

E-5-1

INTELLIGENT SUBJECT – adapting OBSERVER with push
model and filters to handle divergent update needs

Paul G. Austrem

Dept. of Information Science and Media Studies
University of Bergen, Norway

paul.austrem@infomedia.uib.no

Abstract
The OBSERVER design pattern is one of the most widely used patterns from the original GoF
book [1]. With the proliferation of mobile devices in worklife and information systems
serving data to such devices is paramount to maintaining data integrity in a work process. The
idiosyncracies of mobile devices have placed new requirements on the mechanisms for
updating resource limited clients1 with an OBSERVER style solution. This work provides an
adapted pattern named INTELLIGENT SUBJECT that allows for a SUBJECT side filtering
mechanism to avoid propagating all updates to all OBSERVERS if the cost of notification is
high. This cost could be either due to resource or network constraints. OBSERVERS define
threshold values, and are only notified when the data value is changed beyond their individual
threshold. The pattern introduces slightly more complexity, but allows for a separation of
concerns on the SUBJECT side and a life of blissful ignorance on the OBSERVER side.

Introduction
Currently mobile devices are being increasingly used as integral parts of day-to-day
operations in many business areas, being employed by healthcare workers [2], ticket takers on
trains, as well as suggested uses for construction workers [3]. This is complimented by the
increased development of mobile devices supporting constant network connectivity (through
technologies such as Wi-Fi and/or HSDPA) for broadband data transfer speeds, along with
GPS technology for location data[4] . These technologies pave the way for mobile knowledge
workers to utilize information on-the-go to improve their workday, as they can now access a
centralized information system or data source through their network connectivity, and enrich
information retrieval techniques with contextual information through the use of GPS location
data. This work uses the definition of a mobile knowledge worker as a person who does not
have a stationary workplace and who is dependant on updated information in order to perform
their work tasks. Note however, that the domain of mobile knowledge workers is not
normative for the pattern, it is exemplary. The pattern may of course be used in other
situations and contexts, the specific domain is applied here because it brings forth many of the
benefits of this adaptation of the original OBSERVER pattern.

How data is used by different applications on a mobile device may vary. For instance maybe
you are running several different applications simultaneously on your mobile device. On a
mobile device (hereafter referred to as a Client) with constrained resources, there should
be an aim to minimize unneccessary inter-process calls such as with applications actively
polling a shared resource on the Client[5, 6].

Both [5] and [6] offer an alternative to making the Client responsible for retrieving location
data in a data pull-manner. In this paper, the OBSERVER pattern [1] is used to allow Client
applications to register with, for example, a LocationManager and receive either periodic

1 Devices that are battery powered, have limited memory or have reduced processing power.

E-5-2

updates [5], or updates whenever the user has moved beyond a set proximity [6]. The pattern
has also been applied in the Symbian OS for mobile devices as part of the MVC pattern. It is
in this context used to notify views of updates/changes to the model.

The OBSERVER pattern is used to offer this functionality. The pattern is one of the most
widely applied patterns in software today. It allows a system to achieve consistency among
objects whilst maintaining loose coupling between them. This gives you a system that is
flexible and extendable with loose coupling without breaking the OPEN-CLOSED PRINCIPLE [7]
(page 57).

The purpose of this paper is to present a filtering mechanism to avoid propagating all updates
to all observers. To help illustrate this, we may use an analogy to a news publisher within a
niche market. The news publisher charges his subscribers on a per news update delivered
basis. Suffice to say not all subscribers wish to receive all the niche market news updates, thus
the publisher has decided to offer custom subscription packages, where one can subscribe and
receive all news updates, or only headline / breaking news updates depending on the
individual needs of the subscribers.

Offering this functionality introduces a new challenge, the GoF [1] state this as the ”Push or
Pull” model. In the ”Pull” model the Subject merely issues a notification of change without
providing any extra information to the Observers. This means the Observers
themselves must discover what has changed, and whether it is relevant for them. Conversely
in the ”Push” model the Subject ”pushes” extra data to the Observers. Essentially the
Observers get the change information served directly to them parametrically2.

