Modelling Self-Management Requirements in
Service-Oriented Systems using SelfMML

Carlos Rodriguez-Fernandez', Jorge J. Gémez-Sanz', and Juan Pavén!

Facultad de Informaética,
C/ Prof. José Garcia Santesmases, s/n,
28040 Madrid, Spain

{carlosro, jjgomez, jpavon}@fdi.ucm.es

Abstract. This paper introduces a language called Self-Management
Modelling Language (Self MML) which supports the modelling of self-
management capability requirements. The paper presents a case study
related to the automatic re-binding features in services which illustrates
and analyses the language usage in service-oriented systems.

1 Introduction

Software Systems intended to provide services usually should be operative at
peak performance 24/7 to meet the end-user needs and the business require-
ments. Therefore, it is desired that such systems have the capability of man-
aging themselves without human intervention, since a system could done such
operations in a faster and more accurate way. This capability is called self-
management[1].

The self-management definition is detailed by its four aspects: self-optimisation,
self-configuration, self-healing and self-protection[1]. Self-optimisation is the au-
tomatic looking and finding of opportunities to tune the system to improve the
performance and the efficiency; Self-configuration is the automatic configuring of
the system following high level policies; Self-healing is the automatic recovering
from unhealthy state; and Self-protection is the protecting itself from attacks
and cascading errors, with anticipatory or reactive actions [1].

Obtaining such capabilities in a service-oriented system is not a trivial work
and require a costly engineering effort. This work could be facilitated if the
developer had specialised tools which support the definition of those capabili-
ties. To support this claim, this paper studies the impact of applying the Self-
Management Modelling Language (SelfMML) for the modelling of self-management
capability requirements in a service-oriented system.

The Self-Management Modelling Language (SelfMML) is a language which
intends to assist in the engineering of self-management capability requirements,
providing visual representations related to the specification of them. A visual
editor tool for this language is provided to create, view, edit and store SelfMML
specifications. This tool can be downloaded at http://selfmml.sf.net.

The chosen case study for applying Self MML is based on a well known sce-
nario in service-oriented computing: the re-binding. Specifically, the re-binding

capability requirement in an on-line blog system, which is considered as a self-
management capability requirement that will be modelled using the proposed
language.

It is important to remark that we focus on the modelling aspects, not in
the requirement engineering process. Hence, we intend to provide a modelling
language that permits a developer to effectively capture and specify a self-
management requirement, but we do not provide assistance for the requirement,
engineering process that uses this language. The SelfMML scope is limited to the
self-management requirement specification. A self-management capability repre-
sents an expected behaviour from the system, which should be implemented
in some way during the chosen development process. During the realisation of
these, the engineer can identify elements and design the architecture of the final
system according to the specified expected behaviour, analogous to the reali-
sation of use cases. The developer could consider some framework or reference
architecture for self-management or just develop an ad-hoc solution. A method
to realise and verify self-management requirements modelled by SelfMML is not
study in this work.

This work is structured as follows. Section 2 describes the language SelfMML.
Section 3 presents a case study used as illustrative example of the language
usage. Section 4 shows some related work that has been taken into account for
this language. Section 5 introduces the conclusions.

2 The Self-Management Modelling Language (SelfMML)

The Self-Management Modelling Language (SelfMML) is a language to be used
in the modelling of self-management capabilities that a system should have,
that is, self-management capability requirements. This language is made from
UML 2.2 Superstructure, concretely, copies all elements from the Use Cases and
Activities packages and extends them with new elements. Also imports elements
from the Kernel package for the definition of the elements.

The language has a meta-model that defines its abstract syntax. Further
information about the meta-model can be found in http://selfmml.sf.net.
The language is described below (see figures 1, 2 and 3).

/
Q Quality Goal ‘\'D Misuse Case ® Failure G Change Event
4 3 spame> <name> <name>
<characteristic>

{<satisfaction>} @ Failure Case @ Attack Configuration

<name:> < >
name <name> <name>

O Quality Level E[Self Management Capability

<name> <name>

Fig. 1. SelfMML (1)

<<affect>> <<defend>> <<reduceConsequence>X

Affe Defend Reduce Ci
<<cause>> <<lisolate>> <<reduceLlkelihood>>;
Cause Isolate Reduce Likelihood
<<activate>> <<avoid>> <<tune>>
Activate Avoid Tune
<<include>> <<complete>
O Include (from SelfMML) —<apdaes Complete
Require <<deactivate>. - .
@ s <<contribute>> ?
R From > Contribute > Threaten

Fig. 2. SelfMML (2)

— Self-Management Capability. Self-Management Capabilities are the abil-
ities of systems to do management operation by themselves on themselves.
This element is provided for the representation of self-management, capability
requirements in a system.

