
The Role of Roles in Computer-mediated

Interaction

Stephan Lukosch
Delft University of Technology

Faculty of Technology, Policy, and Management
PO box 5015, 2600 GA Delft, The Netherlands

s.g.lukosch@tudelft.nl

Till Schümmer
FernUniversität in Hagen

Department for Mathematics and Computer Science
Universitätsstr. 1, 58084 Hagen, Germany

till.schuemmer@fernuni-hagen.de

Abstract

Roles coin any social interaction. In this paper, we present basic practices
for designing roles in collaboration settings. These patterns should help the
designer of collaborative systems to reflect roles in the system design and
thereby steer group interaction.

1 Introduction

The concept of a role is omnipresent in any interaction. This paper, e.g., has
been written by two humans who took the role of the author. After one author
created an initial draft of one section, the other author took the role of a devil’s
advocate. He questioned the theses of the first author and thereby helped him to
clarify his point. When we submitted the paper, it was received by two people
playing the role of a conference and a programme chair of EuroPLoP 2008. They
checked the formal content of the paper and passed it on to a group of 10 people
who were in the role of a programme committee. These people were expected to
provide an assessment of the paper and judge whether or not it could be raised
to a sufficient quality during a shepherding process. The programme committee

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP
2008), edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright c© 2009 for the individual papers by the papers’ authors. Copying permitted for private
and academic purposes. Re-publication of material from this volume requires permission by the
copyright owners.

1



members passed their feedback back to the programme chair who released this
paper for shepherding. At this point another group came into play: A pool of
shepherds scanned this paper and decided whether or not they wanted to play the
role of a shepherd. The shepherd’s responsibility was to point out strong and weak
points of the paper and help the authors to improve the weak points.

We could continue this story for one or two additional pages and thereby out-
line the interaction process that supported the evolution of this paper. From the
example, we can already identify the core of the role concept: A role combines pro-
totypical behavior, rights, capabilities, and obligations. Compared to this, tasks are
expected activities. They are related to roles in workflows: From a rather abstract
viewpoint which is sufficient for this paper, a workflow describes a sequence (or
network) of tasks and relates them with roles. When enacting a workflow, the roles
will be filled by concrete users who are then obliged to perform the task in a given
time frame.

At the beginning of the process of our example, the author is expected to behave
in a way that he writes the text of the paper, he has the right of expressing his
thoughts. This however implies cognitive capabilities (e.g., the ability of formulating
sentences or the capability of synthesizing new lines of thought) as well as technical
capabilities like the access to a word processor or pen and paper. Finally, the author
has the obligation of delivering the text in time with a sufficient quality.

The above example shows that a role owner has a different perception of the
role as persons that are expecting specific activities from the role owner. From a
philosophical perspective, Mead (1934) explored the two sides of the self, the ’me’
as the social self and the ’I’ as a response to the ’me’. In addition to Mead’s theory,
Cronk (2005) points out:

There is a dialectical relationship between society and the individual;
and this dialectic is enacted on the intra-psychic level in terms of the
polarity of the ’me’ and the ’I’. The ’me’ is the internalization of roles
which derive from such symbolic processes as linguistic interaction, play-
ing, and gaming; whereas the ’I’ is a ’creative response’ to the symbolized
structures of the ’me’ (i.e., to the generalized other). (Cronk 2005)

This makes clear that there is always a dialogue between the role that contributes
to the ”me” and the ”I” that constitutes the specific moment and the actions.
Depending on the context of the self, there can be more or less need for creativity.
If the human participates in a strict workflow or production workflow (Borghoff and
Schlichter 2000) as we know it from workflow management systems, creativity is not
desired in the participant’s response. System design for such interaction should thus
codify roles and restrict the capabilities of the user to actions that contribute to the
expected behavior.

Looking at real collaboration scenarios, however, often shows a different style of
interaction. Bardram (1997), e.g., investigated collaboration workflows in hospital
settings and showed that plans are often created in-situ. Patients and doctors
adapt their behavior so that it fits with the current situation. Environments for
ill-structured tasks that are difficult to describe independently of current actions
and that require agile decisions about future actions, often rely on social roles and

2



at the same time provide all users with capabilities that extend the capabilities
of their specific role. This allows participants to diverge from their pre-defined
roles as needed. In the extreme case, technology support for roles is not required
and coordination of expectations is supported by awareness mechanisms (e.g., a
Remote Selection

→P4CMI
that can be used to communicate on which artifacts a

user is currently working).

