e lets users write a postand atta
h to the post any kind of �les. It will use an external storage servi
eto store the atta
hed �les.This servi
e is 
onstrained by two quality requirements related to the avail-ability and the reliability. Both requirements are in
luded in an a

eptable qual-ity level for standard users. The �rst requirement 
onstrains the availability ofthe publishing servi
e in a value that should be equal or greater than 98%. These
ond requirement 
onstrains the reliability in a fault response likelihood valueequal or less than 0.05 (see �gure 4).Several problems 
an a�e
t the requirements ful�lment, this paper identi�edonly four of them. There are two failures that 
an a�e
t the normal operation ofthe servi
e: the used storage servi
e be
omes unavailable; and the used storageservi
e gives too many fault responses, be
oming unreliable. Both failures 
an
ause other two: the unavailability and the unreliability of the publishing servi
erespe
tively, and 
an threaten the quality requirements satisfa
tion des
ribedbefore (see �gure 4).

Fig. 4. Failures and Quality Goals diagramBoth failures in the publishing servi
e a
tivate two failure 
ases (see �gure4). The Frequent Error Responses Submitting Posts des
ribes that �randomly�the system answers with an unexpe
ted error when the publisher is submitting anew post. The Publishing Servi
e Unavailable des
ribes that when the publishera

esses to the servi
e the system shows the message �The Publishing Servi
e isUnavailable, please try later�.



In order to treat these problems, there is a requirement: �The system shouldhave the 
apability of dete
ting su
h problems and automati
ally re-bind toan alternative Storage Servi
e, following a given sele
tion 
riteria based on thequality levels o�ered by them. It assumes that exist a Registry that have afull des
ription of Storage Servi
es that 
an be used by the Publishing Servi
e.The system should try to sele
t the servi
e that o�ers the highest quality levelrelated to the availability and the reliability. But, when the sele
tion is not
lear (be
ause exist an alternative with the highest availability but without thehighest reliability, or otherwise) the system should follow the poli
y des
ribedby an administrator�. In order to avoid the re-sele
tion of a problemati
 servi
ethe system will manage a bla
k list of them and will use the list to subtra
tproblemati
 servi
es from the list given by the Registry. This 
apability shouldbe present in the provider software agents of the Publishing Servi
e.

Fig. 5. The Publishing Servi
e Re-binding Capability treating problems diagramThe 
apability will try to re
over the system from the Storage Servi
e Un-available and Storage Servi
e Be
omes Unreliable failures. It also dea
tivates thefailure 
ases 
aused indire
tly by the failures. These �intentions� are related tothe self-healing aspe
t of the 
apability (see �gure 5).Sin
e the 
apability sele
ts the servi
e whi
h o�ers the highest quality levelin availability and reliability attributes, it redu
es the likelihood of the Publish-ing Servi
e Unavailable and Publishing Servi
e Be
omes Unreliable failures (see�gure 5). Therefore, the 
apability 
ontributes to the satisfa
tion of both qual-ity requirements: the high availability and the high reliability of the servi
e (see�gure 6).The 
apability requires the development of some use 
ases in order to operateproperly (see �gure 6). The alternative storage servi
es are found in a Registry,thus the 
apability needs the lo
ation of this registry as input. The Con�gureRegistry Lo
ation use 
ase des
ribes the fun
tionality of 
on�guring the lo
ationof the registry. The 
apability will manage a bla
k list of servi
es, but problemati
servi
es 
ould be healed and the administrator 
ould need remove it from thebla
k list at run-time. But even, the administrator 
ould need add problemati
servi
es to the bla
k list be
ause it was dete
ted by another system. TheManage