The example of the news publisher being the Subject, whereas all the customers are the
Observers shows how to place responsibility onto the Subject, This goes beyond just
using a push model, in addition the Subject must deal with what is analogous to the
”subscription type” of the Observer. The reason for using this model is to avoid
unneccessary memory usage if dealing with ”heavy-objects”. A different pattern that resolves
similar issues locally in an application is the VIRTUAL PROXY [1] and the ”Lazy” family of
patterns (LAZY INITIALIZATION [8], LAZY LOAD [9]) for datalayer to businesslayer retrieval.

If the Subject is a provider of large and/or complex objects this will naturally take up
significant amounts of memory on the Observer devices and induce performance issues if
transferred over a network. If these complex objects are not necessarily needed by the
Observers then this is a waste of resources.

On mobile, resource limited devices, a design should strive to constrain the memory footprint
and inter-process calls of an application to a minimum. The initial memory footprint is
affected by how many classes are loaded at initialization; for instance, loading entire libraries
such as System.Graphics.* is wasteful if you do not actually need all the classes in the
package. Secondly, the number of objects initialized and allocated will affect the memory
footprint. Thirdly, all method calls will incur some overhead; although this is barely
noticeable in intra-process calls it may have an effect on inter-process calls. These should
therefore be minimized.

2 A variation of this is the ”Event Listener” pattern wherein an Observer when registering with the Subject
passes in a reference to an object that implements a pre-agreed method signature. The method signature contains
a subclass of an abstract Event Class as an in parameter. This way the Event information is pushed to the
Observer. This approach is used extensively in the Java.AWT and Swing components.

E-5-3

INTELLIGENT SUBJECT Object Behavioral

The original pattern of the GoF is named OBSERVER, this pattern has been named
INTELLIGENT SUBJECT to emphasize the dominating role played by the Subject.

Intent
Relieve the Observer of all duties and avoid unnecessary resource usage when dealing
with solutions where data passing from Subject to Observer is costly and
Observers have divergent update needs by extending the Subject and giving it
added responsibility.

Problem
You are faced with multiple clients each with differing needs for updates. Their needs
may be based on limited resources, etc. thus they may only require updates when changes
have gone beyond a certain level, or threshold. These requirements are individual. How
do you accommodate varying needs in update frequencies in clients but still make this
transparent for both the subject and the observers?

Motivation
If we break down the previously defined phrase ’mobile knowledge workers’, we can
tentatively motivate the use of the pattern. Mobile devices may imply limitations on
resources in terms of capabilities or performance, or due to the cost of use or portability.
Knowledge implies that the workers are dependant on information in order to do their job;
for example, a healthcare worker or train ticket collector. The workers must have timely
information available in order to do their job correctly, or the results could be less than
agreeable. However, depending on the accuracy needs of the application the data may not
need to be updated constantly. For instance, not all Observers, whether they be
applications or different Clients, may require the same accuracy or timeliness.

Applying our real-world analogy, a person who is a news subscriber may choose to
subscribe to only the headline news if the cost of the subscription is too high for a full
news subscription. Similarly, an application on a resource limited device could opt to only
receive updates when the data has changed by a pre-defined amount if notifications are
costly. Note that although the example of a mobile knowledge worker motivates the
pattern, it does by no means limit the applicability of the pattern to resource limited
devices of the domain of mobile information systems.

An example of this could be in a financial application wherein certain Clients
(Observers) are so resource limited that they cannot receive updates too frequently
seeing as the updates are costly. Thus they only desire updates when values change
beyond a certain limit or threshold.

This implies that the INTELLIGENT SUBJECT pattern gives the Subject additional
responsibilities. Due to the fact the Subject must actively handle which Observers
are to receive notifications anytime the data changes.

E-5-4

Forces
You are dealing with situations where there is a real need to provide updated information
to different observers with varying requirements to data freshness. The solution must be
stable in its interface and easy to bind to for observers, but at the same time it must be
flexible and capable of accommodating differing needs. This creates an overarching force
of providing a static interface while allowing for dynamic behaviour.

Applicability
The INTELLIGENT SUBJECT pattern can be applied in the following scenarios:

• Use the pattern when a Subject object needs to notify a dynamic list of
unknown Observer objects without inducing strong coupling between the
objects and the Subject must handle divergent update needs from the
Observers.