In this paper, we present patterns for an intermediate understanding of the role
concept: Designs in which roles are explicitly modeled while still providing space
for divergence from the role (at least in some patterns).

Figure 1: Pattern map

The patterns in this paper extend the 72 patterns for computer-mediated in-
teraction that we present in (Schümmer and Lukosch 2007). Figure 1 shows the
relations between the patterns in this paper and the patterns for computer-mediated
interaction. The patterns for computer-mediated interaction follow the assumption
that roles are part of the social agreement between the users of a collaborative sys-
tem. In this paper, we frequently reference these patterns. Such a reference will be
indicated by

→P4CMI
next to a pattern name. Thumbnails of the referenced patterns

can be found at the end of this paper. The four patterns in this paper are:

– Role: Explicitly model the responsibilities and capabilities of a role.

– Role Indicator: Decorate the Virtual Me of a user with a symbol that
represents the user’s current role.

– Ad-hoc Workflow: Communicate dependencies between tasks and roles.

– Spectator: Allow users to observe other users’ actions.

While the first two patterns ease the understanding of the individual’s capabil-
ities and responsibilities, the third pattern supports the group’s reflection on the
interaction process. The last pattern finally helps to gain an outsider’s view of the
group process and is an example of a more concrete Role.

3



2 The Patterns

2.1 Role

Photo: Tyler,

http://www.flickr.com/photos/trp0/406897468/

Model the expected interaction in the collaborative application.Intent

You designed a system for computer-mediated interaction thatContext

shall support a specific group process.

Users have problems to structure their interaction in theProblem

group. Especially, some users act in a way that is not
anticipated by other users. This can hinder the interaction
to reach the intended goal.

John and Paul interact in a software project. They would like toScenario

do an XP session using an application sharing tool, but it is pure
chaos. Both start typing text, both want to program as the inspi-
ration enters their minds. They are in trance and totally ignore the
presence of each other, as there is no group process which struc-
tures the interaction. As a result, no real collaboration takes place
and numerous conflicts evolve.

You should consider to apply the pattern when . . .Symptoms

– collaboration needs supervision and guidance.

– there are administrative tasks to do that require deeper un-
derstanding of the consequences.

– some users are unaware of the group process and do not be-
have according to the other users’ expectations.

– users see features that they should not or cannot use.

– users repeatedly assign a comparable combination of access
rights to different users.

Therefore: Define roles that describe what the owner ofSolution

the role is supposed to do. Also specify in a role which
tools may be used in order to reach the role’s intended

4



goal. Link the roles to users when they engage in the
group process.

Represent Roles in your collaborative system. Each Role has aCollaborations

description and is associated to activities that can be performed
by the person having this role.

Users can perform all activities that are available in their roles
and necessary to complete the assigned task. Before an activity
triggered by the user is executed, the system checks if the user
owns a role that is associated to the activity. If not, no action will
be performed.

There are two special roles: the omnipotent role allows a user
to perform any action (an example is the role of an administrator)
and the empty role is not related to any actions (this is equal to
no role).

Roles can contain other roles. By that, the set of possible roles
is combined. Users can play more than one role at the same time
which means that they can execute any action allowed in any of
their roles.

Roles can be assigned to and withdrawn for a user. In order
to influence the user’s actions, the user has to see what role he
plays. This can be done by means of a Role Indicator

→2.2
or by

sending a message to the users whenever they should switch their
role.

It is most common to assign a default user role to an account
at the moment the account is created. A system administrator
can assign roles with advanced rights to user accounts afterwards
(Quick Registration

→P4CMI
). The system administrator role is

assigned to a user account at the moment of system installation.

The explicit notion of a role helps the users to understand theirRationale

current situation in the group process. Since the role carries a
description that explains what is expected from the person playing
the role, it can help the users to fit their actions with the role.

The connection between role and action explicitly defines how a
user can reach the role’s goal. Assigning a user to the role ensures
that all actions connected to the role can be executed by the user
performing the role.

Assigning the allowed activities for a role instead of specific
users reduces the amount of time spent on tool administration.