Fig. 6. The Publishing Servi
e Re-binding Capability 
onne
ted to fun
tional and qual-ity requirements diagramBla
k List use 
ase des
ribes this fun
tionality. Also the 
apability requires theCon�gure QoS Criteria for Sele
tion use 
ase to let the administrator 
on�gurewhat QoS 
riteria the 
apability should take into a

ount to sele
t alternatives;and also requires the View Re-binding Result Report use 
ase whi
h des
ribesthe fun
tionality of viewing, by the administrator, the re-binding logs that areprodu
ed at run-time.This 
apability is detailed by a self-management pro
ess model (�gure 7, 8and 9). There are two monitoring a
tivities: Storage Servi
e Faults Monitoringand Storage Servi
e Availability Monitoring. The former monitors the numberof faults in a period of time in order to update the 
urrent value of the qualitymetri
 �fault-response-likelihood� of the Storage Servi
e; and the latter monitorsthe 
urrent operational status (available, unavailable) of the Storage Servi
etoo. These monitoring a
tivities generate reports whi
h are 
onsumed by theAnalysis Of the Needs to Rebind. The Storage Servi
e Faults Monitoring a
tivitywill monitor the using of the Storage Servi
e in order to 
at
h faults, and theStorage Servi
e Availability Monitoring 
ould monitor the using, but also 
oulddo the monitoring either dire
tly asking to the Storage Servi
e, or subs
ribingitself to some heartbeat signal.The Analysis Of the Needs to Rebind a
tivity de
ides if the rebinding isneeded or not. The de
ision is made using the monitoring reports and the qual-ity requirements of the storage servi
e. If the �fault-response-likelihood� metri
of the Storage Servi
e is equal or greater than 0.05 the reliability of the Pub-lishing Servi
e will de
rease, and if the Storage Servi
e be
omes unavailable thePublishing Servi
e will get into failure. Therefore, in these 
ases the rebindingwill be needed. However, the Storage Servi
e 
ould have a noti�
ation systemthat inform to its 
lients of temporary unavailability for administration purpose.Then the analysis a
tivity 
ould take into a

ount su
h informations to makea better de
ision 
al
ulating how the estimated period of time in unavailability
an a�e
t the quality level of the Publishing Servi
e. Another 
ase where therebinding is not needed is when there is already a rebinding in exe
ution.If the rebinding is needed, then the pro
ess get into a plan sele
tion phase(see �gure 7). The plan sele
tion is made 
he
king if there are available servi
es



Fig. 7. The Publishing Servi
e Re-binding Pro
ess (1) diagram
andidates or not. There are two plans: update the bla
k list, blo
k the usingof the publishing servi
e, and do nothing, be
ause there are no 
andidates; orupdate the bla
k list and rebind, be
ause there is at less one 
andidate.
Fig. 8. The Publishing Servi
e Re-binding Pro
ess (2) diagramThe �gure 8 shows the diagram of the part 
orresponding to the sele
tionand exe
ution of the plan when there are no 
andidates. The �rst elements in the�ow is the plan sele
tion guard node that 
ontains the OCL spe
i�
ation whi
h
onstrains the 
opy of the token to the outgoing edge. In this 
ase, the 
on-straint is: �if the 
andidates list is empty then lets the token 
ontinue�. The restof elements in the �ow are the updating of the bla
k list with the 
urrent stor-age servi
e, the unavailability noti�
ation and the unregistering to isolate itselffrom the rest of the system. The Final Node indi
ates that the self-managementpro
ess will stop 
ompletely, even the monitoring a
tivities.The �gure 9 shows the diagram of the part 
orresponding to the sele
tion andexe
ution of the plan when there is at less one 
andidate. As before, the �rst ele-ments in the �ow is the plan sele
tion guard that 
onstrains the 
opy of the tokento the outgoing edge. When there is at less one 
andidate in the list the token is
opy and the �ow 
ontinue through the rest of plan step a
tivities. The plan �rstupdates the bla
k list and noti�es a temporary unavailability for administrationpurpose. After that, sele
ts one servi
e a

ording to the given sele
tion 
riteriaand rebinds the publishing servi
e to it. Finally, noti�es the availability. TheFlow Final Node indi
ates that the �ow stop, but not the pro
ess.



