
Dietmar Schütz
Siemens AG, CT SE 2

Otto-Hahn-Ring 6
81739 München

Germany
eMail: dietmar.schuetz@siemens.com

Phone: +49 (89) 636-57380
Fax: +49 (89) 636-45450

BITSTREAM X-CODER
Version 1.0, EuroPLoP2008 Final

This pattern provides an efficient solution for decoding densely packed bit-
streams into properly aligned data structures. This conversion problem is
typical for communication scenarios, where limited bandwidth and
processing speed require strong optimization, and hence motivate different
structures for both tasks. The proposed solution operates on bigger chunks
instead of single bits, and prevalent shift operations are replaced by a finite
state machine and lookup tables, thus yielding formidable throughput.

Summary

Context Software applications dealing with dense coding of information, for
example communication protocols of embedded systems.

Example Consider an application scenario where wireless communication and
transponders are used to exchange information with objects passing at
significant speed. The contact duration is very short, and due to
transmission reliability, the bandwidth is rather low too.
In order to pass as much information as possible, the telegrams transmitted
are packed densely, not wasting any bits.
For efficient processing in the target environment, the telegrams need to be
“unpacked” into word-aligned data structures.

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008),
edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. Re-publication of material from this volume requires permission by the copyright
owners.
Copyright granted to Hillside Europe for use at the EuroPLoP2008 conference.

1

Inflating a dense stream of bits into a word aligned data structure

The figure below is a concrete example taken from the European Train
Control System (ETCS) “language” [UNISIG]. The left part shows the
structure of a “static speed profile” telegram, containing two nested iterative
subsections, each controlled by a counter value N_ITER. The right part
shows the corresponding word-aligned data structure.

2

struct sPACKET_27 {
 int packetId; //NID_PACKET
 int direction; //Q_DIR
 int packetLength; //L_PACKET
 int scaleFactor; //Q_SCALE;

 int nSpeedData; //N_ITER +1
 struct sSpeedData {
 int staticDistance; //D_STATIC
 int staticSpeed; //V_STATIC
 int frontIndicator; //Q_FRONT

 int nCategory; //N_ITER(k)
 struct sCategory {
 int categoryId; //NC_DIFF
 int cateorySpeed; //V_DIFF
 } aCategory[33];
 } aSpeedData[33];
};

Telegram structure definition
(with two nested iterative
subsections)

Corresponding target data structure definition
(in C)

Another (simpler) example is base64 [Base64], a popular binary-to-text-
encoding scheme used to transmit binary data across media that only
support ASCII-printable characters (who’s most significant bit equals zero).
In this scheme, three in-bytes are inflated to four out-bytes, where every
out-byte holds six of the 24 in-bits.

Problem Processing units usually operate on aligned data (such as bytes and words)
much faster compared to addressing and working on single bits, thereby
dealing space for time. On the other hand, from the communication
perspective, time is directly related to space. Hence, data structures are
packed densely for faster transmission, and unpacked again for quicker
processing. This artifice relieves the operational code from handling single
bits, but nevertheless the non-productive packing routines burn CPU

resources by shifting bits back and forth. How can the packing/unpacking be
done in an efficient way?

The following forces influence the solution:
• Sequence of bytes. Low level drivers usually operate on a sequence

(stream or array) of bytes when transferring binary data, e.g. via a
serial interface (UART). Hence, this is an appropriate representation
of the “raw” bit stream.

• Performance and Granularity. Operating on a fine granularity (such
as bits) automatically raises the number of objects to handle, with
negative consequences for the performance of the overall operation.
In addition, extracting bits from words requires additional effort.

• Telegram format. A telegram is a (nested) sequence of single
elements, sometimes containing control content (e.g. length, number
of consecutive elements, etc.) that have to be taken into account
during processing the telegram. The single elements often adhere to
a “processable” format (e.g. two’s-complement), but might offend
them too, especially in heterogeneous environments.

• Telegram types. Typically, there are various types of telegrams.
Each of them comes with its own syntax, and needs to be handled
accordingly.

• Ease of code. The telegram structure and corresponding data
structures should be clearly visible in the code, not obscured by
incomprehensive activities.

Solution Although your granularity is bits, operate on words: read and convert
information in chunks as big as possible, at least bytes.
To this end, transform the bit reading functionality into a finite state
machine (FSM), where each state represents distinct values for the bits not
processed yet in the “head” byte of the input stream. A transition from on
“state” to another one processes as many bits as possible at once, and
accumulate these chunks into the aspired result. Embed this state and its
handling into a function that is responsible to read a single element of the
telegram (unpack a short sequence of bits from the input into a word). Use
this function to assemble the structure of the whole telegram.

Structure The Input Stream is a densely packed sequence of bits, typically stored as a
sequence of bytes or words. The first bit of the input stream is not
necessarily the most significant bit (MSB) of the first word or byte. Instead,
there might by some leading junk bits that must be ignored1.