When applying this pattern, you should answer these questions:Check

– What is the default or minimal role a user must have to act
in the system?

– What role hierarchy should be implemented?

– Who is the authority to manage the association of roles to

5



users? Can users pass roles on?

– What are the events that give rise to a modification of the
role?

There are many reasons why users may fail to fill their role. TheyDanger Spots

may be absent because of illness or they may lack competencies
required to act in this role. For such cases, the system has to
provide means for reassigning the role to another user.

Users may also abuse the power that is given by the role. Again,
the system needs to provide mechanisms to revoke the role from
such users.

Especially in creative processes, roles cannot be pre-defined.
The definition of roles may be impossible at all, though
Roles might emerge from interaction implicitly. The Ad-hoc

Workflow
→2.3

pattern discusses the role of roles in such contexts.

Known Uses Scripted Exercises in CURE (Haake 2007): In the context of
computer-supported collaborative learning, scripts have been
used to guide students through the exercises. The students
were asked to first brainstorm concepts learned in the course,
cluster the material, and finally write an essay on the topic.
The essay writing process was supported by two roles: The
author was asked to create a draft of an essay. Then, the other
group members took the role of a reviewer and annotated the
initial essay. After receiving the reviews, the author could
modify the text or pass his role on to another group member
and become a reviewer instead.

Blackboard: In Blackboard (Blackboard Inc. 2009), each user
role has a specific set of permission levels:

– Course Builder - has access to all features except Assess-
ments and Course Tools.

– Grader - has access to the grade book and is able to create
and modify assessments.

– Instructor - has access to all course functions. This in-
cludes adding and modifying content, controlling user
and group functions, creating assessments and enter-
ing grades, and controlling discussion boards and virtual
classroom functions.

– Student - has access to all course content but cannot mod-
ify content. This is the only role able to take assessments
and have grades recorded in the grade book.

– Teacher Assistant - shares the same level of access as the
instructor. Although the rights are the same, the name
of the role conjures different expectations regarding the
teacher’s behavior.

6



The admin assigns a new role to the selected user account.

Many other CSCL systems work the same way, e.g. Moodle
(Moodle 2009), ILIAS (ILIAS 2009), and Synergeia (Stahl
2002).

World of Warcraft (http://www.wow-europe.com/) is a dis-
tributed multi-user game in which teams can play together
against other teams. To initiate a team, one user invites other
users to the team. The inviting user will have the role of a
team leader and has special rights such as inviting new players
to the team or deciding on how the goods are shared among
the team members.

SourceForge.net is an open source software development web
site in which project members can have different Roles, e.g.
administrator, developer, translator, etc.

Related Patterns Quality Inspection
→P4CMI

, Mentor
→P4CMI

, Shared

Browsing
→P4CMI

are examples of patterns that rely on
roles. These patterns focus on the group process and show
how specific user roles can be supported.

Floor Control
→P4CMI

describes how roles can be passed on to
other users.

Role Indicator
→2.2

shows which role a user currently has.

Role-Based Access Control (Schumacher et al. 2005) dis-
cusses the issue of access rights in relation to roles.

7



2.2 Role Indicator

Photo: Ron Bird, FreeDigitalPhotos.net

Let each member of a group know which Roles the other membersIntent

have.

You are developing a computer-mediated environment, where usersContext

can have different Roles with different rights.

Users are not aware of capabilities as well as responsibili-Problem

ties of other users.

Consider a globally distributed development project in which aScenario

large team co-constructs a game engine together with some test
users. Molo, one of the African test users, has problems installing
the new version of the game engine. Unfortunately, the water sup-
ply simulation game which he uses for testing does no longer work
on top of the newest game engine. He would have liked to talk
to the test officer in the project, but he does not know who this
person currently is.

You should consider to apply the pattern when . . .Symptoms

– Users want to perform a specific activity but are not allowed
to do this.

– Users frequently ask someone else to perform specific activi-
ties.

– Users do not know who has enough rights to perform specific
activities.

– Users treat other users as if they have a different role.

Therefore: Visualize the Role
→2.1

of the interacting usersSolution

whenever a user is shown in the user interface.

Integrate an element in the User List
→P4CMI

or the InteractiveCollaborations

User Info
→P4CMI

so that the current role of a user is revealed.
Make sure that the role representation is unique and can be under-
stood by all interacting users. When users can change their role,

8



update the role information whenever a user switches to another
role.

