
On the Design of a Domain Specific Language for
Enterprise Application Integration Solutions ⋆

Rafael Z. Frantz1, Carlos Molina-Jimenez2, Rafael Corchuelo3

1 UNIJUÍ University, Department of Technology, Ijuı́, Brazil
rzfrantz@unijui.edu.br

2 School of Computing Science, University of Newcastle, UK
carlos.molina@ncl.ac.uk

3 Universidad de Sevilla, ETSI Informática - Avda. Reina Mercedes, s/n. Sevilla 41012 Spain
corchu@us.es

Abstract. Enterprise application integrations involve the participation of sev-
eral existing applications with which the integration solution exchanges data over
LANs and the Internet. In these scenarios, operations might occasionally produce
exceptional results at runtime due to impairments introduced by the electronic in-
frastructure such as node crashes, messages lost, delayed or incorrectly composed
by applications. To address the problem, the paper suggests a domain specific
language to specify the integration solution: it produces platform-independent
models and has built-in primitives to produce events that notify of potential ex-
ceptional situations. The paper also shows how these events can be processed by
an event condition action–based monitor to trigger recovery actions.

Key words: Enterprise Application Integration, Domain Specific Language.

1 Introduction

The computer infrastructure of a typical today’s enterprise can be conceived as an
heterogenous set of applications (termed the software ecosystem) that includes tens
of applications purchased from different providers or built at home. An application is
a piece of software that performs an independent and specific business function. Ex-
amples of typical functions are calculation of salaries, tax liability, etc. A recurrent
challenge that appears in enterprises is the need to enhance the functionality of their
software ecosystem by making some of the existing applications to interoperate with
others. In the literature, this problem is known as Enterprise Application Integration
(EAI) and is all about making two or more existing applications, that belong to the same

⋆ The first author conducted part of this work at the University of Newcastle, UK as vis-
iting member of staff. His work is partially funded by the Evangelischer Entwicklungsdi-
enst e.V. (EED). The second author is partially funded by UK EPSRC Platform Grant No.
EP/D037743/1. The third and first authors are partially funded by the European Commission
(FEDER), the Spanish and the Andalusian R&D&I programmes (grants TIN2007-64119, P07-
TIC-2602, P08-TIC-4100, and TIN2008-04718-E).



enterprise, to synchronize their data or to create new functionalities on top of them; in
either case, the software that implements the integration is called the EAI solution.

The integration of two or more applications inevitably involves access to each other’s
data. In the simplest case, an application integration would involve the transmission of
a single unit of data (for example, via a RPC) directly from an application to another.
However, in practice, application integration normally involves a large number of in-
teractions among applications that, in general, result in a rather complex flow. In these
scenarios, the data normally endures some processing between the source and the des-
tination and is subjected to several constraints such as order, timing and validation. For
example, data from two or more applications can be validated against syntax errors, then
merged and re-formatted to compose a single message, and then delivered to a third ap-
plication before the expiration of a deadline. To handle this complexity, it is convenient
to regard the EAI solution, as a business process that interacts with the participating
applications (in this article we call them assets).

From these observations, it follows that the final job of the designer is to produce
the EAI solution that implements the new business process on top of the existing com-
puter infrastructure. Two factors make this problem a challenging task: First, computer
technology is not static but constantly changing. For example, a piece of software or
hardware can be upgraded. A good solution should be able to cope with computer in-
frastructure evolution, without drastic re-designs. Second, computer infrastructure is far
from being 100% reliable. For example, a communication network can fail and delay
or lose messages. Again, a good solution should be able to provide continued service –
possibly of a degraded quality – despite the occurrence of failures of the infrastructure.

With the above arguments in mind one can argue that a key tool to address the
problem of EAI is a specification language and a programmatically way that address
the two issues mentioned above.

The Model Driven Architecture (MDA) is a promising software engineering ap-
proach suggested by the Object Management Group (OMG) [14]. Its aim is the au-
tomation of the software cycle which normally includes design, implementation, de-
ployment, integration, re-design, re-implementation, etc. It relies on the use of tools (as
opposite to the conventional manual approach) along the different stages of the soft-
ware cycle. Central to the MDA are the concepts of model, metamodel and abstraction
levels. In brief, a model is the specification of the system under construction, at a given
level of abstraction; whereas the metamodel can be a Domain Specific Language (DSL)
used to specify the system. The main abstraction levels, in a descent way, are: compu-
tation independent (CIM), platform-independent (PIM), platform-specific (PSM) and
deployment level. All them provide different models to describe the solution.

