
Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008), edited by
Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors.
Copying permitted for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners.

1

Experiences in Using Patterns to Support Process Experts in
Wizard Creation

Birgit Zimmermann1, 2, Christoph Rensing1, Ralf Steinmetz1

1 KOM Multimedia Communications Lab
Technische Universität Darmstadt

Merckstr. 25, 64283 Darmstadt, Germany
{birgit.zimmermann, christoph.rensing, ralf.steinmetz}@kom.tu-darmstadt.de

2 SAP AG
SAP Research CEC Darmstadt

Bleichstr. 8, 64283 Darmstadt, Germany
birgit.zimmermann@sap.com

1 Overview

Users of software often complain that many software solutions only insufficiently support
them in solving their problems and performing their tasks. This phenomenon occurs with all
kinds of software. It can also be seen with tools that are especially developed to support users
in performing specific tasks. Working on a tool supporting users in performing so called
adaptation processes we found the same problem. (These processes are needed to adapt
existing E-Learning material in order to make it suited for changed usage scenarios.) To offer
tool support for adaptation processes we created a wizard based on a pattern based description
formalism for adaptation processes. This paper presents our experiences with this approach.
The next chapter gives an introduction to adaptation processes.

2 An Introduction to Adaptation Processes

Creating high-quality E-Learning material is a time and cost consuming task. Re-using
existing material could reduce these costs. But often a one-to-one reuse of the existing
material is not possible, as the new scenario of usage differs to a certain degree from the
original usage scenario. Therefore, to achieve a high quality, it is necessary to adapt the
existing material to the new usage scenario.

The processes needed to perform the adaptations are structured hierarchically: A process is
performed by executing several process steps. These process steps can consist of smaller
process steps or of atomic operations that cannot be split up into smaller units (see Figure 1
on the next page).

Let us have a look at one example process: The adaptation of E-Learning material to a
changed (corporate) design consists of several process steps like exchanging logos and images

mailto:birgit.zimmermann@sap.com

2

that do not fit, or changing fonts, backgrounds, colours, etc. The process step ”exchanging
images” consists of several atomic operations like identifying all used images, testing for each
image, if it fits to the requirements, finding images that have to be used instead of non-fitting
images etc.

Figure 1: Process hierarchy [18].

In many cases it is necessary to perform several adaptations in order to achieve a good result.
When changing the layout to make it suited for a different corporate design, it is for example
often also needed to change the terminology, in order to adapt it to the terminology of the new
company. But in reality, often the persons, who have to adapt the material, are not experts in
performing all needed tasks. Mostly they only have a certain basic knowledge of how to
perform the adaptation processes. This means that compared to Dreyfus’ model of skills [4]
they are novices in performing adaptation processes. But with the help of a tool that is based
on the knowledge of persons from the expert level it is possible that the novices are supported
in performing adaptation processes in such a way that they are enabled to achieve results that
a user from a higher skill level would achieve. To develop such a tool support was our goal
within the Content Sharing Project (http://www.contentsharing.com).

To be able to offer support for adaptation processes it was necessary to find out how the
adaptation processes have to be performed and how a useful tool support could look like.
Therefore we carried out a survey of persons being experts in performing the processes
needed to adapt existing E-Learning material in order to make it suited for changed usage
scenarios [18]. These persons perform adaptation processes very often. Therefore they can
offer a detailed description of how to perform the processes.

Many of the adaptation process experts mentioned that existing tools are not well suited to
support users in performing the adaptation processes. Especially novice users are often not
able to use these tools. The main reason for this problem is that the tools often do not
represent the processes themselves. They are based on the software designers understanding
of the processes [9]. But in many cases this understanding differs from the processes as they
are performed and understood by the process experts [11]. Thus we decided to look for a
possibility that allows adaptation process experts to be involved more directly in the
development of a tool offering support for adaptation processes.

…

… …

adaptation of
(corporate) design

check
images

identify
images

check
fonts

identify
fonts

exchange
images

change fonts

replace
images

change
fonts

Pool of functions

Adaptation
Process

Process
Steps

Atomic
Operations

http://www.contentsharing.com)./

3

3 Problem: How to Enable Process Experts to Describe their Knowledge
of Adaptation Processes?

Traditional software development often starts with analysis activities in order to collect
information about how processes are performed. The requirements from user side as well as
from system side are collected. Based on these requirements, models of the processes are
developed and implemented [12]. The exact proceeding can deviate depending on the
underlying project structure (e.g. software development according to v-model, spiral models,
extreme programming, rational unified process etc.).

But this proceeding often leads to problems caused by misunderstandings between process
experts and software designers and developers [11]. To make things worse, it is often not
possible for process experts to control if the models really describe their processes, as they do
not have knowledge of common modelling formalisms like UML or ARIS. According to Siau
et al. [16] UML is too complex in many cases and its constructs are ambiguous. The same
holds for ARIS [13].

Someone who for example is working as a translator (an adaptation that occurs very often) is
a process expert for translation. Normally this person is not simultaneously an experienced
software developer or designer. Therefore most translators are not able to deal with common
modelling formalisms as UML, ARIS or BPMN [1], as they do not need these methods in
their daily work. The same holds for many other adaptation processes: Mostly persons have
expertise in the processes they deal with in their daily work. Thus they are able to give a
detailed description of how they perform these processes. But many of these persons have
never learned to describe their processes with common modelling formalisms.