As each user’s role is visualized, users can easily lookup their ownRationale

role in the interaction process and also identify the role of their
peer users. This allows users to interact with each other according
their roles.

When applying this pattern, you should answer these questions:Check

– What are the different Roles?

– Where are you going to visualize the Roles?

– How are you going to visualize the different Roles? Are you
going to use different icons for each Role or will you use
textual labels?

Users might not want that their role is revealed. In such cases, youDanger Spots

should allow users to turn their role indicator off.

Users might have different roles at the same time. This makes
it difficult to decide which role is shown to the other users.

Known Uses World of Warcraft (http://www.wow-europe.com/) requires
that each team has one leader. The leader has special rights,
e.g. a leader can decide how rewards are distributed in the
team or a leader may invite new team members. Leaders can
be identified in the User List

→P4CMI
as their representation

is associated with a small crown (cf. Figure 2).

Figure 2: Role Indicators in World of Warcraft

Vitero http://www.vitero.de is a conferencing system which
supports up to two moderators. The moderators can pass

9



a microphone icon to user which want to talk. The micro-
phone is shown to all other users as well so that they stay
aware of who has currently the speaker role.

XPairtise (Lukosch and Schümmer 2007) is a tool for distributed
pair programming. For supporting and teaching distributed
pair programming, XPairtise distinguishes three different
roles, i.e. navigator, driver, and Spectator

→2.4
. Figure 3

shows how the different roles are indicated in the User

List
→P4CMI

.

Figure 3: Role Indicator in Xpairtise

Related Patterns Role
→2.1

: Role Indicator describes where and when to visual-
ize different Roles.

User List
→P4CMI

allows to visualize different Roles by simply ex-
tending the user representation in the list.

Masquerade
→P4CMI

describes how users can control what kind
of personal information they reveal to other users. This can
include information about a user’s Role.

Activity Indicator
→P4CMI

shows for awareness purposes the ac-
tivities of the collaborating users. By analyzing the activities
of a user, it is also possible to identify a user’s role in the
collaboration process.

Interactive User Info
→P4CMI

equips a user representation with
a context menu that allows to start an interaction with the
represented user. It can easily be used to visualize the user’s
current Role.

10



2.3 Ad-hoc Workflow

Interaction ScriptAKA

Communicate and make explicit dependencies between tasks andIntent

roles.

You are interacting in a creative, ill-structured group process.Context

Plans are a good thing. Having well-defined roles andProblem

tasks creates safety in performing tasks. However, ill-
structured group processes are highly non-deterministic
which means that they cannot be pressed in pre-defined
task schemas. Plans will fail in most of these projects.

Consider a typical XP project. Linea, the customer created a setScenario

of task cards and arranged them in a lovely sequence. She created
a picture of the project and believes that the team will be able
to create a good solution by simply implementing the tasks. But
already after the first task was done, the developers feel that the
plan does not fit the context and after her first tests with the
resulting system, Linea also feels the need to change the plan.

You should consider to apply the pattern when . . .Symptoms

– strict workflows are too strict for dynamic/creative group pro-
cesses.

– users are not aware of the intended group process and their
future tasks.

– users expect others to do their work.

– users do not understand the dependencies between tasks.

Therefore: Collaboratively create an explicit representa-Solution

tion of tasks as a shared document and thereby achieve
a shared understanding of ad-hoc plans that dynamically
adapts to the current group process.

In the simplest form, the group members can use a wiki to list theCollaborations

different tasks and responsibilities. For synchronous collaboration,
the group members can also make use of a Shared Editor

→P4CMI
.

11



Users should be supported in creating shared tasks, creating rela-
tions between tasks, and assigning Roles to tasks. Visualize the
representation in a way that users can understand and perform
the workflow. In case of a textual representation the workflow fol-
lows the linear structure of the text, e.g. each task is a list item.
In case of a visual representation, the workflow is represented as
a directed graph. Use the visual workflow to document current
steps and guide the group process but allow the group to adapt
the process as soon as it is necessary.

Wil van der Aalst et al. (1999) described the taxonomy of collabo-Rationale

rative work as shown in Figure 4. They classify collaborative work
along two dimensions: structuredness and the center of attention.