A good alternative to address the first challenge presented above is a DSL with
built-in constructs to capture the most fundamental concepts involved in EAI solutions
such as messages, communication pipes and processing filters, but at a high-level of
abstraction. For instance, such languages can be used to describe solutions by means of
PIMs, that is, specifications that are implementation neutral and can be programmati-
cally transformed into executable code. Equally important, to address the second issue,
such a language should offer a means for capturing exceptional situations likely to have
an impact on the EAI solution. To the best of our knowledge and in accordance with

2



results from previous research [6], DSLs with these highly desirable features are still a
research topic. We are aware that there are some preliminary results in this direction.
For example, in [6] the authors present Guaraná – a DSL designed to produce PIMs; in
other words, it addresses the first issue hinted above; a limitation of Guaraná is that as
it is, it can only specify normal execution flows; in other words, it does not address the
second issue since it does not have any mechanisms to specify exceptional situations.
As an alternative to cover the gap, we suggest the enhancement of Guaraná with con-
structs for detection and handling of exceptional situations. In pursuit of this goal, we
show in this paper how Guaraná ports can be enhanced to signal exceptions when com-
munication operations (e.g. read, write, solicit) executed by ports against an asset fail
to complete, or a validation test on received data produces abnormal results. We target
port operations first because we consider that they are the most fault-prone operations
in an EAI solution. Also, we show how a conventional Event Condition Action (ECA)
mechanisms can be used to handle these exceptions. Several engineering requirements
combine to make EAI a hard problem; before tackling them, it is worth clarifying what
requirements we take on board in our research and what assumptions we make.

The first requirement we account for is that the existing assets are and should con-
tinue to be functionally independent from each other with and without the EAI solution
in operation. Mutually-dependent assets fall outside the scope of this paper. It follows
that our EAI solution should provide only exogenous coordination. To meet this re-
quirement we rely on loosely-coupled interactions between the solution and the assets.

Another typical requirement on the EAI solution is that it should not involve the
modification of the code or configuration of the original asset; the implication of this
restriction is that the EAI solution can count only on the original interfaces that the
participating assets offer, to make them interoperate.

We make no assumptions about the physical locations of the assets. They can be
located within the same building and be linked by a LAN or in different continents and
communicate over the Internet. The involvement of the Internet presents the designer
with additional challenges: Internet communication is far from being fully reliable;
it can lose and duplicate messages; and introduce unpredictable delays. Without due
attention, these impairments can render an EAI solution unoperational. Communication
delays become highly relevant in EAI solutions with strict and tight time constraints.

Since we focus on EAI, we can leave authentication and security issues out of the
equation as these problems are not of major concern in these scenarios. Likewise, we
can assume that access to data between assets is always granted, likely under some
restrictions of no relevance to our discussion.

This paper is structured as follows: Section 2 places our research in context and
discusses the related work; Section 3, offers a brief introduction to our DSL Guaraná
and places it within the context of the model driven approach; Section 4, is the heart of
our paper – it discusses our failure semantics and shows how Guaraná’s ports can handle
exceptional situations; Section 5, presents a realistic scenario of enterprise integration
that we use as a validating example, and discusses our event condition action-based
exception handling mechanism to support Guaraná. Finally, we draw conclusions and
future work in Section 6.

3



2 Related Work

The UML-profile [13] for EAI solutions is directly related to our work on Guaraná
and is arguably an attractive alternative. We rule it out on the basis that UML profiles
are basically extensions to UML intended to cover the limitations of the native UML;
unfortunately, the UML-profile for EAI solutions has not been very successful due to
its complexity and lack of expressiveness (see [1] for a discussion on the adequateness
of using UML-profiles to represent DSLs).

The Business Process Modeling Notation (BPMN) [18] can be used for specify-
ing EAI solutions but at CIM level, that is, at a level that is too abstract for EAI de-
signers. Related to our work are also EAI technologies like BizTalk [10], Mule [12]
and Camel [5] which produce technology-dependent solutions: in the context of MDA,
BizTalk fits the platform-specific level while Mule and Camel belong to deployment
level. We regard BPMN, BizTalk, Mule and Camel as complimentary to Guaraná, rather
than competitive.