Fig. 9. The Publishing Servi
e Re-binding Pro
ess (3) diagram4 Related WorkThe Related Work fo
us on the works whi
h try to develop a language that 
anbe used to model self-management aspe
ts. There are some works that are morerelated to the topi
 of this paper.One of them is the �UML Pro�le for Modelling Quality of Servi
e and FaultToleran
e Chara
teristi
s and Me
hanisms Spe
i�
ation� [8℄. This one has threeparts: an UML Pro�le and a Catalog for Quality of Servi
e; an UML Pro�le forRisk Assessment; an UML Pro�le for Fault Toleran
e Mitigation.The QoS part is for modelling QoS requirements. This pro�le is limited toquality of servi
e modelling. SelfMML lets developers model not only quality ofservi
e requirements but rather any kind of software quality requirements that
ould be related to self-management.The Risk Assessment part is to be used for risk assessment modelling, butalso in
luded treatment of risks. This part is based on the CORAS method forse
urity analysis[9℄. The interesting part for this work is the meta-model andthe modelling language of the treatment of risk by use 
ases and a
tors. Thethreats are personi�ed and modelled as a
tors, the threat s
enarios as use 
ases,and the treatments as use 
ases too. The 
onne
tion with QoS is the modellingof risks that 
ould a�e
t the QoS Level of the system. The treatment of risk isspe
i�ed by use 
ases. SelfMML makes a di�eren
e between a 
apability of thesystem to do some management operation by itself and the use 
ases that su
h a
apability 
ould require. This di�eren
e allows the modelling of self-management
apabilities that 
ould not require any use 
ase. But also there are 
ases whena treatment of problems is not well des
ribed by an use 
ase but rather by andedi
ated entity, e.g. the 
ase study presented in this work, the rebinding 
ouldnot be well des
ribed if only use 
ases are used.Finally, the Fault Toleran
e Mitigation meta-model and Pro�le part is formodelling fault toleran
e me
hanisms for the system. It is mainly for modellingstru
tures that will enable a system to support faults. It in
ludes the modellingof redundan
y 
on�guration, monitoring 
ollaborations, fault dete
tion poli
ies,among others. Our work will in
lude fault toleran
e, sin
e the fault toleran
e




ould be 
onsidered as part of autonomi
 
omputing [3℄, spe
ially when it isrelated with self-prote
tion and self-healing. The stru
ture of systems for themaintenan
e of health is not addressed by the language presented here, but willbe 
onsidered in future works.Another work 
omes from Ian Alexander [7℄. This work does not proposea meta-model, what makes that work more informal, but de�nes a graphi
allanguage that suggest a 
on
epts related to some aspe
t of self-management,e.g. �misuse 
ase�, �mitigates�, �threat�, or �threatens�. It was used to inspirepart of the work presented here.Finally, there are several works whi
h present graphi
al languages for sup-porting goal-oriented requirement engineering. Some of them are i* [10℄, TRO-POS [11℄ and GRL[12℄. In these works requirements are identi�ed as goals whi
h
an represent fun
tional requirements and non-fun
tional requirements (namedas �soft-goal�). Also the languages provide another 
on
epts, whi
h 
an help inrequirement engineering works, su
h as: a
tor, task (or plan) and several relation-ships . Using these languages, self-management requirements 
an be modelledas goals. However, these languages la
k 
ertain elements whi
h 
an help in the
apturing, tra
ing and spe
i�
ation of these kind of requirements. Some of themare provided by SelfMML, spe
i�
ally, elements and relationships for modellingfailures, their 
auses and their e�e
ts, the require relationship, and the elementsrelated to the spe
i�
ation of self-management pro
esses.5 Con
lusionThis work has presented the Self-Management Modelling Language as a languagethat 
an be used in the modelling of self-management 
apabilities in servi
e-oriented systems. Also a 
ase study has been presented to study the appli
ation ofthe language to model self-management requirements in servi
e-oriented systems.This language has enabled the modelling of a self-management 
apability inthe 
ase study as a requirement in the system, fa
ilitating the 
apturing andspe
i�
ation of it. However, there are other issues, that 
ould be identi�ed inthe 
ase study, whi
h would be interesting to model in servi
e-oriented systems,but the language at this moment did not provide any spe
i�
 way to do it.The requirement required the spe
i�
ation of some poli
ies in order to make asele
tion. A model of what poli
y options the administrator has and how thepoli
ies are used to make the sele
tion 
ould be interesting to have. Also, thelo
ation of the 
apability 
ould be inferred by the name of the 
apability, but itwould be interesting to asso
iate the 
apability to a spe
i�
 servi
e in a servi
ear
hite
ture model. The integration of SelfMML with a language that 
an be usedto model servi
e ar
hite
tures like Soa Modelling Language (SoaML), 
ould �llthis gap. We would like to study both issues as future works in order to developa more 
ompleted language.A method for realising and verifying self-management requirement spe
i�edwith SelfMML is an open issue for future work. We would also like to exploremodel to model transformation from self-management elements to design ele-