Work can be highly structured as it is the case in optimized
production workflows or it can be inherently unstructured as it
is often the case for collaborative problem solving activities. The
support for the group interaction can focus on making information
available to all group members (and providing the best comprehen-
sible awareness on the group members’ activities) or it can focus
on supporting the interaction process and thus guide the group
members through the required steps.

Figure 4: Situating collaborative work according to the structure and

focus dimensions (inspired by van der Aalst et al. (1999)).

Groupware applications are typically situated in the lower left
corner of the diagram: they support creative interaction and help a
group to interact on shared information spaces. They focus on im-
proving the communication between the group members and make
them aware of each others’ actions.

Workflow management systems on the other hand focus on
guiding the users through the process. The process is pre-defined
and the group members are only required to perform their steps in

12



the process. Communication is pre-structured and in most cases
reduced to the communication acts required for executing the work-
flow.

An Ad-Hoc Workflow helps to structure the implicit pro-
cesses of information-centered unstructured interaction. During
the co-construction of the Ad-Hoc Workflow, the group members
become aware of the required steps for the specific tasks and coor-
dinate their efforts.

During the enactment phase of the workflow, the group mem-
bers document their progress in the process and thereby increase
the awareness of the group’s activities. Since group members are
allowed to deviate from the Ad-Hoc Workflow, they keep the
flexibility of information-centered collaboration.

When applying this pattern, you should answer these questions:Check

– When will you create the workflow in your group process?
Can you distinguish coordination phases from collaboration
phases?

– Will you create a graphical or a textual representation of the
workflow?

– How do you visualize active tasks?

– Can you use the workflow representation to track your work?

Workflows are often not just a a linear sequence. Especially forDanger Spots

iterative processes, workflows may include iterations or parallel
processing streams. The user has to be careful that no circular
dependencies occur that may lead to deadlocks. In a deadlock sit-
uation, user A waits for user B to complete task 1 before A can
start task 2. At the same time, user B waits for user a to com-
plete task 2 before he can start task 1. In general, the groupware
system should highlight potential deadlocks in the workflow. This
can be done by checking the following deadlock conditions that are
common knowledge in operating systems research and visualizing
those tasks for which the conditions apply:

Mutual exclusion: the tasks assume that the performer of the
task has exclusive access to a shared resource (see Pes-

simistic Locking
→P4CMI

).

Hold and wait: tasks require more than one shared re-
source. Once the performers have obtained a Pessimistic

Lock
→P4CMI

, they keep the lock and request another lock to
complete the task.

No preemption: there is no way to force a performer of a task
to give back his resources.

Circular wait: task have a circular dependency as outlined in the
previous paragraph.

13



Changes to the workflow can place another burden on the users.
Once the ad-hoc workflow was changed, the users have to under-
stand the new group process and adapt their behavior to act ac-
cording to their role. Changes to the workflow should thus be
highlighted, e.g., by placing a Change Indicator

→P4CMI
on the

changed sections.

Known Uses Chips / XChips (Rubart et al. 2001) visualized ad-hoc work-
flows as graph structures. The users could define task graphs
and relate tasks with roles. When enacting the ad-hoc work-
flow, the users can assign group members to roles and thereby
express responsibilities of individuals for specific tasks.

Figure 5: Ad-Hoc Workflow in xChips

Figure 5 (Rubart and Haake 2003) shows how XChips was
used to create an Ad-Hoc Workflow for a company spe-
cific meeting (picture reprinted with authors’ permissions).

DigiMod (http://www.teambits.de/) is a meeting facilitation
support system that allows facilitators to structure the dif-
ferent phases of the meeting. Facilitators create tasks that
describe what the participants should discuss and how the
discussion should take place (e.g., as a structured brainstorm-
ing). During the meeting, DigiMod visualized the sequence of
meeting steps and highlights the current task.

Related Patterns Role
→2.1

: Tasks are performed by Roles. In the definition phase
of the Ad-Hoc Workflow, the group members name (or
create) roles and associate them with tasks.

No Agenda, No Meeting argues that all meetings should have
an agenda. The agenda is comparable to a linear Ad-Hoc

Workflow.

Shared Editing
→P4CMI

The workflow representation should be
created using a shared editor. This allows all group members
to participate in the creation of the workflow and contribute
their views of an optimal problem solving path.