Our work is closely related to the on-going research on exception handling in Web
services composition. Of interest to us is the discussion presented in [19]. We share
with the authors the idea of using ECA policies to handle exceptional events. However,
the paper studies the problem at BPEL level of abstraction and suggests the use of an
integrated exception handling mechanism with the intention of conducting execution
planning to prevent the occurrence of exceptions. Our goal is different – we address
exceptions at PIM level of abstraction and propose mechanisms to recover from ex-
ceptional situations rather than to prevent their occurrences. A similar discussion on
exception handling at BPEL level and complimentary to [19] can be found in [9]. In [4]
the authors propose a policy-driven middleware solution (implemented in .NET and
manually portable to other platforms) to handle exceptions in web service composition;
we consider this a valid result but too implementation specific, since our interest is in
abstract PIMs. With this paper we share the view that communication operations are the
most fault-prone. Relevant to us is also the classification of faults which can roughly be
mapped into the exception that Guaraná’s ports can detect.

An illuminating discussion about the complexity of handling exceptional situations
in EAI, such as the unexpected cancellation of an operation due to infrastructure fail-
ures or human related events, is presented in [7]. Authors argue that to be effective, a
compensation mechanism should take into consideration the state of the two interacting
applications. As the discussion is at conceptual level, the authors present no solution.

3 An Overview of Guaraná – a Domain Specific Language for EAI

A DSL is a well focused language developed to address problems in a particular
domain. It provides a set of dedicated abstractions, elements and notations with for-
malization to assist the designer in expressing its solution at the level of abstraction of
its DSL. In MDA, a given model is programmatically transformed into a model of a
lower level of abstraction. Models of high-level of abstraction are implementation neu-
tral and called PIMs; whereas models of low-level of abstraction are implementation
specific and called PSM. There are estimations [17] that show that for each dollar spent

4



Fig. 1. Abstraction levels for an Integration Solution.

on developing an application, companies usually spend from 5 to 20 dollars to integrate
it into EAI solutions. From this perspective, the MDA approach looks like a promis-
ing alternative to cut these costs down. For instance, the designer can produce a PIM
model of the EAI solution that can be re-used to automatically derive as many PSMs as
necessary to match technology evolution within the enterprise.

The feasibility of the MDA approach depends on the availability of the source meta-
model, target metamodel, transformations, etc. For instance, in the EAI domain a DSL
is still a miss. We suggest Guaraná as an alternative to cover the gap. Guaraná produces
graphical designs of EAI solutions at a high-level of abstraction; it uses Enterprise In-
tegration Patterns (EIP) [8] and covers currently existing gaps in the field.

3.1 Abstraction Levels for Integration Solutions

In the MDA, the specification of an EAI solution can undergo several transforma-
tions through different levels of abstractions before it is finally implemented on top
of the software ecosystem. This idea is shown in Fig. 1 with the intention of placing
Guaraná within this context. The figure shows five levels of abstraction separated into
business and technology. Level 5 is the most abstract one and is entirely technology-
specific solution neutral in contrast, level 1 is the final technology-specific deployable
solution. Guaraná belongs to the third level.

LEVEL 5: Models are produced by business analysts and provide an informal de-
scription of the problem at a high-level of abstraction, that is, with no notion of appli-
cations, message flows or technology like software ecosystems. Models are specified in
natural language and normally suffer from imprecisions, omissions and ambiguities.

LEVEL 4: Here models are considered CIMs. They are refinements of models
from level 5, produced manually by business analysts and expressed in standards like
BPMN [18]. The notions of participating applications (source and consumer of data)
and message flow appear at this level; yet the model does not capture core domain

5



specific design concepts like the internal structure of the solution or the communica-
tion with its applications. The absence of these concepts prevents their programmatic
transformation into executable models.

LEVEL 3: Models of this level are produced from models of level 4 manually by
system analysts with expertise in EAI solutions. They precisely specify the functionality
and structure of the solution in a manner that it can be programmatically converted into
PSMs of level 2. So they deal with concepts at the granularity of applications, processes,
tasks, message flow, integration links, ports, wrappers, etc. These models are expressed
in a DSL with built–in constructs to describe all the EAI specific concepts listed above.