Thus it would be desirable to facilitate adaptation process experts to describe their process
knowledge and to use this knowledge for software creation in a way that is easy to learn and
easy to understand and that does not require extensive training. In order to solve this problem
it was necessary to find a possibility that fulfils the following requirements:

It must be possible for adaptation process experts to describe their knowledge with an
easy to use formalism. In addition the process experts should be enabled to create a
prototypic support tool based on the created descriptions. This prototype should give
process experts a possibility to find out if a given process description is correctly
reflected in the prototype and if a tool based on the prototype would support the
described adaptation process in the desired way.

At the same time it has to be considered that the description formalism is structured in
such a way, that on one hand it is possible to create the prototype mentioned above
based on the description in a way that does not require development skills. On the
other hand, the prototype has to solve as a basis for further development. This means
that the prototype as well as the process description have to contain all information
needed to create a prototype and to allow a developer to implement a computer
program by enhancing the prototype.

For the adaptation process expert it is important that the description formalism can be used
without extensive training. For the developer it is important that the description formalism

4

allows using familiar software development proceedings and tools as far as possible. We
wanted to find an approach that meets both requirements. This approach should be used to
enhance the software development processes existing by now. It was not intended to replace
those processes.

4 Solution: Pattern Based Process Description

Patterns document proven solutions to recurring problems; they describe best practices [8].
Patterns are noted in natural language. Hence they are easy to understand for the persons of
whom knowledge is collected with the patterns [7].

Patterns offer a regular form and they can have a structured, fixed notation. They can be
stored in an XML format as the Pattern Language Markup Language (PLML) [10]. PLML is
an XML DTD, which originally was thought of as a common standard for HCI patterns. XML
is very flexible. It offers the possibility to be used for several different areas of application.
For example, XML can be rendered to HTML or other formats, e.g. by using XSLT. In this
way it is readable for a non IT person. At the same time it is very structured and thus machine
readable. Besides it can be imported to established UML modelling tools by using XML
Metadata Interchange (XMI).

Patterns are written down in natural language. Therefore pattern based process descriptions
are easy to understand for adaptation process experts. In addition software designers as well
as developers will find their familiar views on pattern based process descriptions stored in
XML, because of the flexibility of XML. Thus we decided to use patterns to capture the
process knowledge of adaptation experts and to store these patterns in an XML format. We
have written down the outcome of our user survey using patterns to describe the adaptation
processes. This led to a couple of initial patterns. We revised the initial patterns together with
process experts. In addition we made sure to find at least three known uses for each pattern by
searching for successful applications of the patterns. Some of the results have been published
at PLoP conferences ([19], [20]).

These patterns describe the processes needed to adapt existing E-Learning material on a high
level. They contain important information about how to proceed. Especially they contain a
section naming all needed process steps. Some other pattern formats also include sections
describing concrete steps in detail. But as process steps are sometimes needed in several
processes we name the steps within a pattern, but we separated their concrete description from
the patterns. We added a second kind of descriptions for the process steps, called how-to
guides. These how-to guides explain in detail what has to be done to perform each process
step and which smaller process steps or atomic operations are needed during execution.
Compared to the patterns describing the whole process the how-to guides are much more
detailed. Most atomic operations are used in several process steps. Therefore we also have
separately written down instructions for all atomic operations needed in the process steps.

Wizards are a common solution in computer science, to offer users without expert knowledge
a step by step guidance through processes. According to [6] wizards can be used, if novices
have to perform a complex task composed of several steps. The novices know which goals
they want to reach, but they do not necessarily know which steps they have to perform. A
wizard helps them in reaching their goals.

5

Wizards are easy to use even for users who are not familiar with the processes supported by
the wizard. Adaptation processes often have to be carried out by persons who are not experts
in performing these processes. Therefore they need detailed step by step guidance through the
adaptation processes. Thus we decided to develop a wizard as a supporting tool for this kind
of processes.

As stated before it was our aim to enable the process experts to be involved more directly into
the software creation process in order to achieve software that is based on their knowledge.
But we did not want them to learn common modelling formalisms or programming
techniques. Thus we were searching for a possibility allowing the process experts to prove the
outcome of their process descriptions. As stated before adaptation process experts often have
no knowledge of common modelling formalisms. We therefore decided to develop a method
that allows process experts to generate a prototypic wizard, which is based on the process
descriptions. With the prototype it can be checked, whether the underlying process
descriptions really describe how the process is performed. As most of the experts in
performing adaptation processes do not have the knowledge to develop such a wizard, the
method should be easy to use for persons without programming experience. Therefore we
wanted an automated wizard generation that does not require expertise in software
development. In addition the wizard should be based on the process descriptions written down
in patterns, process step descriptions and atomic operations descriptions, as they contain all
information needed to carry out the processes.

To be able to offer this possibility we needed a two-stage proceeding for the creation of
process descriptions: First the knowledge of process experts had to be captured in an easy to
understand format. In a second step this format had to be mapped to a formal XML
representation allowing to generate a wizard based on the given information. Therefore it was
necessary to formalize the process descriptions to such a degree that they can be used as basis
for automated code generation. In addition we had to find a possibility for an easy to use auto-
mated wizard generation. In the following section we show our concept for solving this issue.