• You need to utilize a ”push” model3, however the cost of passing the eventData
is too high to justify it being passed when the value of the data is of no
significance to the receiver; for instance, because the data value change is too fine.
Frequently pushing the eventData will lead to unacceptable performance. The
performance cost can reside with the Subject or the Observers, or even both.
On the Subject side, the cost may be associated with network constraints; for
instance, messages fail to reach the intended Object, forcing the Subject to
resend the message even though the eventData in the message is of no interest
to the Observer. Contrarily, the cost may reside with the Observer if the cost
of processing the received eventData is high in terms of computational power
(which on a battery-powered device would translate directly into draining the
battery). In which case it would be preferable for the Observer to only receive
updates that are relevant.

• The Observers need to do cascading updates to many different aspects / objects
upon receiving eventData. This is costly. Avoid this by defining upfront
limits/thresholds for when to receive updates.

Solution
Create a separate class that handles the notification to only those observers that require it
based on their individual thresholds. The Subject does not know, nor does it care, which of the
observers actually receive its updates. Similarly the Observers do not know whether there
have been sent out updates that they have not received, they are only notified whenever a
change happens that exceeds their personal threshold. The Observers are thus able to create
their own universe of state, or sphere if you will; which is not intruded or “contaminated”
with unnecessary or uninteresting data. The following sections present the solution in more
detail, starting with a structural view. This is followed by a behavioural view and a
presentation of the participants, before finally a code sample and implementation guideline is
provided.

3 Perhaps because the client devices do not have pull capabilities.

E-5-5

Structure

Figure 1: Class diagram of the INTELLIGENT SUBJECT.

The difference between the original OBSERVER pattern, and INTELLIGENT SUBJECT is in
the addition of the DispatchFilter class. Though we previously stated that more
responsibility is placed on the Subject, in that context, the term Subject was only
considered conceptually. As we can see from the class diagram in figure 1, the pattern
uses ”part-whole” composition because the DispatchFilter is contained within the
ConcreteSubject. A filter could per se exist without the ConcreteSubject,
however there would be little point in this since the DispatchFilter is uniquely
associated with the eventData values of each individual Subject.

Another shift of responsibility is that the ConcreteSubject no longer invokes
methods on the Observers directly. This task is delegated to the DispatchFilters
contained in the ObserverList attribute. This accomplishes two things; the
ConcreteSubject now has no knowledge of the specific needs of any Observers,
nor should it. The ConcreteSubject knows only how many Observers are
registered at any given time in its list, but that is all the knowledge it has. Additionally,
this separation enforces the LAW OF DEMETER4.

4 Essentially, the law of Demeter states that a method M of object O may only invoke the methods of closely
connected/related objects.

E-5-6

The separation of DispatchFilter into a separate class is crucial to avoiding
DIVERGENT CHANGE, one of the many malodorous symptoms described by Fowler [10].
We are dealing with two distinct behaviors, lumping them both in with the Subject
class is unattractive. The Subject class deals only with receiving notifications from the
Client (assuming this is the notification model used), wrapping the whole event up in
an eventData object, and notifying each of the members in the ObserverList.
Only a reference to the eventData is passed to the DispatchFilter objects which
save the load of a possibly large eventData object being unneccesarily transfer. This
leads us on to the second behavior, namely the evaluation and propagation of
eventData to the registered Observers. The task of evaluation is closely tied into the
threshold values of the individual Observers, thus it should be performed by the
DispatchFilter which is object that is composed of the Observer and threshold
value. Additionally, the DispatchFilter must handle the computation of the
difference between the new eventData value and the lastValue of the Observer.
If the difference is greater than the threshold then an update will be initiated.

As a comment on Figure 1, it is plausible to create the object observerList class as a
generically derived class parameterized with <Filter>, which the Subject class
would then bind to. In such a case, we would be using an association between
DispatchFilter and Subject instead of composition between
ConcreteSubject and DispatchFilter. The advantages of this would be that a
layer of indirection would be removed (the ConcreteSubject class) and we would
enforce type-checking, and also ensure that the addObserver and removeObserver
methods are correctly implemented by the DispatchFilter class. However, this is
only applicable in certain strongly typed languages (although many languages do now
support it with Java Generics and C# Templates), and does have consequences in terms of
”code bloat in [for example] C++” p. [11] .