Self-Management Capabilities are usually related to quality requirements as
maintainability, portability, reliability, usability, availability, among others [2,3],
in a way that contribute to the satisfaction of them. The language has the Quality
Goal and Quality Level elements for the representation of quality requirements
(see figure 1).

— Quality Goal. This element represents a quality requirement described as
a goal that the system should maintain. It has a characteristic property that
describes the characteristic or factor related to the quality requirements, and
also has a satisfaction property that describes how the quality goal is satisfied
by the using of some expression in natural language or another language
such as Object Constraint Language (OCL). Such expressions could describe
what are acceptable values for the quality metrics related to the quality
requirement, following the IEEE 1062-1998 Standard recommendations.

— Quality Level. This element represents a quality level which groups quality
goals that the system should maintain.

The language lets developers model how self-management capabilities are
related to Quality Requirements and Use Cases, by the using of the relationships
contribute for quality goals and require for use cases. Also the include relationship
is provided to describe what quality goals are included in a specific quality level
(see figure 2). Quality Goals can be connected to describe contribution with the
contribute relationship too.

Problems are the target of self-protection and self-healing capabilities. The
language provides elements to model possible problems in the system following
the philosophy from the Failure Modes and Effect Analysis methods (FMEA)[4].
These elements are:

— Failure. This element describes a failure that could happen in the system.
— Failure Case. This element describes what is the wrong behaviour that a
system shows when some failure has happened (failure modes in FMEA).

— Misuse Case. This element describes a misuse of a system that an user

does which can lead to a failure[5,6,7].

— Attack. This element describes an attack against the system.

A failure, a misuse case or an attack can be related to a quality goal with
the threaten relationship indicating that the first ones threaten the satisfaction
of the second ones. Failures can be connected to failure cases with the activate
relationship indicating that the first ones activate the wrong behaviour described
in the second ones. Also failures can be connected to use cases with the affect
relationship indicating that the first ones affect the normal operation of the
functionality described in the second ones. Failures, misuse cases and attacks
can be connected to failures with the cause relationship indicating that the first
ones cause the second ones.

A self-management capability, as a self-protection capability, can be con-
nected to problems (failures, misuse case and attacks) to indicate that the ca-
pability takes anticipatory actions to avoid, reduce the consequence or reduce
the likelihood of such problems using the avoid, reduceConsequence and reduce-
Likelihood relationships respectively. Also, as a self-protection capability, the
elements can be connected to attacks with the defend relationship to indicate
that the system reacts to such attacks; and can be related to failures with the
isolate relationship to indicate that the system isolates such failures to avoid the
cascading failures that they could cause.

A self-management capability, as a self-healing capability, can be connected
to a failure with the recoverFrom relationship indicating that the capability
recovers the system from the failure. Also, it can be connected to a failure case
with the deactivate relationship indicating that the capability deactivates the
wrong behaviour of the system.

According to the self-configuration and self-optimising aspect of the self-
management, a self-management capability could have the intention to tune a
certain configuration parameters to improve the performance of the system, and
could also have the intention to complete or update a certain configuration pa-
rameters following high level policies, in reaction to change events in the system
or in the environment. SelfMML provides two elements to model such configu-
rations and change events:

— Change Event. This element describes a change event in a system.
— Configuration. This element describe a configuration description.

A self-management capability could be related to a configuration with the
following relationships: tune, complete and update, indicating that the capability
try to tune, compete or update the configuration. A capability could be related
to a change event with ¢reat relationship indicating that the capability treats
the event.

SelfMML provides a set of activity nodes to specify the abstract process of
a self-management capability using activities diagrams (see figure 3). A self-
management process usually has a structure according to four phases[1]: moni-
toring, analysis, planning, and plan execution. In monitoring phase the interest-
ing information is gathered; in the analysis phase, the information is processed
in order to infer some needed knowledge; in the planning phase the obtained

knowledge is used to decide what plan executes or to build a new one; finally in
the plan execution phase the selected or built plan is executed.