5 Implementation

The patterns, process step descriptions and atomic operations descriptions contain the
knowledge of the adaptation process experts. To be able to create a wizard out of these
process descriptions we needed a structured, machine readable representation of this
information. Because of its flexibility we have chosen an XML notation (adapted from
PLML) to store the patterns describing the adaptation processes (as described in section 4).
We also used XML to store the process step descriptions and the atomic step descriptions.

But most process experts have no knowledge of XML. Because of this we developed a
process description input tool (PIT), which supports users in writing down pattern like process
descriptions and saving them as XML files. PIT stores the descriptions given by the process
experts in two files: one file containing all textual information about the process and a second
file containing a graph representation of the structure of the process. This proceeding
corresponds to the two-stage proceeding for the creation of process descriptions represented
before: In a first step PIT allows to capture the process knowledge in an easy to understand
format. In a second step it maps the format to a formal XML representation.

6

The XML files are taken as input for a wizard generation tool (WGT). WGT generates a
wizard by interpreting the data provided by PIT. The generated wizard represents a first
prototype of a process support wizard. It can be taken as a starting point for further
development.

Thus the pattern-based wizard generation approach proposed in this paper is based on a three-
step proceeding:

1. Writing pattern like process descriptions
2. Automated wizard generation
3. Extension of prototypic wizard

Each of these steps is explained in detail in the next sections.

6 Step 1: Writing Process Descriptions

In the first step the process expert has to create a pattern like process description. For each
process one pattern is created. If a process is more complicated and contains several sub-
processes, it is possible to create patterns for the sub-processes and to link them to the super
process. (This is realized via a specific type of related patterns.) In addition the process step
descriptions and the descriptions of the atomic operations have to be created.

To support process experts in creating process descriptions in the needed format the process
description input tool (PIT) has been created. PIT is a Java application developed under
Eclipse. It offers an input form helping process experts to describe processes in the required
pattern based notation formalism.

Figure 9 in the appendix presents a part of PIT’s input form for process descriptions. One can
see that the process description contains common pattern elements like intent, context, or
problem statement. These elements provide a reason why a process can be applied, why a
certain context has to be fulfilled to be able to perform the process etc. Thus they are useful
for other persons who might want to perform the described process. All this information is
very valuable to all persons, who have to decide, which process helps them in solving a
specific problem, and who are not process experts.

As shown in figure 9, mandatory input fields are marked with an asterisk. We have chosen
these elements as mandatory as they are most important to other persons in order to
understand why and how a process has to be performed. Mandatory elements are:

The pattern ID is a unique ID used to address the pattern. It is created automatically.
The name provides a first, rough idea what the pattern is about.
The problem section describes the situation addressed by the pattern.
The solution explains to the user, how the problem can be solved.
The process steps list all steps needed to execute the solution.
The consequences help other persons, to decide if they want to apply a pattern or not,
depending on if the positive consequences are more important than the negative ones.

7

The non mandatory elements are needed if a process expert wants to write a pattern, but they
are not necessary, to offer a useful process description:

The process expert has a certain confidence in the process description. (As we talk
about process experts the confidence should be high.)
The intent gives a short overview what a pattern is about.
The context describes the situation where the pattern can occur.
The process expert can give an example of a successful application of the pattern.
The forces describe the sometimes contradicting trade-offs that must be considered
when performing the process.
Known uses describe situations where the pattern has been applied successfully.
Related patterns can exist, but it might be that there are no related patterns.

When the process expert stores a process description, the given information is stored in XML
files. The XML files contain in one file the textual description of the process and in a separate
file the graph representation defining the process flow and all its dependencies and
preconditions. In the appendix a DTD of the XML file containing the process information can
be found. Many of the elements of this DTD are taken from PLML [10]. The PLML v1.1
DTD contains some additional elements that have not been taken into account here: alias,
synopsis, diagram, rationale, literature, pattern-link and management. The
patterns taken as a starting point for this work do not need these elements.

But our patterns contain some elements that have a slightly different meaning compared to
PLML. The PLML element illustration is called example_illustration, as to our
understanding, this better explains what is meant by this element. To be able to better
differentiate the example as used in PLML from the example_illustration we call it
example_explanation. What is referenced as an implementation in PLML is called
process_steps in our DTD. The related_patterns already contain a link to the pattern
they are related to. Therefore our related_patterns are a kind of a combination between
related-patterns and pattern-link in PLML.

The following elements that are used in our DTD are not mentioned in PLML, but they are
necessary in our approach:

intent: The intent explains what the pattern aims for.
known_uses: The known uses are part of the example-section in PLML. In our
patterns the example only contains one known-use. Other known uses can be added by
using this element.
consequences: The consequences occur when the pattern has been applied. Positive
and negative consequences can occur. As for a reader of a pattern it is very important
to know, what will happen when applying the pattern, we added this section.

6.1 Defining Process Steps and Atomic Operations

The steps of a process, their interdependencies, and the preconditions for the execution of
each step constitute the process. Thus they are essential for the execution of a process. Also
branching and cycles within the process flow are of importance. Hence PIT provides a special

8

wizard to define the process steps. This wizard allows a fine granular specification of the
process flow without requiring special knowledge of process modelling. It is started by
pressing a button to add a step to the process description.