The INTELLIGENT SUBJECT adaption of the original OBSERVER is reminiscent of the
MEDIATOR pattern as described in the GoF book [1]. However, whereas the MEDIATOR
pattern is concerned with centralized control of complex interactions between objects, in
order to decrease the coupling between them, the INTELLIGENT SUBJECT is concerned
with centralized control of divergent update needs. Concisely stated; MEDIATOR handles
centralized control of cascaded / dependant updates, INTELLIGENT SUBJECT handles
divergent update needs.

Participants
• Subject

- knows of its Observers and offers all the method signatures needed by
Observers, to add and remove themselves.

• Observer
- Is an interface used by concrete Subject objects to update the registered
Observers.

• ConcreteSubject
- This participant extends the Subject base class. It also stores the state that is the
basis for all Observer updates.

• ConcreteObserver
- Knows of the ConcreteSubject so that it can attach itself and remove itself
from the Subject’s list of Observers. Implements / Extends the Observer
supertype to stay synchronized with the methods and signatures used for updates.

E-5-7

• DispatchFilter
- This class is delegated the task of directly invoking the update method of all
Observers where the eventData value exceeds their threshold value. It is also
responsible for retrieving the state from the ConcreteSubject.

Collaborations

Figure 2: Sequence diagram of the object interactions during an update.

The sequence diagram shows the interactions between the objects during an update event.
Initally the object aConcreteSubject will receive a message call to its notify (this is
not shown in the above diagram). This will prompt the object aConcreteSubject to
invoke its iterateList method. Essentially this is where the responsibility of the
concreteSubject object ends. It invokes the update method on each
DispatchFilter object in its observerList, it is then the DispatchFilters
responsibility to decide whether or not the Observer object contained in the Filter
object is to be updated with new eventData. This is depicted as the self-call of
doUpdate the aDispatchFilter object-lifeline in figure 2. The doUpdate returns a
boolean value after having compared the difference between the specific Observer
object’s lastValue attribute and the new eventData value against the threshold
attribute value of that Observer. This is accomplished through operator overloading,
since depending on the type of the eventData the operator symbols of greater than and
less than may not natively be supported. In which case the Observer must overload
those operators to function with the eventData type.

Code Sample and Implementation Guidelines
The following code samples show a C# skeleton implementation and the mechanisms
behind the INTELLIGENT SUBJECT pattern.

Below is the IObserver interface which all classes that wish to observer the Subject must
implement. For simplicity’s sake, we are merely using an int object5 as the eventData

5 since the example is written in C# where all types ultimately derive from System.Object, as opposed to Java
where int is an immutable primitve disconnected from the object model.

E-5-8

parameter that gets passed to the observers. Note that in a real implementation the
eventData object would be more complex, and consequentially could be passed as a struct
which is slightly more efficient as reported by [12].

public interface IObserver

 {void Update(Object state);}

The class below is the ConcreteObserver which implements the IObserver interface.

public class ConcreteObserver : IObserver
{

public void Update(Object state)
{ Console.WriteLine(id + " updated with " + state.ToString());}
. . . .

}

The following (partial) abstract class is the Subject supertype, correlates to the Subject in
the participant list. It also has methods for allowing observers to remove themselves and
for notification.

public abstract class Subject
{
 private const int arrayno = 10;

protected static DispatchFilter[] observerList = new
DispatchFilter[arrayno];

private int counter = 0;

public void addObserver(IObserver observer, int threshold)
{
 if(counter < arrayno)

{
observerList[counter] = new DispatchFilter(observer,
threshold);

 counter++;
}
else
{//throw an exception here}

}
}

public class ConcreteSubject : Subject
{

private int State;

public void setState(int s)
{

this.State = s;
notify();

}

private void notify()
{

for (int arrayIterator = 0; j < counter; arrayIterator++)
{observerList[arrayIterator].update(ref State);}

}
}

Listing 1: Code sample showing skeleton of the Intelligent Subject pattern.