Plan Selection Guard Node

Plan Step Execution Node <name>

<name>
E Plan Construction Node Plan Selection Process Node
<name:>

<name> E Analysis Node

Monitoring Node
m Plan Execution Node <name>
<name>=
<name> <-=> Plan Selection Node

<name>=>

Fig. 3. SelfMML (3)

The elements for monitoring and analysis are the following (see figure 3):

— Monitoring Node. This element describes the monitoring activities and
it continually generates tokens after each monitoring cycle. The method to
obtain information by monitoring could be pulling, pushing, interception or
any other kind or variant; the node does not imply the using of any particular
method.

— Analysis Node. This element describes the analysis activity to infer knowl-
edge from the monitoring reports.

The provided elements to model the selection or construction of plans are
the following (see figure 3):

— Plan Selection Node. This element is for the selection of plans using OCL
expression, it receives tokens from the incoming edge and copy one for each
outgoing edges. The continuity of the token depends on the Plan Selection
Guard Node.
Plan Selection Guard Node. This element is to constrain the execution
of plans, it receives tokens from the incoming edge and presents them to
the outgoing edges only if the OCL expression described in the specification
property is evaluated to true.
Plan Selection Process Node. This element describes a selection which
is done by a more sophisticated process that cannot be expressed by OCL. It
copies all incoming tokens to all outgoing edges, but the continuity of such
tokens depends on the evaluation of the guards on the outgoing edges. Then,
a simple terms in guards can be used to describe what plan is selected.
— Plan Construction Node. This element describes a plan construction ac-
tivity.

In order to specify the plan execution activities the language provides the
following elements (see figure 3):

— Plan Step Execution Node. This element describes a step of a certain
plan to be executed.

— Plan Execution Node. This element describes an undefined plan to be
executed (useful when the plan is constructed).

3 Case Study: The Service Re-binding

The studied system is a blog system such as blogger.com. Publisher can submit
posts using a publishing service. This publishing service lets users write a post
and attach to the post any kind of files. It will use an external storage service
to store the attached files.

This service is constrained by two quality requirements related to the avail-
ability and the reliability. Both requirements are included in an acceptable qual-
ity level for standard users. The first requirement constrains the availability of
the publishing service in a value that should be equal or greater than 98%. The
second requirement constrains the reliability in a fault response likelihood value
equal or less than 0.05 (see figure 4).

Several problems can affect the requirements fulfilment, this paper identified
only four of them. There are two failures that can affect the normal operation of
the service: the used storage service becomes unavailable; and the used storage
service gives too many fault responses, becoming unreliable. Both failures can
cause other two: the unavailability and the unreliability of the publishing service
respectively, and can threaten the quality requirements satisfaction described
before (see figure 4).

® Avaiability

StorageSeniceBecomesUnreliable Publishing Service Unavailable { avalabilty-valus>=0.98 }
5

Highawvailability0fPublishingService
«cau‘ie» =

«activates «th;eaten»

® ®

PubIlshlngs'e/r\flceBecomegunrehable

i PublishingServiceUnavailable
hraa T wSCtIVS&Ew L} "
¥ «CaUSen
\
Reliability ®
Freguent Error Responses Submitting Posts

{ fault-response-ikslihood<=0.05 }

StorageServicelUnavailable
HighReliabilityofPublishingService

Fig. 4. Failures and Quality Goals diagram

Both failures in the publishing service activate two failure cases (see figure
4). The Frequent Error Responses Submitting Posts describes that “randomly”
the system answers with an unexpected error when the publisher is submitting a
new post. The Publishing Service Unavailable describes that when the publisher
accesses to the service the system shows the message “The Publishing Service is
Unavailable, please try later”.

In order to treat these problems, there is a requirement: “The system should
have the capability of detecting such problems and automatically re-bind to
an alternative Storage Service, following a given selection criteria based on the
quality levels offered by them. It assumes that exist a Registry that have a
full description of Storage Services that can be used by the Publishing Service.
The system should try to select the service that offers the highest quality level
related to the availability and the reliability. But, when the selection is not
clear (because exist an alternative with the highest availability but without the
highest reliability, or otherwise) the system should follow the policy described
by an administrator”. In order to avoid the re-selection of a problematic service
the system will manage a black list of them and will use the list to subtract
problematic services from the list given by the Registry. This capability should
be present in the provider software agents of the Publishing Service.