With this wizard users can define for each step if the execution of a step is mandatory or
optional, or if certain preconditions have to be fulfilled, before the step can be executed, or if
there are dependencies on other steps. Branches are embodied by a special kind of
precondition: If the precondition leads to one result, one step is executed, if it leads to another
result, another step is executed. Cycles are defined by specifying a step that is the starting
point for the cycle and another one, which is the end point. In addition a termination condition
has to be defined. This is again modelled by a special kind of a precondition. Figure 2 shows
the screen used to define a step that has to be performed, if other steps have been performed
before. Another part of the wizard helps users to define preconditions and a third one allows
to model cycles. In addition an input form exists, used to describe how a process step has to
be performed. The description of process steps is also stored in the process description file.

Figure 2: Defining dependencies between steps.

Compared to the pattern based description of a whole process, the process step description is
very short: It contains the name of the process step, a detailed description of how to perform
the process step and a listing of all smaller process steps and atomic operations needed when
performing the process step. Sometimes a process step is as complex that it can be regarded as
a complete process on its own. Then it is possible to create a process description for this step.
This description can be added to the process step description via a special link. In the wizard
this is presented as a link to an additional page containing the complex description. Users of
the wizard can then read this additional information.

As steps themselves consist of smaller steps - atomic operations or again process steps - it is
also possible to define all operations and smaller steps needed to perform a process step.

9

Again a wizard helps to state if the execution is mandatory or optional, or if certain
preconditions have to be fulfilled. Dependencies on other atomic operations can also be
determined. For each atomic operation a description has to be provided, how the operation is
executed. This can be done via a special input form.

There exist three different kinds of atomic operations: queries, decisions and executions.

Queries are needed to determine information. For example: Find all images used in an
E-Learning course.
Decisions are needed if a person, who performs the process, has to decide on
something. For example: Decide for each image, if the image has to be deleted or not.
Executions are needed whenever something is changed or done. For example: Delete
all images that have been chosen for deletion.

Based on the information represented via the process steps and the atomic operations the
second XML file is created. This file represents the process flow. It names all steps and
atomic operations. For each step or atomic operation it contains the information whether the
execution is mandatory or not, and if there exist preconditions or dependencies. Via the
pattern ID, process step ID, and atomic operation ID it is possible to map the information
stored in this file to the information stored in the description file. Listing 2 in the appendix
contains an example for such a process graph description.

Figure 3: Part of the visualization of a process graph.

PIT offers several possibilities to work with the generated process descriptions: It is certainly
possible to edit an existing description. In addition the textual description stored in XML can
be rendered as HTML in order to view it via a browser. Thereby it is possible to read the
entire process description as a continuous text. Thus it is more comfortable to control whether
the description is complete and accurate. Furthermore, a visualization of the process graph is
available that represents all steps of the process flow. (Figure 3 shows the first level of the
process graph corresponding to listing 2 in the appendix. By clicking on a process step the

10

level under this step opens in the viewer.) At the moment this visualization is only a first
prototype. Further enhancements are planned. As the process descriptions are stored in XML
it is possible to offer several visualizations that are tailored to the needs of several persons (a
developer and a process expert need, for example, different visualizations). In addition it is
planned to offer an export to XMI. The XMI files could be used to provide a class diagram
and an activity diagram representing the process.

7 Step 2: Automated Wizard Generation

The XML files generated by PIT serve as input for the wizard generation tool (WGT) used in
step 2 of the proceeding proposed here. WGT is a Java application developed under Eclipse.
Based on the information of PIT’s XML files it generates a wizard that, as a first prototype,
can be used as a starting point for further development.

WGT is started by selecting a menu entry in PIT. WGT reads the process description that is
actually open within PIT. The user specifies where the generated wizard has to be stored and
then starts the wizard generation by simply pressing a button (compare figure 4). WGT then
parses the XML files created by PIT. It extracts the information contained in the files and fills
several predefined code templates with this information. By this procedure all needed Java
classes for the prototype are created. The “Activate additional options...” section shown in
figure 4 can be activated to open a dialog that allows to specify, how the atomic operations
have to be distributed over the wizard pages. (Later in this chapter this is explained more
detailed.)

Figure 4: Screenshot of WGT.

The main purpose of the wizard generation tool is to generate a wizard based on the
information given by the process descriptions created with PIT. The wizard should have a
graphical user interface, which allows directly after its generation that the process expert
evaluates whether the wizard contains all needed information and whether the process flow is
correct. The design of the user interface should follow common rules for designing user
interfaces, as described in [3], [14].

11

The atomic operations used in the wizard are not automated directly after generating the
wizard. Instead the wizard contains descriptions telling a user how to proceed. We believe
that it leads to better results, if an experienced software developer checks, where it is
reasonably possible to automate certain operations. Where this is possible the developer can
extend the automatically generated source code. To make it easier for the developer, to find
where the source code can be extended, comments are added to the automatically generated
source code during its creation.

Another important point during wizard generation is the time needed to generate the wizard.
As long as the wizard does not fulfil all needs the process expert will change the description
created with PIT and generate a new version of the wizard. Thus it is highly probable that the
process expert will use WGT several times until a wizard is generated that really fulfils all
needs. Therefore WGT has to be fast in order to reduce the time, where the process expert has
to wait for the generation to finish.

WGT takes the process description as a model of the process that is supported by the wizard.
This kind of software creation is called generative programming [2], which is a special kind
of model driven software development (MDSD). There are a lot of different approaches for
MDSD [17]. As large parts of the wizard stay the same for all kinds of processes regarded
here, we decided to use code generation templates to create the wizard. This allows a fast
source code generation.