LEVEL 2: Models of this level result from automatic conversion of models from
level 3; they are PSM and can be mapped into executable code of the chosen technology.

LEVEL 1: Models of this levels are the actual executable code of the solution and
are programmatically generated from models from level 2.

3.2 Guaraná Constructors

Guaraná provides a set of domain specific constructors to design EAI solutions. This
language not just introduces and describes this domain specific concepts, but also pro-
vides a very expressive and needful graphical notation for this constructors, that allow to
visually design an EAI solution. Below we introduce the main constructors and in Fig. 3
we provide an example of a designed EAI solution with Guaraná where the use of these
constructors can be seen. Decorators are used to provide visual information about the
participating assets and their layer(s). They do not have an influence on the executable
model. Building blocks represent the processing constructors of the EAI solution and
are composed of tasks. There are two types of building blocks in Guaraná: wrappers
and processes. A wrapper communicates the EAI solution to an asset, so it contains
communication-specific tasks and has a port connected to a decorator. Processes model
the essential services of the EAI solution, so they contain integration-specific tasks;
they are connected (through ports and integration links) to each other and/or to wrap-
pers. Slots are memory buffers used within building blocks for port to task and task to
task internal communications. Tasks are message processing constructors and appear
inside processes and wrappers. A task reads messages from incoming slots, processes
them (e.g. enriches, translates, filters, etc.) and deposits the result in the outcome slot.
Ports are used to communicate the internal building blocks of an EAI solution and the
EAI solution with its assets. Integration links are channels that transport messages be-
tween building blocks. They are used to connect the entry/exit ports used by building
blocks.

4 Failures in Application Integration Solutions

The general assumption we make about the reliability of the components involved
in an enterprise application solution is that they will occasionally fail. Thus our goal
is to provide the enterprise application integration with mechanisms to tolerate the oc-
currence of failures as opposite to prevent their occurrence. For this to be possible, we
need to identify the failure behavior that the enterprise application integration are likely

6



to exhibit. The failure behavior is also known as failure model or failure semantics [2]
and stipulates what kind of errors the system (the enterprise application integration for
instance) will be able to tolerate: detect at runtime, execute corresponding recovery ac-
tion and return to the normal execution flow possibly with a degraded performance.
An application EAI solution can fail in different ways, non-surprisingly, different au-
thors suggest different classes of failures (see for example [4], [9]); yet it seems to be
a general consensus that most of the failures that impact EAI solutions emerge from
the execution of operations that involve exchange of data with assets; the reason be-
ing that these operations normally involve network communication and possibly over
unpredictable channels like the Internet. The EAI solution can run distributed in differ-
ent machines, so in this case network problems also should be considered for building
blocks’ communication. This type of errors are not addressed in this paper. On this
basis and to comply with space restrictions, this paper focuses only on two types of
failures that might occur inside ports used by the EAI solution to communicate with its
assets: omission failures and response failures. Yet it is worth mentioning that our idea
is general enough to be expanded to other operations executed by the EAI solution.

Omission Failures (OMF): In our communication model we assume that once a
communication operation (read, write and solicit-response) is started by the EAI solu-
tion, it terminates within a strictly defined time interval and declared by the EAI solution
either success or failure. The failure result models situations in which the network and
asset problems might prevent the solution to send or receive a piece of data to/from the
asset within the deadline interval, when this happens we say that the asset has exhibited
an omission failure. Notice that in our communication model operations completed be-
yond the time constraint are taken as failure, so data received by a read operation after
the expiry of the deadline is ignored. In our discussion we use OK and OMF:NOK to
represent success and failure, respectively.

Response Failures (REF): As suggested by leading standards in e-business middle-
ware like RosettaNet [15] and/or by well known integration technologies like BizTalk
[11], it is not enough to receive a response in time as the responder, the asset in this
case, might respond incorrectly. Thus a received message has to satisfy some syntactic
validation tests (e.g., headers and body inspected and understood) before it can be taken
by the EAI solution for processing. This kind of failures are known as response failures.
To model them we run a validation test on every message received by the EAI solution,
that produces either success or failure. Again, we use OK and REF:NOK to represent
success and failure, respectively.