® Frequent Error Responses;\Subm\tting Posts

<=——«recoverFrom» «desctivates
® StorageSenviceUnavailable Sy I—il

=——wreducelikelihood>

PublishingServiceBecomeasUnreliable aclile - Publishing
? wreducelikelinoad»™— PublishingService Senvice
® — Reblndln/gtapab\lﬂfy\ /.pnavailable
PublishingServiceUnavailable ® «recoverfrom. “deactivates

StorageServiceBecomesUnreliable

Fig. 5. The Publishing Service Re-binding Capability treating problems diagram

The capability will try to recover the system from the Storage Service Un-
available and Storage Service Becomes Unreliable failures. It also deactivates the
failure cases caused indirectly by the failures. These “intentions” are related to
the self-healing aspect of the capability (see figure 5).

Since the capability selects the service which offers the highest quality level
in availability and reliability attributes, it reduces the likelihood of the Publish-
ing Service Unavailable and Publishing Service Becomes Unreliable failures (see
figure 5). Therefore, the capability contributes to the satisfaction of both qual-
ity requirements: the high availability and the high reliability of the service (see
figure 6).

The capability requires the development of some use cases in order to operate
properly (see figure 6). The alternative storage services are found in a Registry,
thus the capability needs the location of this registry as input. The Configure
Registry Location use case describes the functionality of configuring the location
of the registry. The capability will manage a black list of services, but problematic
services could be healed and the administrator could need remove it from the
black list at run-time. But even, the administrator could need add problematic
services to the black list because it was detected by another system. The Manage

«“reguirgs————> O
Reliability <————«contributes
{ fault-response-lkslihood<=0.05 } Configurs Registry Location
ighReliabilityofPublishingService o RERHI

Manage the Black List

PublishingService
RebindingCapability ™ O
I «require
Availability <———«contributes \

{ availabiity-value>=0.98 } ‘Wiew Rebinding Result Reports
High&vailabilityOfPublishingService EQLre

Configure QoS Criterias for Selection

Fig. 6. The Publishing Service Re-binding Capability connected to functional and qual-
ity requirements diagram

Black List use case describes this functionality. Also the capability requires the
Configure QoS Criteria for Selection use case to let the administrator configure
what QoS criteria the capability should take into account to select alternatives;
and also requires the View Re-binding Result Report use case which describes
the functionality of viewing, by the administrator, the re-binding logs that are
produced at run-time.

This capability is detailed by a self-management process model (figure 7, 8
and 9). There are two monitoring activities: Storage Service Faults Monitoring
and Storage Service Awailability Monitoring. The former monitors the number
of faults in a period of time in order to update the current value of the quality
metric “fault-response-likelihood” of the Storage Service; and the latter monitors
the current operational status (available, unavailable) of the Storage Service
too. These monitoring activities generate reports which are consumed by the
Analysis Of the Needs to Rebind. The Storage Service Faults Monitoring activity
will monitor the using of the Storage Service in order to catch faults, and the
Storage Service Availability Monitoring could monitor the using, but also could
do the monitoring either directly asking to the Storage Service, or subscribing
itself to some heartbeat signal.

The Analysis Of the Needs to Rebind activity decides if the rebinding is
needed or not. The decision is made using the monitoring reports and the qual-
ity requirements of the storage service. If the “fault-response-likelihood” metric
of the Storage Service is equal or greater than 0.05 the reliability of the Pub-
lishing Service will decrease, and if the Storage Service becomes unavailable the
Publishing Service will get into failure. Therefore, in these cases the rebinding
will be needed. However, the Storage Service could have a notification system
that inform to its clients of temporary unavailability for administration purpose.
Then the analysis activity could take into account such informations to make
a better decision calculating how the estimated period of time in unavailability
can affect the quality level of the Publishing Service. Another case where the
rebinding is not needed is when there is already a rebinding in execution.