The wizard generation tool consists of three logical units that are passed one after the other
(shown in figure 5):

1. In the first part the XML files provided by PIT are read. The information about the
process flow is transferred into an internal process structure model and the information
contained in the descriptions is extracted.

2. The second part uses this information to map it to Java code templates. The textual
information is used to enhance the content of the graphical user interface. The
structural information is used to create all process steps and to transfer the structure of
the process flow to the wizard. By this all needed Java classes are generated.

3. The third part writes the generated source code to several Java classes and marks all
parts in the source code that can be enhanced by adding additional source code. In
addition the created classes are compiled and a batch file is created that allows starting
the wizard comfortably.

Figure 5: Three phases of wizard generation.

12

The prototype wizard generated by WGT is based on the model-view-controller principle [5]:

The process graph containing information about the process flow serves as a model.

The wizard pages providing a graphical user interface build the view. Those pages
contain the textual information of the pattern-based process description. They are
based on Java code templates. WGT instantiates those templates by filling them with
the given information. The pages then contain a detailed description on how to
perform the process, each process step, and each atomic operation.

The controller of the wizard passes events caused by the user to the model and
reactions caused by the model back to the user. The controller interprets the process
flow information provided by the model. Depending on the user input the controller
monitors which step has to be performed at which time and which step is possible as
next step. Thus the controller assures a correct process flow. In addition it contains
information about the actual state of the wizard, as it stores, which steps have been
carried out so far as well as their results. This is important for a further
implementation of the wizard enhancing it with automated functionality. The
controller also has to collect and distribute all data that have been created or are
required when performing several steps in an automated way.

As large parts of the source code stay the same, code generation templates exist for most
wizard classes. There are several kinds of page templates and composite templates depending
on the function of each part of the wizard: One template exists for the start page of the wizard,
another one for the last page. A special page template exists for process steps. This template
contains a part, where the description of the process step can be added. The atomic operations
are realized via composites that are based on composite templates. For the three different
types of atomic operations three different templates are used. The composites of the
operations of a process step are grouped together on one page, which is also created based on
a template.

After generating all the Java classes of the wizard, WGT starts to compile those files and to
build an executable wizard. A batch file is created that allows to start the wizard comfortably.
The executable wizard is a first prototype. It offers the process expert the possibility to prove,
whether the wizard represents and supports the described process. If this is not the case, the
process expert can refine the process description and generate a revised version of the wizard.

7.1 Arranging Steps and Operations on Pages

One problem when creating the wizard is how to distribute the process steps and atomic
operations over the wizard pages. There are several possibilities how to solve this problem:
One could create one page explaining each process step and one additional page for each
atomic operation. As many adaptations consist of quite a lot of process steps and atomic
operations, this can easily lead to a huge number of pages with sometimes only a short
explanation on it. Therefore this possibility has been discarded.

Another possibility would be to create one page for each process step, and to add all atomic
operations needed in the process step to this page. But many process steps contain ten and

13

more atomic operations. Then the pages would become huge and overcrowded with
information. We also discarded this possibility.

We decided to use something in between these two extremes: We create one page describing
how to perform a process step. As the wizard offers an expert and a novice mode, this page
can be displayed to novice users and it can be hidden for experts, who do not need this
information. In addition the atomic operations are spread over several pages. By default 5
atomic operations are grouped on one page. But someone who knows how the user interfaces
of the automated atomic operations look like can group the operations in such a way that the
automated operations fit well on the page. Therefore the “Additional Options” mode of WGT
exists. This mode allows to group the atomic operations on the pages in a way that best fits
the needs.

Figure 6 shows how a user can group atomic operations to pages. You can see that for each
process step it is shown, which operations are needed in this step. On the right site it is
possible to see which operations are placed on which page. By selecting an operation and
pressing the arrows on the right you can move this operation to a page before or behind the
actual page. Selecting for example the operation “If the size does not fit the requirements,
change it” and pressing the “Down”-Arrow on the right would move this operation to the
second page.

Figure 6: Arranging atomic operations on pages.

8 Step 3: Extension of Prototypic Wizard

Together with the process descriptions generated during the first step the wizard serves as a
basis for communication between process experts and developers. Based on this prototype a
common understanding of the process described in the wizard can be established. The wizard
makes it easier to discuss ideas for further development in a vivid way. In addition it provides

14

a code skeleton that can be enhanced comfortably by a developer. For this purpose the code
generated by WGT is marked with special comments indicating, where additional code can be
added. This can be done in the third step of the proceeding presented in this paper. The two
steps presented so far are both executed by process experts. Step 3 has to be executed by a
developer.

To make work faster and less error prone it is useful to add automated functionalities to the
wizard, where this is reasonably possible. Therefore the wizard created by a process expert
has to be handed over to a developer. The developer gets the information created in the first
step and the prototype generated in the second step.

With the Wizard Generation Tool WGT for each process step one or more pages have been
created. The pages contain a list of all operations needed to execute the process steps. The
developer can add additional source code for each operation that can be automated. The initial
source code contains comments indicating where automation is possible. The developer has to
provide a new part of source code describing the user interface and a code section in the
controller class that stores the information needed for and provided by the operation. The
operations itself are stored in a so called function pool. This allows to reuse operations in
several process steps. Comments within the original source code give hints, where to enter the
new code and which dependencies between model, view, and controller have to be taken into
account. By this it is possible to add code for all operations that can be automated. Figure 7
and figure 8 show a part of one wizard before and after adding automation to the operations.
Together with the process expert the developer can check for each operation if it works in the
desired way. By this proceeding we enhanced the prototype created based on the adaptations
patterns to a fully functioning support tool for adaptation processes.