14



2.4 Spectator

Photo: Federico Stevanin,

FreeDigitalPhotos.net

Allow users to observe the activities of other interacting users.Intent

Users are interacting in a computer-mediated environment toContext

achieve a shared goal.

Users are interacting in a computer-mediated environmentProblem

but are not familiar with the environment. These users
perform activities which disturb the interaction and col-
laboration of other users.

John and Paul have now managed to work in pair programmingScenario

sessions. Now, their company is growing as it acquires more and
more projects. The new employees are requested to work in pair
programming sessions as well to ensure the high software quality,
but they do not know how to do this. The manager requests John
and Paul to teach the new employees, but their tool has only been
designed to support one driver and one navigator in a pair pro-
gramming session. Thus, John and Paul do not know how they
can show the new employees how to interact in pair programming
sessions.

You should consider to apply the pattern when . . .Symptoms

– Unexperienced users are not accepted by experienced users.

– Unexperienced users disturb the collaboration of other users.

– Users want to communicate their experience with a computer-
mediated environment but do not know how.

Therefore: Allow users to view and follow the interactionSolution

in an ongoing Collaborative Session
→P4CMI

as Spectator.
Ensure that these Spectators cannot influence the inter-
action.

Allow users to select an active Collaborative Session
→P4CMI

Collaborations

from an Interaction Directory
→P4CMI

and to choose whether

15



they want to join the session as a regular participant or as a Spec-

tator. When joining as Spectator users can freely navigate in
the shared artifacts which are used in the session. They can also
view the activities of the other regular participants but they cannot
influence the activities by modifying the shared artifacts as well.

The Spectator Role does not allow that users influence theRationale

activities of other users. However, Spectators can view and un-
derstand the interaction of other users and thereby learn how to
interact in the computer-mediated environment.

When applying this pattern, you should answer these questions:Check

– Are you going to inform regular participants in a Collab-

orative Session about Spectators viewing their interac-
tion?

– Is informing the regular participants enough or should they
in some cases be asked for explicit permission?

– Are Spectators allowed to contact regular participants or
other Spectators?

– Are you going to provide mechanisms for Spectators which
make them aware of the other users’ activities?

Ensure that Spectators cannot access private artifacts of otherDanger Spots

users. You may even consider Role-based Access Control

(Schumacher et al. 2005) to decide which artifacts Spectators

or other roles may access.

Known Uses Counter Strike Source (http://store.steampowered.com/
app/240/) is a multi-user game in which teams compete
with each other in Collaborative Sessions

→P4CMI
. Before

participating in such a Collaborative Session, players
have to decide which team they want to join. As additional
opportunity, players can decide to join as a Spectator.
Spectators can move around like regular participants but
cannot influence the current game. For that purpose, players
can switch their Role

→2.1
and become a regular participant.

Guild Wars is a MMORPG (Massively multiplayer online role-
playing game) which apart role playing supports team com-
petitions. The team competitions can be viewed by Specta-

tors.

XPairtise (Lukosch and Schümmer 2007) is a tool for distributed
pair programming. Apart from the Roles of a driver and nav-
igator, XPairtise also supports Spectators which can follow
an ongoing distributed pair programming session. When join-
ing a pair programming session, users can choose between the
different supported roles (cf. Figure 6).

16



Figure 6: Role-dependent join in XPairtise

Related Patterns Collaborative Session
→P4CMI

: Spectators can view the in-
teraction in a Collaborative Session.

Role
→2.1

: A Spectator has a concrete Role.

Role-based Access Control (Schumacher et al. 2005) dis-
cusses the issue of access rights in relation to roles and can be
used to define which artifacts a Spectator may access.

17



3 Conclusions

The patterns of this papers discussed the role of roles in computer-mediated inter-
action settings. We presented a small selection of proven practices for modeling
roles in such settings. However, we are aware of the fact that these patterns can
only be a starting point towards a larger collection of practices that help groups
to structure their group processes. It still needs to be investigated to what extent
these practices can and should be written as patterns.

In some contexts, more domain-specific patterns have shown to be very helpful
for practitioners of that specific domain. One example is the meeting patterns
collection (Schuemmer and Tandler 2008) that names concrete roles in a group
meeting, such as the role of the facilitator or the presenter. We foresee that more
domain-specific pattern collections will emerge – and if there is no concrete collection
for your specific domain, you may consider taking the role of an author and share
your collaboration experience. May the patterns of this collection help you to
structure your concrete patterns as well as concrete application that support your
domain.