4.1 Exceptions of Guaraná Ports Operations

Guaraná provides four types of ports for communication: one-way EntryPort, one-
way ExitPort, two-way SolicitorPort and two-way ResponderPort. One-way EntryPorts
are used for reading messages in an internal EAI solution communication and from
assets, as well; one-way ExitPorts are used similarly, but for writing. Two-way Solic-
itorPorts are used to solicit data from assets in solicit-response mode; in principle this
operation can be split into two individual operations or abstracted as single atomic one;
for simplicity we discuss only the latter case. Two-way ResponderPorts are irrelevant
in our arguments and not discussed further.

7



(A)

Receive Location 1

Receiving ProcessCommunicator

SlotRead

Asset

X

Control Channel

REF: NOK

OK OK

OMF: NOK

read

operation
message validation

operation

Send Location 1

Sending Process
Communicator Slot

Write

Control Channel
OMF: NOK

OK

write

operation(B)

Sending Process

Communicator

Slot

Receiving Process
Solicit

Response
Slot

Control Channel
OMF: NOK

OK

REF: NOK

OK

solicit-response

operation

Solicit Location 1

message validation

operation

(C)

Asset

X

Asset

X

Fig. 2. (A) Entry Port, (B) Exit Port, (C) Solicitor Port.

The instrumentation of our failure model in Guaraná’s ports is shown graphically in
Fig.2. EntryPort and SolicitorPorts can contain one or more locations with their respec-
tive communicators. Each location is associated to a single source of data (e.g., appli-
cation layer such as database, file, user interface). We assume the existence of a single
location as this is enough to explain our ideas. The actual communication operation
(read, write and solicit-response) is performed by the communicator; so to implement
our omission failure model, we provide communicators with the notion of deadline to
complete their operations. Read messages are delivered by communicators to the receiv-
ing processes. The sending processes are irrelevant in our discussion yet we can mention
that they process the message destined to assets, before passing it on to the communica-
tors. To model response failures, we include a validation operation inside receiving pro-
cesses. As show in the figure, in response to a given operation (e.g., take read operation
of EntryPort A) communicators produce either OK or OMF:NOK. The OK message
represents the normal response and is fed into the normal flow, whereas OMF:NOK
represent the abnormal result and is notified to the control channel. Similarly, the vali-
dation operations produce either OK (fed into the normal flow) or REF:NOK which is
notified into the control channel.

5 Validation

To validate our ideas we will show how both the normal and exceptional execution
flow can be specified in Guaraná.

5.1 Example

To set the scene, we will use the scenario of an application integration problem un-
der study at Unijuı́, Brazil. Apart from some small modification introduced to highlight
the issues of our research interest, the scenario is realistic. The project involves five
assets: a Call Center System (CCS), Payroll System (PS), Human Resources System

8



Payroll

System

HR

System

Mail

Server

SMS

Notifier

Call Center

System

x_

User:

Passwd:

Date:

OK Cancel

(1)

(2)

(3)

(4)

(5) (6)

(7)
(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Fig. 3. UNIJUÍ’s integration solution with fault-tolerance.

(HRS), E-mail Server (ES) and Short Message Service (SMS). The CCS manages the
university telephone system. The PS processes the monthly payments of the employees.
The HRS manages the personal data of the employees. The ES runs the e-mail service.
SMS runs a service for sending text messages to mobiles phones. The problem can be
informally described as follows:

1. Employees use the phone facilities of the university for making external phone calls
of both business and personal purposes. All calls are recorded by CCS.

2. Business calls are free. The cost of personal calls is deducted from the caller’s
salary which is processed by the PS on the last day of the month at 9:00 a.m.
– No calls can be deducted before notifying the caller by e-mail, SMS text or both.

3. To deduce the cost of a call, the PS requires: 1) the caller’s name, personnel number,
e-mail and mobile phone number, from the HRS; and 2) the cost and destination of
the call, from the CCS.

4. To guarantee that a call will be deducted from the current month’s salary the PS
needs to receive the input by 8:00 a.m. on payment day.
– Input received after this time is logged and processed in the next month.

The description has two salient features: 1) It includes operations with strict time
constraints, for example, “input by 8:00 a.m. on payment day”. 2) It accounts for poten-
tial exceptional situations and separates the normal execution flow (normal text) from
the exceptional one (italic text). This problem can be solved by using the exception
mechanism introduced in Section 4.