Figure 7: One wizard page before adding automated functionalities.

15

Figure 8: The same page after adding automated functionalities.

9 Application of the Approach to the Example Scenario

With the approach presented before we created a wizard supporting users in performing the
adaptation processes described in chapter 2. The wizard is based on patterns describing the
following adaptations:

Adaptation to a changed (corporate) design
Adaptation in order to achieve a print version
Adaptation to a changed terminology
Adaptation to a changed language (i.e. translation)
Adaptation to achieve an accessible version

For each adaptation a pattern exists describing the adaptation process. (The adaptation to
achieve an accessible version is an exception: This adaptation is described by several patterns,
used to describe sub-processes.) By entering the patterns into PIT and by adding all needed
additional information about the processes, like process step descriptions and atomic
operations descriptions, we created process descriptions. Then we generated a wizard with
WGT based on these process descriptions. Outcome was a first prototype wizard (Figure 7
shows one page of this wizard).

As a next step we automated all parts of the wizard, where this was reasonably possible.
(Figure 8 shows one of the pages enriched with automated functionalities.) We analysed the
functions needed to perform the supported adaptation processes and we designed
functionalities that could be used to enhance the prototype. These functionalities have been
added to the wizard. Outcome of this proceeding was a tool that supports users in performing
adaptation processes for E-Learning material.

16

A first evaluation with test users of the Content Sharing Project was promising: The users
were enabled to perform all offered adaptations correctly. They found process guidance and
detailed help on all processes. Based on their feedback we improved the functionalities. In a
second, larger evaluation we tested our tool by comparing it to a common WYSIWYG HTML
editor. At the moment no tool exists that supports the adaptation of existing E-Learning
material to changed usage scenarios. Therefore we have chosen a tool that supports at least
many functions needed to perform the adaptation processes to compare it with our tool. As
many E-Learning courses are stored in HTML format we have chosen an HTML editor. We
wanted a tool that is easy to use and that offers a WYSIWYG function allowing to control
directly what has been changed. We decided to use Netscape Composer as HTML editor, as it
is easy to use and allows to perform at least some typical adaptations.

We asked 32 users to perform some typical adaptations to three existing E-Learning courses.
(It was possible to perform all adaptations with our tool as well as with Netscape Composer.)
One E-Learning course was dealing with medical topics, one was an introduction to
Multimedia, and the third one was a course to learn English. Half of the users were asked to
work with our tool; the others got the WYSIWYG tool. Both groups got a detailed
explanation how to use their tool. The tasks were the same for both groups. At the end of the
test the participants were asked to answer a questionnaire in order to determine how satisfied
they were in working with the tool.

Both groups were able to perform the adaptations as described in the manuals. Both groups
did the tasks fast and with only very few errors. But we found that users working with our
adaptation support tool needed less time to perform the tasks (in average 14 minutes with our
tool compared to in average 20 minutes with Netscape Composer). And they made fewer
mistakes. (Users working with the Netscape Composer made in average twice as many
mistakes as users working with the adaptation tool.) In addition they were more satisfied with
the use of our tool. As the adaptation tool got very positive feedback and the outcome of the
adaptations had a very good quality, we think that our tool offers a better support for
adaptation processes then the tool used for comparison. In addition we think that the
knowledge collected with patterns is a good support for users in performing adaptations as the
explanations how to use the tools for both test groups were based on the patterns. And the
results for both test groups were very satisfying. For the future we plan to enhance our
adaptation tool based on the feedback we got from the users.

All users, that have been taking part in the evaluation, have knowledge of the HTML file
format. But one additional benefit of our tool is that this knowledge is not needed, as the tool
abstracts from a concrete file format. Thus it is possible to use one tool to perform all
adaptations in all files belonging to a learning resource without having detailed knowledge
how of the formats. This is a feature that is not supported by the tools that up to now have
been used to perform adaptation processes.

10 Evaluation of Concept

The aim of the concept presented in this paper was, to enable adaptation process experts
without knowledge of process modelling to describe adaptation processes by an easy to

17

understand process description formalism and to create prototypic wizards that reflect the
processes as they are performed by the process experts.

To evaluate if process experts are able to use the process description formalism and the
wizard generation tool independent from their knowledge of common programming
formalisms and modelling formalisms, we performed a user test with 32 users. Half of the
persons had knowledge of process modelling and of IT related issues like programming. Half
of the users did not have this kind of knowledge.

All persons were asked to describe the same process with the help of PIT and to generate a
prototype wizard based on the process descriptions by using WGT. It turned out that all users
made very good process descriptions with only very few errors. Users without modelling and
IT knowledge made a few more errors then users with this kind of knowledge. (In average the
difference was only one error.) All users were able to generate a good prototype. It was no
difference between the two user groups. In addition all users gave a very positive feedback
regarding the understandability and the manageability of both tools. Thus we assume that all
users were able to use the process description formalism and the wizard generation tool in the
intended way. We also got some feedback how to increase the usefulness of the tools and the
resulting wizard. We plan to analyse this feedback and to take it as a basis for further
improvements.