If the rebinding is needed, then the process get into a plan selection phase
(see figure 7). The plan selection is made checking if there are available services

L] L]

StorageServiceReliabilityMonitoringReport StorageServiceAvailabilityMonitoringReport

@ AnalysisOfTheMeedToRebind @

StorageServiceFaultsMonitoring StorageServicetvailabilityMonitoring

¥
<E> < [rebind — = [not rebind | > @

PlanSelectiar Rebind? Finish

Fig. 7. The Publishing Service Re-binding Process (1) diagram

candidates or not. There are two plans: update the black list, block the using
of the publishing service, and do nothing, because there are no candidates; or
update the black list and rebind, because there is at less one candidate.

let
candidates=registaredServices o ;
<_‘.:> o -=select(s | not blacklist-= existsls) —s currentUsedservice /Uﬂreg\ster\\:self

and s<=currentl sedS ervicel

PlanSelection in candidates-> isEmpryt] UpdateBlackList >
NotifyLongTimeUnavailability

Final

Fig. 8. The Publishing Service Re-binding Process (2) diagram

The figure 8 shows the diagram of the part corresponding to the selection
and execution of the plan when there are no candidates. The first elements in the
flow is the plan selection guard node that contains the OCL specification which
constrains the copy of the token to the outgoing edge. In this case, the con-
straint is: “if the candidates list is empty then lets the token continue”. The rest
of elements in the flow are the updating of the black list with the current stor-
age service, the unavailability notification and the unregistering to isolate itself
from the rest of the system. The Final Node indicates that the self-management,
process will stop completely, even the monitoring activities.

The figure 9 shows the diagram of the part corresponding to the selection and
execution of the plan when there is at less one candidate. As before, the first ele-
ments in the flow is the plan selection guard that constrains the copy of the token
to the outgoing edge. When there is at less one candidate in the list the token is
copy and the flow continue through the rest of plan step activities. The plan first
updates the black list and notifies a temporary unavailability for administration
purpose. After that, selects one service according to the given selection criteria
and rebinds the publishing service to it. Finally, notifies the availability. The
Flow Final Node indicates that the flow stop, but not the process.

-]

currentlUsedService

let »
Cantidat es=ragisaradServices A } < >
= _=selectis | not blackList-=exists(s) ¢

Biicd e clireit Tasdh o ice) UpdateBlackList NotifyTemporaryUnavailability

Planselection | in candidates->notEmpty)

Ay SO - (2
A

Finish NotifyAvallability BindToTheSelectedSenice selectedService SelectOneService

L]

candidates

Fig. 9. The Publishing Service Re-binding Process (3) diagram

4 Related Work

The Related Work focus on the works which try to develop a language that can
be used to model self-management aspects. There are some works that are more
related to the topic of this paper.

One of them is the “UML Profile for Modelling Quality of Service and Fault
Tolerance Characteristics and Mechanisms Specification” [8]. This one has three
parts: an UML Profile and a Catalog for Quality of Service; an UML Profile for
Risk Assessment; an UML Profile for Fault Tolerance Mitigation.

The QoS part is for modelling QoS requirements. This profile is limited to
quality of service modelling. SelfMML lets developers model not only quality of
service requirements but rather any kind of software quality requirements that
could be related to self-management.

The Risk Assessment part is to be used for risk assessment modelling, but
also included treatment of risks. This part is based on the CORAS method for
security analysis[9]. The interesting part for this work is the meta-model and
the modelling language of the treatment of risk by use cases and actors. The
threats are personified and modelled as actors, the threat scenarios as use cases,
and the treatments as use cases too. The connection with QoS is the modelling
of risks that could affect the QoS Level of the system. The treatment of risk is
specified by use cases. Selft MML makes a difference between a capability of the
system to do some management operation by itself and the use cases that such a
capability could require. This difference allows the modelling of self-management
capabilities that could not require any use case. But also there are cases when
a treatment of problems is not well described by an use case but rather by an
dedicated entity, e.g. the case study presented in this work, the rebinding could
not be well described if only use cases are used.

Finally, the Fault Tolerance Mitigation meta-model and Profile part is for
modelling fault tolerance mechanisms for the system. It is mainly for modelling
structures that will enable a system to support faults. It includes the modelling
of redundancy configuration, monitoring collaborations, fault detection policies,
among others. Our work will include fault tolerance, since the fault tolerance

could be considered as part of autonomic computing [3], specially when it is
related with self-protection and self-healing. The structure of systems for the
maintenance of health is not addressed by the language presented here, but will
be considered in future works.

Another work comes from Ian Alexander [7]. This work does not propose
a meta-model, what makes that work more informal, but defines a graphical
language that suggest a concepts related to some aspect of self-management,
e.g. “misuse case”, “mitigates”’, “threat”, or “threatens”. It was used to inspire
part of the work presented here.