E-5-9

The code snippet above, ConcreteSubject is the class which extends the abstract
class Subject. As we can see it offers no method for getState() as the original
OBSERVER pattern does, this is because INTELLIGENT SUBJECT enforces a push model,
thus there is no need for Observers to be able to programmatically retrieve state since it is
pushed to them as a parameter in the Update method.

Whenever the state is set, the notify() method is called. Note that a caveat about the
sample above is that calling the notify() method sequentially with the state setting
operation is not advisable. This is because in a real-life implementation the state setting
procedures may be complex involving many steps, and multiple calls to the
setState() method. Therefore the Client would not want to call the notification
notify()until after the setState() method had been called for the last time. In
practice, this is easy to implement; simply extract the call to notify() and place it in an
overridden notify() method call. Thus the Clients could call notify() to run the
updates. The only reason we didn’t was to simplify the example.

Below in listing 2, the code that handles the filtering and Update() calls to observers is
presented.

E-5-10

public class DispatchFilter
{

private IObserver Observer;
private Object Threshold;
private Object LastUpdateValue;

public Filter(IObserver observer, Object threshold) {

this.Observer = observer; this.Threshold = threshold;
LastUpdateValue = 0;

}

public void update(ref Object state) {doUpdate(ref state);}

private void doUpdate(ref Object state) {
if (LastUpdateValue != 0 && beyondThreshold(state))

Observer.Update(state);

else if(LastUpdateValue == 0)
{

LastUpdateValue = state;
Observer.Update(state);

}
}

public bool beyondThreshold(Object state) {
return (getDifference(state) > Threshold);

}

public int getDifference(Object state) {
 return state - LastUpdateValue; }

}

Listing 2: Code for the Filtering class which handles the Update() calls to the conditioned Observers

The DispatchFilter class encapsulates the behavior required to update the Observers
and handle the task of filtering out which Observers are to receive updates. The
ConcreteSubject class will invoke the update() method, of DispatchFilter
objects maintained in its ObserverList, and pass in the eventData object (in our
vanilla example this is just a simple Object) as a reference. Note that the
ConcreteSubject does this for all the DispatchFilter objects in its list. It must
be done this way to enforce the separation of concerns, and encourage the high cohesion
of the Subject and DispatchFilter classes. Note that this approach (in certain languages) is
not costly since passing eventData as a reference in-process is performance wise
economical, and allows a higher cohesion in the ConcreteSubject class. This pass-
by-reference approach is idiomatic to the C# programming language, and is also doable in
C++, however it will not be possible in for example the Java language. In which case
there might be a slight performance penalty, but in-process passing-by-value is not overly
costly, so the message passing architecture is not bound to any specific programming
languages.

The DispatchFilter object will then check whether the new eventData difference
value exceeds the threshold of the individual Observer. If so, then the Observer’s
Update() method is called.

Note that this design lends itself well to Meyer’s NON-REDUNDANCY PRINCIPLE [7] in the
constructor of DispatchFilter and in the addObserver() method of Subject.

E-5-11

The NON-REDUNDANCY PRINCIPLE states that ”under no circumstance shall the body of a
routine ever test for the routine’s precondition” [7] (page 343). We see that although the
addObserver method in Listing1 does do a check on the size of the array, it does not do
any checks on the integrity on the parametric data passed in. This affects the
responsibility distribution, essentially the code sample operates with ”demanding pre-
conditions” [7] (page 343).. The responsibility is to a larger degree shifted to the
Observer which must ensure that any data passed when registering is correct, in this
code sample if the data is not correct and the registration fails the Observer will not
receive any notification of this. This approach goes against the paradigm of ”defensive
programming”, and Meyer argues that the NON-REDUNDANCY PRINCIPLE allows for
reduced complexity and increased reliability; this is called ”the zen-style paradox…: that
to get more reliability the best policy is often to check less” [7] (page 345).