11 Unresolved Issues and Future Work

There are several unresolved issues concerning PIT and WGT. For the future we plan to work
on these issues. In this section we give an overview on the unresolved issues.

PIT allows entering relationships between processes. These are taken into account when
generating the wizard: If one process has been finished in the wizard, a hint to related
processes is given. PIT also allows specifying forces and consequences. But at the moment
these are not taken into account in the generated wizard. But we are thinking on how to
realize this. One possibility would be to use the forces as well as the consequences to find out
if a process is useful in a specific situation:

If users are not sure which process they have to perform, they can search the problem
statements. This helps to limit the number of possible processes. In addition users should be
able to browse through the consequences and forces. This also reduces the number of possible
processes. If a process has been performed the consequences can again be shown to users to
allow them, to decide if a second process is necessary to eliminate negative consequences.

At the moment the wizard generation tool WGT is a first prototype. The layout of the wizard
has to be overdone by taking into account common HCI guidelines. Nevertheless the wizard
as it is by now already offers a good starting point for further development and a valuable
basis for communication between process experts and software developers, as the evaluation
of the adaptation tool, which is based on such a wizard, has shown.

Additionally to serving a basis for communication, the prototype wizard also can be used as a
starting point for further development. Therefore WGT adds comments to the automatically
generated source code of the prototype. Those comments offer hints to a developer, where it is

18

possible to change the source code of the prototype in order to add additional functionalities.
But it might occur that a process expert decides to change the process description after a while
and to create a new prototype wizard based on the changed description. The new wizard then
does not contain the enhancements added by the developer before. At the moment this means
that the developer again has to add the additional functionalities. For the future it is planned to
develop a concept that allows to merge both versions.

We created the approach presented in this paper to support adaptation processes. But we
believe that it also can be used for other kinds of processes. Thus we tested for several other
kinds of processes, if it is possible to describe them with PIT.

We found that PIT also can be used to enter already existing patterns (that might have to be
adapted to the pattern notation used here) as well as new patterns. We have successfully tested
this with some of the security patterns presented in [15]. In addition we created new patterns
describing processes for hiring new employees as well as processes for booking journeys. For
all these kinds of processes it turned out that it was possible to describe them with PIT and to
create prototype wizards with WGT.

But it seems that there are other processes that cannot be described with PIT, e.g. processes
with a focus on data flow. Thus, for the future it would be desirable to analyse which kinds of
processes can be described with PIT and for which kinds of processes the approach presented
here does not work.

When we were creating the E-Learning material adaptation wizard (compare section 9), we
entered patterns as descriptions for the process and additional descriptions (not patterns) for
the needed process steps and atomic operations. But as PIT only reassures that all needed
information to perform a certain process is provided in the predefined structure, it has to be
taken into account that the process descriptions provided by process experts might not meet
common pattern criteria like being generic or having at least three known uses. It might occur
that the process experts only create process descriptions that are written down in a pattern
based notation formalism but do not meet common pattern criteria like having at least three
known uses. But these descriptions also contain valuable knowledge and offer a good basis
for the wizard creation. As the process expert is enabled to generate the wizard he or she can
change the process description as many times as needed to achieve a wizard that really meets
the experiences of the process experts.

12 Acknowledgements

The authors thank all persons, who supported this work. Especially we thank Michael Weiss,
who provided a huge amount of helpful comments during shepherding for EuroPLoP 2008.
Although many thanks go to our writer’s workshop group at EuroPLoP 2008 for a very good
discussion and so many useful hints.

The authors thank SAP AG - SAP Research CEC Darmstadt, as well as KOM Multimedia
Communications Lab at the Technical University of Darmstadt for supporting this work.

This work is supported by the German Federal Ministry of Economics and Technology in the
context of the project Content Sharing.

19

13 References

[1] Business Process Modeling Notation Specification. Final Adopted Specification, 2006.
Available under: http://www.omg.org/docs/dtc/06-02-01.pdf

[2] Czarnecki, K., Eisenecker, U. W.: Generative Programming - Methods, Tools, and
Applications. Addison-Wesley, 2000

[3] DIN En ISO 9241: Ergonomics of Human System Interaction. Part 11: Guidance on
usability and part 110: Dialogue principles.

[4] Dreyfus, S.E.,Dreyfus, H.L: A five stage model of the mental activities involved in
directed skill acquisition. Unpublished report supported by the Air Force Office of
Scientific Research (AFSC), USAF (Contract F49620 79 0063), University of
Califonia at Berkley, 1980.

[5] Eckstein, R.: Java SE Application Design With MVC. 2007.
http://java.sun.com/developer/technicalArticles/javase/mvc/index.html

[6] Folmer, E.,van Welie M., Bosch, J.: Bridging patterns: An approach to bridge gaps
between SE and HCI. In: Information and Software Technology, 48(2), 2006.

[7] Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, 1996.
[8] Hahsler, M.: Analyse Patterns im Softwareentwicklungsprozeß. PhD thesis at WU

Wien, 2001.
[9] Müller, S.: Modellbasierte IT-Unterstützung von wissensintensiven Prozessen -

Dargestellt am Beispiel medizinischer Forschungsprozesse. PhD thesis at the
Universität Erlangen - Nürnberg, 2007.