1 This situation can arise for example when receiving data from a transponder. Typically,
such messages are repeated in a cyclic manner, and the continuous data stream must be
inspected first to detect a position that fits the start condition of the telegram.

3

The target structure is a memory location where the decoded telegram
should be stored into. Typically for embedded environments, this is a “flat”,
memory section with fixed size, and can be addressed via a structure
definition. In other, less restrictive environments, tree structures build from
several nodes and leafs might be an option too. All elements in the target
structure are available in an optimal format: they can be used “as is” for
further processing.

The core element of this pattern is the head buffer, a small buffer that is
responsible to store the next bits of the stream for further processing. It
contains an aligned snippet from the stream, as well as the information how
many bits of that are remaining for processing. Both pieces are coded
together in a State variable.

A finite state machine (FSM) specifies the behaviour when decoding single
elements out of the stream. Input values are the actual state, and the number
of bits missing to complete the current telegram element. A transition
“consumes” as much bits as possible from the state, yielding the new state,
the remaining length, and the decoded data, properly aligned. The output
values are taken from transition tables, that look-up the result using indexed
access based on the inputs.

Since decoding an element might require more that one transition of the
FSM, an accumulator is necessary to store and combine the partial results
until the whole element is completed.

The structural parts listed above are managed and orchestrated together into
a readBits function that is responsible to decode an Integer (a word) by
consuming a given number of bits from the input stream.

Last but not least, a structure parser is responsible to process the sequence
of single elements in the input stream and extract the corresponding
telegram structure in the aspired output format. This task incorporates
parsing optional, iterative, and nested structures based on control data
embedded in the stream. In addition, some adaptations on the data might
become necessary, such as scaling of values or conversions to the “local”
representation (e.g. big-endian number formats).

Dynamics There are two important dynamic scenarios that characterize this pattern,
initialization and decoder loop.

For initialization, the state as well as the input stream must be set into a
defined condition. Usually, the input stream can be used as provided by the
corresponding environment (either as a quasi-infinite source of bytes/words
that can be read consecutively, or as a continuous memory region with fixed
length). More care might be necessary on initializing the state. If the first bit
of the input stream is not the MSB of the first word, the valid bits must be
mapped correctly into the state variable.

The decoder loop covers the scenario if a single element spreads across two
or more consecutive bytes/words in the input stream. Since the head buffer

4

can only contain data from one byte/word, it will be emptied on the first
pass, and hence must be reloaded until the element is complete.

Implementation The implementation of this pattern incorporates at least the five steps
described below.

1 Decide on the chunk size. The chunk size should correspond to the size of
an operatable unit (byte, word) of the CPU. Bigger chunk sizes yield better
performance (linear ratio), but dramatically rise the size of the lookup
tables. For most environments, one byte is an appropriate choice. Two bytes
are an option if space is nothing to worry about. Four bytes are too much to
be handled with lookup tables, thus only applicable for the calculation
approach (see step 3 for details).

 In the example implementation, the chunk size is a byte. □

2 HeadBuffer, coding of state. The state must reflect the remaining valid bits
of the chunk, and is stored in the head buffer.

 Given that the first 3 bits have been processed previously, there are 5
remaining bits in the head buffer, hence 25 = 32 different states are
necessary to reflect the possible variants. This sums up to 511 states for zero
to eight remaining bits with distinct values. □

A simple approach uses a byte variable to store the bit values, and an integer
variable indicating the number of valid bits (the rightmost bits in the byte).
Using both values as lookup index, the table contains n* 2^n entries, with n
as the number of bits in the “chunk” sizeof(chunk)*8. Unfortunately, this
wastes a lot of space, since for small numbers of remaining bits the leading
bits in data are irrelevant.

A more effective approach is to combine both variables into one by using a
simple coding scheme:
Bits consumed already (in the example below indicated by a dash -) are set
to “0”, a single “1” indicates the start of the “valid” part, and is followed by
the values of the valid bits.

 State is stored in the head buffer as an integer, coded as concatenation of
'0'* + '1' + ”remaining bits”. The state “values” range from 1 to 511. The
following table shows examples for concrete state codings.

Scenario Logical state Coded state
(content of head buffer)

five remaining bits,
values 0 1 0 1 1

---0 1011 0000 0000 0010 1011 = 4310

no remaining bits ---- ---- 0000 0000 0000 0001 = 110

eight remaining bits, all 1 1111 1111 0000 0001 1111 1111 = 51110

5

 □

3 Transition function and lookup tables. Consuming a specific number of bits
from the head buffer causes a transition from one state to another. The
maximum number of bits that can be consumed at once is limited by the
number of remaining bits in the head buffer. If the buffer runs empty, the
missing bits will be read later after reloading the buffer.

For each pair of (state, bitsToConsume) the subsequent state can be easily
computed. The same is true for the value of the extracted bits, and the still
missing bits to be read later.