Consequences
A consequence of the INTELLIGENT SUBJECT pattern is the shift of responsibility between
the Subject/DispatchFilter dyad. The Subject becomes a class that holds a list
of all registered Observers under the guise of DispatchFilter objects, which
handle the tasks of adding and removing Observers. However, the Subject no longer
has the responsibility of communicating with Observers to Update them, this is now
delegated to the DispatchFilter class. Compared to the original OBSERVER pattern,
this variation is more complex as you use delegation to provide the filtering mechanism
through a separate filter object. Additionally, there is transparency between the classes;
for instance, the Observers do not know that there is a separate DispatchFilter
class that updates them with new eventData. If they at times are bypassed, it is because
the eventData change is below their threshold value, causing them to remain
completely oblivious to the change. Therefore a chance of data disalignment between
Observers can occur. This can be troublesome if the Observers in a different part of
the system cooperate or collaborate and their data is not the same because they have
different threshold values registered with the Subject. Thus they may have received a
different number of updates, in which case one of the Observers would have more
accurate and more timely data than the other. This could be solved by timestamping the
eventData so that the Observer with the freshest data would trump the Observer
with stale data.

Known uses
The traditional OBSERVER pattern (and minor variations on it) have been widely used in
object-oriented event driven software designs. In the .Net and Java frameworks, the
traditional OBSERVER pattern is utilized extensively in their delegate-event models [13,
14]. It is also used in the architecture of Symbian S60 platform for mobile devices [15].
The traditional OBSERVER has been used in the Java packages java.awt and javax.swing
for handling notifications between graphical artefacts, event-triggers and the event
listeners which handle the business logic.

The adoption presented here is viable in domains of resource limited devices, or in
systems where any eventData is propagated over a network with limited bandwidth.
Propagating this data to Observers who do not need it should be avoided. Concepts
from the INTELLIGENT SUBJECT pattern have been used as part of Google’s Android
Location API framework [16] wherein it is possible to register (an Observer) with a

E-5-12

LocationProvider (Subject) with a set ProximityAlert (conceptually a
threshold), thus the Observer will not receive updates all the time, only when the
proximity alert is triggered.

Related patterns
The original OBSERVER and INTELLIGENT SUBJECT are high-level design patterns. It
would be feasible to use other patterns such as FACTORY METHOD to create Filters, or to
use SINGLETON to ensure there is only one list object containing the Observers. As
mentioned previously, the MEDIATOR pattern is similar to INTELLIGENT SUBJECT in its
functional aims. Concisely stated, MEDIATOR handles centralized control of cascaded /
dependant updates, whereas INTELLIGENT SUBJECT handles divergent update needs. The
SASE OBSERVER [17] variation is similar, it allows the Observers to register with the
subject, and at registration time identify themselves, register which events they care about,
and register what event data they request when the event fires, and also possibly what they
should do with the event data. Although very similar in many of its intents, the SASE
pattern gives a different distribution of responsibility. It allows the Subject to dictate
the Observers response and processing of events, whereas INTELLIGENT SUBJECT
enforces an opaqueness between the Subject and its Observers; thus, the Subject
does not know and does not care what happens to the data after it has been pushed to the
Observers.

Another option is that the DispatchFilter could implement the STRATEGY pattern
allowing for interchangeable algorithms to be applied to handle the filtering. Thus, the
mechanisms that go into differentiating between which Observers receive updates
could be run-time pluggable. This could allow the DispatchFilter to take on a
policy-enforcer approach to notification, thus information could be disseminated not only
based on which Observers that have registered for it, but also based on internal policies
set forth by the Subject as to which Observers qualify as recipients (maybe based on
the sensitivity of the information).

Finally, Niblett and Graham propose in the IBM Systems journal [18] a pattern called the
NOTIFICATION PATTERN, also known as the SOA NOTIFICATION PATTERN. This pattern
is manifested in the WS-Base Notification specification. The pattern is an alternative to
INTELLIGENT SUBJECT as it allows for a filter to determine which Observers are
to receive messages, thus not all notifications are propagated to all registered
Observers. However the main difference is in INTELLIGENT SUBJECT dealing with
compounded results, in the form of triggering thresholds as a mechanism for filtering. The
NOTIFICATION PATTERN is more concerned with direct conditional limitations, such as
topic based limitations. Furthermore INTELLIGENT SUBJECT is closer to the original
OBSERVER [1] in that detachment can only be done by direct OBSERVER initiation,
whereas NOTIFICATION PATTERN allows for temporal subscription based detachment so
that an Observer may detach at a predefined time in the future.