Acknowledgments

We would like to thank our shepherd Andreas Fießer for his excellent and challenging
questions that helped to improve the patterns in this paper.

References

Bardram, J. E. (1997). Plans as situated action: an activity theory approach to
workflow systems. In ECSCW’97: Proceedings of the fifth conference on Eu-
ropean Conference on Computer-Supported Cooperative Work, Norwell, MA,
USA, pp. 17–32. Kluwer Academic Publishers.

Blackboard Inc. (2009, February). Blackboard home.
http://www.blackboard.com/.

Borghoff, U. M. and J. H. Schlichter (2000). Computer-Supported Cooperative
Work. Springer-Verlag Berlin Heidelberg New York.

Cronk, G. (2005). George Herbert Mead – The Internet Encyclopedia of Philos-
ophy. http://www.utm.edu/research/iep/m/mead.htm.

Haake, J. M. (2007). Computer-Supported Collaborative Scripts: Einsatz com-
putergestützter Kooperationsskripte in der Fernlehre. In DeLFI 2007, 5. e-
Learning Fachtagung Informatik, pp. 9–20.

ILIAS (2009, February). ILIAS open source LMS. http://www.ilias.de/.

Lukosch, S. and T. Schümmer (2007, September). Enabling distributed pair pro-
gramming in Eclipse. In 10th European Conference on Computer-Supported
Cooperative Work (ECSCW’07), Workshop ’The Challenges of Collaborative
Work in Global Software Development’.

18



Mead, G. H. (1934). Mind, Self, and Society. The Chicago University Press, Ltd.,
London.

Moodle (2009, February). Moodle.org: open-source community-based tools for
learning. http://moodle.org/.

Rubart, J., J. M. Haake, D. A. Tietze, and W. Wang (2001). Organizing shared
enterprise workspaces using component-based cooperative hypermedia. In
HYPERTEXT ’01: Proceedings of the 12th ACM conference on Hypertext
and Hypermedia, New York, NY, USA, pp. 73–82. ACM.

Rubart, J., W. W. and J. M. Haake (2003). Supporting cooperative activities with
shared hypermedia workspaces on the www. In Alternate Track Proceedings
of WWW 2003. MTA SZTAKI.

Schuemmer, T. and P. Tandler (2008). Patterns for technology enhanced meet-
ings. In Proceedings of EuroPLOP’07, Konstranz, Germany. UVK, Konstanz.

Schumacher, M., E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and
P. Sommerlad (2005). Security Patterns. Chichester, UK: Wiley.

Schümmer, T. and S. Lukosch (2007). Patterns for Computer-Mediated Interac-
tion. John Wiley & Sons, Ltd.

Stahl, G. (2002, September). Groupware goes to school. In J. M. Haake and J. A.
Pino (Eds.), Groupware: Design, Implementation, and Use, 8th International
Workshop, CRIWG 2002, LNCS 2440, La Serena, Chile, pp. 7–24. Springer-
Verlag Berlin Heidelberg.

van der Aalst, W. M. P., T. Basten, H. M. W. Verbeek, P. A. C. Verkoulen, and
M. Voorhoeve (1999). Adaptive workflow-on the interplay between flexibility
and support. In International Conference on Enterprise Information Systems,
pp. 353–360.

Appendix: Pattern Thumbnails

Activity Indicator

Problem: Users need time to perform a task but only the results are shared among
them. In a collocated setting users are accustomed to perceive non-verbal
signals such as movement or sounds when another user is active. If the users
are distributed, these signals are missing. Users are therefore not aware of
other users’ activities, which can result in conflicting work or unnecessary
delays.

Solution: Indicate other user’s current activities in the user interface. To reduce
interruptions, use a peripheral place or a visually unobtrusive indicator.

Change Indicator

Problem: While users works on independent local copies of artifacts, their check-
out frequency for the artifacts may be low. As a result, they may work on old

19



copies, which leads to potentially conflicting parallel changes. The conflict is
worse if two parallel modifications have contradictory intentions.