For optimal performance on most processors, these functions are not
computed at runtime. Instead, the results are stored in appropriate lookup
tables. These tables may consist of previously calculated constants, or can
be initialised at runtime.

Note: The look-up approach might be suboptimal for modern processors
with data caches. In such cases, there is a high probability for cache misses
when accessing the lookup tables, causing a much slower access to (un-
cached) memory, which results in significant performance drops. In such
environments, calculating the “lookup” value at runtime can be quicker than
real lookup, providing more speed and less memory consumption.

4 Implement the bit-reading function. The following code describes the core
of the read routine.
readBits(byte &buf; // pointer to input stream
 unsigned n; // number of bits to consume
 unsigned &result // resulting value
) {

 static unsigned z = 0; // „empty“ byte as start state
 unsigend accu = 0; // accumulated result

 while(n > 0) { // there is something to read
 if(z == 0)
 z = *(buf++); // „refill“ state from input stream

 z_save = z;
 accu |= value(z_save, n); // look-up (part of) value
 z = z_new(z_save, n); // look-up new state
 n -= used(z_save, n); // look up number of missing bits
 }

 result = accu;
 }

This core routine might be extended with handling of error conditions (e.g.
premature end of input stream). Another add-on might be an explicit
initialization of the “state” to a value different than 0, in order to cope with
bit streams that do not start at a byte boundary in the input buffer.

The following show the values for z, n, and accu for two examples. The first
example consumes only a part (4 bits) of the input stream (buffered in z,
containing 6 bits), processed in on step. The second example consumes 11
bits, and hence needs to iterate through the loop and to refill the buffer.

6

 z n accu new z n’

Example 1:
 --011011 4 + 0000000000000110 ------11 0
 0000000000000110
 = 610

Example 2:
 --011011 11 0000001101100000 -------- 5 // refill z
 10011110 5 + 0000000000010011 -----110 0
 0000001101110011
 = 88310

5 Implement the structure parser. The structure parser might be implanted in
two different ways: either hard-coded or by means on an Interpreter (see
[GOF94] for details).

A hard-coded parser might be more efficient, but can (depending on the size
and number of telegram structures) result in a huge amount of code.

The probably smarter way is an interpreter, with data structures that controls
the behaviour: a sequence of read operations processes the input stream, and
writes the resulting values through a “write pointer” (base plus offset) into
the target structure, while a small stack automaton keeps track of nested
telegram structures.

Example
Resolved

The thousands of line of code of hard coded structure parsers are obsolete,
replaced by a small read function and the structure interpreter, both fitting
on a single page. They are complemented by declarative code that provides
the parser “programs”, reflecting the telegram structures, automatically
generated from XML-based structure definitions. Execution times are
significantly improved, and maintenance is eased up.

Consequences BITSTREAM X-CODER provides the benefits depicted below:

• Speed. The method described above is ten to a hundred times faster
compared to a bitwise reading and recombination of the encoded values.

• Code reduction. Especially in conjunction with an interpreting structure
parser, the required active code is rather small. In addition, it does not
depend on the number and complexity of different telegram structures.

On the other hand, the pattern carries the following liabilities:
• Complexity. Less obvious than the “straight forward” implantation, not

easy to understand.

• Memory Consumption. The transition tables are getting quite big,
especially when choosing bigger chunks for processing (exponential
growth in size for linear increase in speed).

Variants The pattern can be applied “the other way around” to implement the
encoder. Accordingly, the tail buffer is extended until it is full, and then
flushed to the output stream.

7

Some compression algorithms share many commonalities with encoding
and decoding bitstreams. For example, zip uses Huffman codes (the length
of the “code” relates to the relative frequency of the corresponding
character.

Credits Thanks to my shepherd Peter Sommerlad, for his patience and supportive
suggestions. I also thank the participants of the writers workshop at
EuroPLoP2008 (André L. Santos, Carsten Hentrich, Diethelm Bienhaus,
Jürgen Salecker, Paul G. Austrem) for their valuable feedback. Thanks to
my working student Omar Farooq, he implemented the core of this pattern
in the context of the “ETCS language” defined in [UNISIG].

References [GOF94]
E.Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns,
Elements of Reusable Object-Oriented Software;
Addison-Wesley 1994

[POSA96]
F. Buschmann, R. Meunier, H. Rohnert, M. Stal, P. Sommerlad:
Pattern Oriented Software Architecture, A System of Patterns;
Wiley 1997

[UNISIG]
UNISIG SUBSET-026
http://www.era.europa.eu/public/Documents/ERTMS%20Documentat
ion/Mandatory%20Specifications/SRS%20230.zip

[Base64]
Wikipedia article on Base64
http://en.wikipedia.org/wiki/Base64

8

http://www.era.europa.eu/public/Documents/ERTMS%20Documentation/Mandatory%20Specifications/SRS%20230.zip
http://en.wikipedia.org/wiki/Base64