5.2 Integration Solution

The Guaraná specification of our example is shown in Fig. 3; ignore for the time
being, deadline constraints and potential exceptions. The integration flow is started by
the timer task (3) located inside the wrapper (1) that communicates with the CCS –
represented by a decorator (2). This task creates an activation message every t units
of time (e.g. five minutes) and writes it to a slot (4). The message activates a solicitor

9



Fig. 4. ECA - based exception handling mechanisms.

port (5) that extracts all phone calls made in the last five minutes. The CCS offers
only a user interface, so the solicitor port uses a scrapper (a technique for extracting
information through a user interface) to interact with the CCS. The splitter task (6)
breaks the message into individual messages containing just one phone call each. These
messages are sent, through an integration link (7), to the central process (10). Messages
related to irrelevant (e.g., free or insignificant cost) calls are filtered out by a filter (8).
Messages of interest are replicated (9) to the wrapper of the HRS and to a correlator
(12). The HRS is queried by the message created by a custom task (11); the response
from the HRS is sent to the central process (10) where it enriches the original message
by means of an enricher (13). The enriched message is sent after the corresponding
translations (14, 18 and 20) to match destination formats, to the PS, SMS and ES.
Messages that, for some reasons, do not contain a phone number or an e-mail address
are filtered out (respectively by filters 16 and 19). A slimmer (7) shortens messages
down to the short text standard before sending them to the SMS.

5.3 An ECA-based Exception Handling Mechanism

To handle exception occurrences at programming level and independently from the
normal execution of the EAI solution, we suggest the use of an exception handling
mechanism based on the conventional Event Condition Action (ECA) paradigm. We
show its functionality with the help of Fig. 4 which is a simplified version of Fig. 3
meant to highlight port operations between the EAI solution and the five assets involved.

Our mechanism involves a monitor and a control channel that links the monitor with
the EAI solution (say by a publish/subscribe paradigm). Also, the monitor is linked
to the EAI solution by the recovery channel for recovery actions. The EAI solution
represents the normal execution flow (normal text of our validating example) whereas
the monitor represents potential exceptional executions (italic text of the example). The
monitor is instrumented with ECA rules that execute exceptional actions upon receiving
exceptional events through the control channel. As shown in Fig. 4, exceptional results
(OMF:NOK and REF:NOK) from the execution of port operations (solicit-response,
message validation and write) are published to the control channel. The normal results

10



of the operations are fed only into the normal execution flow, but if necessary, they can
also be published to the control channel to be used by the monitor.

The exceptional actions are application-specific and fall outside the scope of this
paper; yet we can briefly mention that they are recovery actions whose execution brings
the control flow back to the normal execution. For instance, an operation can be sim-
ply ignored, retried, etc. Some typical recovery patterns are discussed in [9] and [3].
The rules can be written in a rule language (see for example [4]) and executed by a
conventional rule engine supported by timers, event-log files, queues, etc., (see for ex-
ample [16]). The discussion of these details falls outside the scope of this paper. The
rules shown inside the monitor are only illustrative and far from being complete; they
are meant to show how exceptional situations can be handled; to save space we will
focus only on the exceptional execution flow of point 2 of our example: No calls can be
deducted before notifying the caller by e-mail, SMS text or both.

In our simplified notation R, evt, cnd, act and t stand for rule, event, condition,
action and time respectively. The 07 : 55 represents the time on the payment day to
notify the PS to stop it from processing a call deduction when the caller has not been
notified. Similarly OMF 5:NOK is in log checks for the existence of OMF 5:NOK
records in the log file of the rule engine. R1 captures the possibility that the write
operation against the SMS fails; the condition checks if the notification by e-mail has
failed and if there is time to retry the SMS operation; when the exceptional event OMF
4:NOK is received and the condition holds, the recovery action RetryWriteOperation
on SMS is executed. R2 is complimentary to R1 as it also reacts to the OMF 4:NOK
exceptional event; yet it is triggered when it is time (t >= 07 : 55) to notify the PS of
the problem and executes the StopCallDeduction on PS recovery action to stop the PS
from processing the call under question.