Solution: Indicate whenever an artifact has been changed by an actor other than
the local user. Show this information whenever the artifact or a reference to
the artifact is shown on the screen. The information should contain details
about the type of change and provide access to the new version of the artifact.

Collaborative Session

Problem: Users need a shared context for synchronous collaboration. Computer-
mediated environments are neither concrete nor visible, however. This makes
it difficult to define a shared context and thereby plan synchronous collabo-
ration.

Solution: Model the context for synchronous collaboration as a shared session
object. Visualize the session state and support users in starting, joining,
leaving, and terminating the session. When users join a session, automatically
start the necessary collaboration tools.

Floor Control

Problem: Synchronous interaction can lead to parallel and conflicting actions that
confuse the interacting users and makes interaction difficult.

Solution: Model the right to interact in the shared collaboration space by means
of a token and only let the user holding the token modify or access the shared
resources. Establish a fair group process for passing the token among inter-
acting users.

Interaction Directory

Problem: Finding existing contexts to start interaction and memorizing older con-
texts to continue an interaction is difficult.

Solution: Provide a shared space that is available to all users in which users can
store and retrieve interaction contexts.

Interactive User Info

Problem: Users are aware of other users in the collaboration space and can identify
them, but they don’t know how to start tighter interaction with a specific user.

Solution: Equip the user representation with a context menu that provides com-
mands for finding out more information on a user and for starting tighter
collaboration with the user.

20



Masquerade

Problem: Your application monitors the local user. The information gathered is
used to provide awareness information to remote users. While this is suitable
in some situations, users often do not act as confidently if they know they
are monitored. Users may feel a need to avoid providing any information to
others.

Solution: Let users control what information is revealed from their personal details
in a specific interaction context. This means that users must be able to filter
the information that is revealed from their personal information. Remember
to consider reciprocity.

Mentor

Problem: Newcomers do not know how community members normally act in spe-
cific situations. They are not used to practices that are frequently applied in
the community.

Solution: Pair newcomers with experienced group members who act as mentors.
Initially let newcomers observe their mentors, and gradually shift control to
the newcomer.

Pessimistic Locking

Problem: You want to ensure that changes performed by the user are definitely
applied, even if more than one user wants to modify the same shared object
at the same time.

Solution: Let a site request and receive a distributed lock before it can change the
shared state. The lock can have different grain sizes. The grain size of a lock
determines how much of a shared data object, or of all shared data objects,
can be modified after getting one lock. After performing the change, let the
site release the lock, so that other sites can request and receive it for changing
the shared state.

Quality Inspection

Problem: Members participate in a community to enjoy high-quality contributions
from fellow members. However, not every contribution has the same quality.
Low-quality contributions can annoy community members and distract their
attention from high-quality gems.

Solution: Select users as moderators and let them release only relevant contribu-
tions into the community’s interaction space. Give moderators the right to
remove any contribution and to expel users from the community.

21



Remote Selection

Problem: Users select artifacts to start an action on the artifact. Selecting an
artifact is considered as taking the artifact under personal control. Whenever
two users select the same artifacts, this leads to coordination problems.

Solution: Show remote users’ selections to a local user. Make sure that other users
who are interested in a specific artifact are aware of all distributed co-workers
who have selected the object.

Shared Browsing

Problem: Users have problems finding relevant information in a collaboration
space. They often get lost.

Solution: Browse through the information space together. Provide a means for
communication, and collaborative browsers that show the same information
at each client’s site.

Shared Editing

Problem: Users are sharing data for collaboration. The need to edit the shared
data simultaneously emerges, but the shared single-user application does not
allow concurrent editing.

Solution: Provide a shared editor in which users can manipulate the shared arti-
facts together. Ensure that state changes are instantly reflected in all other
users’ editors, and provide mechanisms that make users aware of each other.

User List

Problem: Users do not know with whom they do or could interact. Consequently,
they do not have the feeling of interacting in a group.

Solution: Provide awareness in context. Visualize who currently is accessing an
artifact or participating in a Collaborative Session

→P4CMI
. Ensure that

the information is always valid.

Virtual Me

Problem: In a large user community, account names look similar. But users need
to communicate their identity in order to interact with other users.

Solution: Allow the users to play theater! Provide them with means to create a
virtual identity that represents them while they act in the system. Show the
virtual identity when the user is active.

22