Finally, there are several works which present graphical languages for sup-
porting goal-oriented requirement engineering. Some of them are i*[10], TRO-
POS [11] and GRL[12]. In these works requirements are identified as goals which
can represent functional requirements and non-functional requirements (named
as “soft-goal”). Also the languages provide another concepts, which can help in
requirement engineering works, such as: actor, task (or plan) and several relation-
ships . Using these languages, self-management requirements can be modelled
as goals. However, these languages lack certain elements which can help in the
capturing, tracing and specification of these kind of requirements. Some of them
are provided by SelfMML, specifically, elements and relationships for modelling
failures, their causes and their effects, the require relationship, and the elements
related to the specification of self-management processes.

5 Conclusion

This work has presented the Self-Management Modelling Language as a language
that can be used in the modelling of self-management capabilities in service-
oriented systems. Also a case study has been presented to study the application of
the language to model self-management requirements in service-oriented systems.

This language has enabled the modelling of a self-management capability in
the case study as a requirement in the system, facilitating the capturing and
specification of it. However, there are other issues, that could be identified in
the case study, which would be interesting to model in service-oriented systems,
but the language at this moment did not provide any specific way to do it.
The requirement required the specification of some policies in order to make a
selection. A model of what policy options the administrator has and how the
policies are used to make the selection could be interesting to have. Also, the
location of the capability could be inferred by the name of the capability, but it
would be interesting to associate the capability to a specific service in a service
architecture model. The integration of SelfMML with a language that can be used
to model service architectures like Soa Modelling Language (SoaML), could fill
this gap. We would like to study both issues as future works in order to develop
a more completed language.

A method for realising and verifying self-management requirement specified
with SelfMML is an open issue for future work. We would also like to explore
model to model transformation from self-management elements to design ele-

ments to support more completely the engineering of self-management capa-
bilities of a target system. Specifically, since agents are suitable to realise self-
management capabilities [1,13], self-management elements seem suitable to be
mapped to design elements related to agent approaches.

Acknowledgements

This work has been developed with support of the program "Grupos UCM-
Comunidad de Madrid" with grant CCGO7-UCM/TIC-2765, and the project
TIN2005-08501-C03-01, funded by the Spanish Council for Science and Technol-

ogy.

References

10.

11.

12.

13.

. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer

36(1) (2003) 41-50

. Nami, M.R., Sharifi, M.: Autonomic Computing: A New Approach. In: AMS ’07.

(March 2007) 352-357

Sterritt, R., Bustard, D.: Autonomic computing — a means of achieving depend-
ability? IEEE ECBS 0 (2003) 247

: Failure modes and effects analysis. Technical Report MIL-P-1629, U.S. Army
(1949)

Sindre, G., Opdahl, A.: Eliciting security requirements by misuse cases. In:
TOOLS-Pacific 2000. (2000) 120-131

Andreas, G.S., Opdahl, A.L.: Templates for misuse case description. In: REFSQ’01.
(2001) 4-5

Alexander, I.: Misuse cases: Use cases with hostile intent. IEEE Software 20 (2003)
58-66

: UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms Specification. OMG. v1.1 edn. (April 2008)

Braber, F., Hogganvik, I., Lund, M.S., Stglen, K., Vraalsen, F.: Model-based secu-
rity analysis in seven steps — a guided tour to the coras method. BT Technology
Journal 25(1) (2007) 101-117

Yu, E.S.K.: Modelling strategic relationships for process reengineering. PhD thesis,
Toronto, Ont., Canada, Canada (1996)

Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development
methodology: Processes, models and diagrams. In Giunchiglia, F., Odell, J., Weif,
G., eds.: AOSE’02. Volume 2585 of Lecture Notes in Computer Science., Springer
(2002) 162-173

Amyot, D., Mussbacher, G.: URN: Towards a new standard for the visual descrip-
tion of requirements. In: Telecommunications and beyond: The BroaderApplica-
bility of SDL and MSC: Third International Workshop, SAM 2002, Aberystwyth,
UK, June 24-26, 2002. Revised Papers. Volume 2599 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2003) 21-37

Kota, R., Gibbins, N., Jennings, N.R.: Decentralised structural adaptation in agent
organisations. In: Organized Adaption in Multi-Agent Systems. Volume 5368 of
Lecture Notes in Computer Science., Springer Berlin / Heidelberg (2009) 54-71