6 Conclusion and future work

It is worth emphasizing that at the current stage of our research the failure semantics
of Guaraná’s ports consider only omission and response failures that may be raised
due to a local time constraint at port level when ports interact with assets. Our future
work is to enhance Guaraná’s failure semantics also with the capability of capturing
message processing failures that may occur into the sending process element at ports
(see Fig. 2). This element can be used to validate the message before forwarding it to
the communicator so that assets are prevented from receiving and processing invalid
messages that will only produce NOK outcomes and exception signals. Another idea
is to extend this idea to the whole EAI solution and thus considering those message
processing failures that may occur within building blocks, since the principle here is
the same as for sending processes; in principle each building block involved in the flow
might produce success (OK) or failure (NOK) after processing a message.

Considering the whole EAI solution, the failure semantic could be enriched with
the notion of a global deadline (global time constraint). This kind of constraint should
specify a time-to-live for messages, meaning the message is valid and can be normally
processed by the EAI solution, as well as, be delivered to the target asset(s) within this
time. In this case a corresponding class of failure could be raised and handled, if the EAI

11



solution did not meet the global time constraint. There would be a direct relationship
between these two kinds of constraints, since the total amount of time in local time
constraint could give a hint to build the global time constraint.

The paper recognizes the need to account for exceptional situations that normally
impact EAI solutions at run time and suggests an approach to capture them at an abstract
level of the specification. To address the problem and in support of the model driven
approach to cope with computer technology evolution, the paper contributes with an
innovative DSL that 1) produces PIMs; and 2) whose operation (ports at current stage)
invocations account for exceptional outcomes: they either produce a normal result or
an exceptional event that is processed by an event condition action-based monitor that
triggers recovery procedures.

References
1. A. Abouzahra, J. Bézivin, M.D. Del Fabro, and F. Jouault. A practical approach to bridging

domain specific languages with UML profiles. In Proceedings of the Best Practices for
Model Driven Software Development at OOPSLA, volume 5, 2005.

2. F. Cristian. Understanding fault–tolerant distributed systems. Communications of the ACM,
34(2):56–78, February 1991.

3. V. Ermagan, I. Kruger, and M. Menarini. A fault tolerance approach for enterprise applica-
tions. Services Computing, 2008. SCC ’08. IEEE Int’l Conf on, 2:63–72, July 2008.

4. A. Erradi, P. Maheshwari, and V. Tosic. Recovery policies for enhancing web services relia-
bility. In Proc. Int’l Conf. Web Serv., pages 189–196, 2006.

5. Apache Foundation. Camel Home, 2008.
6. R.Z. Frantz, R. Corchuelo, and J. González. Advances in a DSL for Application Integration.

In Proceedings of the Zoco’08 Workshop, pages 54–66, Gijón (España), 2008.
7. P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Compensation is not enough. In EDOC ’03:

Proceedings of the 7th International Conference on Enterprise Distributed Object Comput-
ing, page 232, Washington, DC, USA, 2003. IEEE Computer Society.

8. G. Hohpe and B. Woolf. Enterprise Integration Patterns - Designing, Building, and Deploy-
ing Messaging Solutions. Addison-Wesley, 2003.

9. A. Liu, Q. Li, L. Huang, and M. Xiao. A declarative approach to enhancing the reliability of
bpel processes. In Proc. IEEE Int’l Conf. Web Services, pages 272–279, 2007.

10. Microsoft. Microsoft BizTalk Server 2006 R2 Home, 2008.
11. Microsoft. BizTalk Framework 2.0: Document and Message Specification, Dec 2000.
12. Inc. MuleSource. Mule 2.x User Guide, 2008.
13. Object Management Group (OMG). OMG EAI Profile Home, 2004.
14. Object Management Group (OMG). OMG Home, 2009.
15. Rosettanet. Rosettanet: Implementation framework–core specification, version: V02.00.01,

revised 6 mar, 2002.
16. M. Strano, C. Molina-Jimenez, and S. Shrivastava. A rule-based notation to specify exe-

cutable electronic contracts, cs–tr no. 1115. Technical report, School of Computing Science,
Newcastle University, 2008.

17. J. Weiss. Aligning relationships: Optimizing the value of strategic outsourcing. Technical
report, IBM, 2005.

18. Stephen A. White. Business Process Modeling Notation (BPMN) Specification 1.0, 2009.
19. L. Zeng, H. Lei, J j. Jeng, J-Y. Chung, and B. Benatallah. Policy–driven exception-

management for composite web services. In Proc. Seventh IEEE International Conference
on E–Commerce Technology (CEC05), 19–22 July, pages 355–363. IEEE Computer Society,
2005.

12