Acknowledgements
I would like to thank my shepherd Maurice Rabb for his insights and contributions to
improving this pattern. He provided strong technical advice, and many pointers to relevant
materials, along with encouragement and support. I would also like to thank Jim Siddle for his
oversight and suggestions, and also Andreas L. Opdahl for his comments on early versions of
the paper. Finally I would like to thank my group at Euro-PLoP for their great feedback. .

E-5-13

References

1. Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software.

1994: Addison-Wesley Professional. 416.
2. Christensen, C.M., J. Kjeldskov, and K.K. Rasmussen, GeoHealth: a location-based

service for nomadic home healthcare workers, in Proceedings of the 2007 conference
of the computer-human interaction special interest group (CHISIG) of Australia on
Computer-human interaction: design: activities, artifacts and environments. 2007,
ACM: Adelaide, Australia.

3. May, A., et al., Opportunities and challenges for location aware computing in the
construction industry, in Proceedings of the 7th international conference on Human
computer interaction with mobile devices \& services. 2005, ACM: Salzburg,
Austria.

4. Patel, N. Mobile World Congress Roundup: Cellphone Mania. [Webpage] 2008 11/2-
2008 at 10:16pm [cited 2008 11/2-2008]; Webpage summarizing all the cellphones
released during the first week of Mobile World Congress 3GSM in Barcelona].
Available from: http://www.engadget.com/2008/02/11/mobile-world-congress-
roundup-cellphone-mania/.

5. Mahmoud, Q.H. J2ME and Location-Based Services. 2004 [cited 2008 10/1-2008];
Available from: http://developers.sun.com/mobility/apis/articles/location/.

6. Android, G. Location-based Service APIs. 2007 [cited 2008 10/1]; Available from:
http://code.google.com/android/reference/android/location/LocationManager.html.

7. Meyer, B., Object-Oriented Software Construction. 2nd Edition ed. 1997, Upper
Saddle River, New Jersey: Prentice Hall PTR. 1254.

8. Beck, K., Smalltalk Best Practice Patterns. 1996: Prentice Hall PTR. 240.
9. Fowler, M., Patterns of Enterprise Application Architecture. 11th printing ed. The

Addison-Wesley Signature Series. 2003, Boston: Pearson Education. 530.
10. Fowler, M., Refactoring: Improving the design of existing code. Object Technology

Series, ed. J. Booch, Rumbaugh. 1999, Reading, Massachusettes: Addison-Wesley.
431.

11. Fowler, M. and K. Scott, UML Distilled Second Edition: A Brief Guide to the
Standard Object Modeling Language. Second Edition ed. Object Technology Series,
ed. J. Booch, Rumbaugh. 2000: Addison-Wesley.

12. Kayun, C. and S.-a. Chonawat, Energy conscious factory method design pattern for
mobile devices with C\# and intermediate language, in Proceedings of the 3rd
international conference on Mobile technology, applications \& systems. 2006, ACM:
Bangkok, Thailand.

13. Richter, J. An Introduction to Delegates. MSDN Magazine The Microsoft Journal for
Developers 2004 [cited 2008 22/1]; Available from:
http://msdn.microsoft.com/msdnmag/issues/01/04/net/.

14. Microsoft. Implementing Observer in .NET. Microsoft Patterns and Practices 2003
[cited 2008 20/1]; Available from: http://msdn2.microsoft.com/en-
us/library/ms998543.aspx.

15. Developer Community Wiki, N. Design Patterns in Symbian. Developer Community
Wiki 2008 [cited 2008 15/1]; Available from:
http://wiki.forum.nokia.com/index.php/Design_Patterns_in_Symbian#Observer_Patter
n.

16. Google. Google Android android.location.LocationManager. 2007 [cited 2008 22nd
of March 2008]; Available from:
http://code.google.com/android/reference/android/location/LocationManager.html.

17. Brown, K. Understanding inter-layer communication with the Self-Addressed Stamped
Envelope (SASE) pattern. [Webpage] 1998 18th of March 1998 [cited 2008 27/3-

E-5-14

2008]; Available from:
http://members.aol.com/kgb1001001/Articles/SASE/sase2.htm.

18. Niblett, P. and S. Graham, Events and service-oriented architecture: The OASIS Web
Services Notification specifications. IBM Systems Journal, 2005. 44(4): p. 17.