ments to support more 
ompletely the engineering of self-management 
apa-bilities of a target system. Spe
i�
ally, sin
e agents are suitable to realise self-management 
apabilities [1,13℄, self-management elements seem suitable to bemapped to design elements related to agent approa
hes.A
knowledgementsThis work has been developed with support of the program "Grupos UCM-Comunidad de Madrid" with grant CCG07-UCM/TIC-2765, and the proje
tTIN2005-08501-C03-01, funded by the Spanish Coun
il for S
ien
e and Te
hnol-ogy.Referen
es1. Kephart, J.O., Chess, D.M.: The vision of autonomi
 
omputing. IEEE Computer36(1) (2003) 41�502. Nami, M.R., Shari�, M.: Autonomi
 Computing: A New Approa
h. In: AMS '07.(Mar
h 2007) 352�3573. Sterritt, R., Bustard, D.: Autonomi
 
omputing � a means of a
hieving depend-ability? IEEE ECBS 0 (2003) 2474. : Failure modes and e�e
ts analysis. Te
hni
al Report MIL-P-1629, U.S. Army(1949)5. Sindre, G., Opdahl, A.: Eli
iting se
urity requirements by misuse 
ases. In:TOOLS-Pa
i�
 2000. (2000) 120�1316. Andreas, G.S., Opdahl, A.L.: Templates for misuse 
ase des
ription. In: REFSQ'01.(2001) 4�57. Alexander, I.: Misuse 
ases: Use 
ases with hostile intent. IEEE Software 20 (2003)58�668. : UML Pro�le for Modeling Quality of Servi
e and Fault Toleran
e Chara
teristi
sand Me
hanisms Spe
i�
ation. OMG. v1.1 edn. (April 2008)9. Braber, F., Hogganvik, I., Lund, M.S., Stølen, K., Vraalsen, F.: Model-based se
u-rity analysis in seven steps � a guided tour to the 
oras method. BT Te
hnologyJournal 25(1) (2007) 101�11710. Yu, E.S.K.: Modelling strategi
 relationships for pro
ess reengineering. PhD thesis,Toronto, Ont., Canada, Canada (1996)11. Giun
higlia, F., Mylopoulos, J., Perini, A.: The tropos software developmentmethodology: Pro
esses, models and diagrams. In Giun
higlia, F., Odell, J., Weiÿ,G., eds.: AOSE'02. Volume 2585 of Le
ture Notes in Computer S
ien
e., Springer(2002) 162�17312. Amyot, D., Mussba
her, G.: URN: Towards a new standard for the visual des
rip-tion of requirements. In: Tele
ommuni
ations and beyond: The BroaderAppli
a-bility of SDL and MSC: Third International Workshop, SAM 2002, Aberystwyth,UK, June 24-26, 2002. Revised Papers. Volume 2599 of Le
ture Notes in ComputerS
ien
e., Springer Berlin / Heidelberg (2003) 21�3713. Kota, R., Gibbins, N., Jennings, N.R.: De
entralised stru
tural adaptation in agentorganisations. In: Organized Adaption in Multi-Agent Systems. Volume 5368 ofLe
ture Notes in Computer S
ien
e., Springer Berlin / Heidelberg (2009) 54�71