[10] PLML, XML DTD available under http://www.hcipatterns.org/PLML+1.0.html
[11] Robertson, S.: Requirements trawling: techniques for discovering requirements. In:

International Journal of Human-Computer Studies, Volume 55, Number 4, October
2001.

[12] Royce, W., W.: Managing the Development of Large Software Systems. In:
Proceedings of the 9th international conference on Software Engineering. 1987.

[13] Scheer, A.-W.: CIOs entwickeln sich zu Chief Process Officers. In: CIO, 2007.
http://www.cio.de/karriere/cios_im_portrait/810380/index4.html

[14] Shneiderman, B., Plaisant, C.: Designing the user interface. Addison Wesley, 2004.
[15] Schumacher, M., Fernandez, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns - Integrating Security and Systems Engineering. John Wiley & Sons,
2005.

[16] Siau, K., Ericksson, J., Lee, L.: Theoretical versus practical complexity: The case of
UML. In: Journal of Database Management 16, 3, 2005.

[17] Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineering,
Management. Wiley, 2006.

[18] Zimmermann, B., Bergsträßer, S., Rensing, C., Steinmetz, R. A Requirements Analysis
of Adaptations of Re-Usable (E-Learning) Content. In: In Proceedings of World
Conference on Educational Multimedia, Hypermedia and Telecommunications 2006.

http://www.omg.org/docs/dtc/06-02-01.pdf
http://java.sun.com/developer/technicalArticles/javase/mvc/index.html
http://www.hcipatterns.org/PLML
http://www.cio.de/karriere/cios_im_portrait/810380/index4.html

20

[19] Zimmermann, B., Rensing, C., Steinmetz, R.: Patterns for Tailoring E-Learning
Materials to Make them Suited for Changed Requirement. Published in the Proceedings
of VikingPLoP 2006.

[20] Zimmermann, B., Rensing, C., Steinmetz, R.: Patterns towards Making Web Material
Accessible. Published in the Proceedings of EuroPLoP 2007.

14 Appendix

The Process Description Input Tool PIT supports adaptation process experts in creating
process description of adaptation processes. It has been described in section 6. Figure 9 shows
the main input form of PIT.

21

Figure 9: Part of PIT’s input form.

22

PIT stores the process description given by the process experts in XML format (compare
section 6). The following listing shows the DTD of the XML files containing the process
information.

<!ELEMENT pattern (intent?, context?, problem, example_illustration?,
example_explanation?, forces, solution, process_steps, known_uses*,
consequences, related-patterns>

<!ATTLIST pattern patternID ID #REQUIRED
confidence CDATA #IMPLIED
name CDATA #REQUIRED >

<!ELEMENT intent (#PCDATA)>
<!ELEMENT context (#PCDATA)>
<!ELEMENT problem (#PCDATA)>
<!ELEMENT example_illustration (#PCDATA)>
<!ELEMENT example_explanation (#PCDATA)>
<!ELEMENT forces (force*)>
<!ELEMENT force EMPTY>

<!ATTLIST force name CDATA #REQUIRED>
<!ELEMENT solution (#PCDATA)>
<!ELEMENT Process_steps (Process_step+)>
<!ELEMENT Process_step EMPTY>

<!ATTLIST Process_step
name Name #REQUIRED
mandatory (true | false) “true”>

<!ELEMENT known_uses (#PCDATA)>
<!ELEMENT consequences

(positive_consequence+, negative_consequence*)>
<!ELEMENT positive_consequence EMPTY>

<!ATTLIST positive_consequence name CDATA #REQUIRED>
<!ELEMENT negative_consequence EMPTY>

<!ATTLIST negative_consequence name CDATA #REQUIRED>
<!ELEMENT related_patterns (related_pattern*)>
<!ELEMENT Related_patterns (Related_pattern*)>
<!ELEMENT Related_pattern EMPTY>

<!ATTLIST Related_pattern
name CDATA #REQUIRED
patternID ID #REQUIRED
type CDATA #REQUIRED

>

Listing 1: Pattern file DTD.

The information about the process flow is stored as a process graph. The following listing
shows a part of such a process graph stored in XML (compare section 6.1). You can see a
process identified via its ID. All process steps needed to perform the process are listed in the
requires section of the process. For each process step it is noted if the step has to be
performed (mandatory="true") or not (mandatory="false").

The last process step in the example is only performed if at least one of the steps before has
been performed. Therefore all process steps, which can be performed before this step, are
listed in the precondition section of the last process step. For the first process step you
can see all atomic operations needed to perform this step. Again it is written down for each
operation if the execution is mandatory. In addition you can see the three kinds of atomic
operations (query, decision, and execution). The original file also contains a section defining
the needed atomic operations. This section is not shown in the listing below.

23

<process id="process_pattern$56667" process-pattern="true">
 <requires fragmentRef="process_step$22357234" mandatory="false"/>
 <requires fragmentRef="process_step$25517184" mandatory="false"/>
 <requires fragmentRef="process_step$28757034" mandatory="false"/>
 <requires fragmentRef="process_step$36740146" mandatory="false"/>
 <requires fragmentRef="process_step$43532108" mandatory="false"/>
 <requires fragmentRef="process_step$50025522" mandatory="true">
 <precondition fragmentRef="process_step$22357234"/>
 <precondition fragmentRef="process_step$25517184"/>
 <precondition fragmentRef="process_step$28757034"/>
 <precondition fragmentRef="process_step$36740146"/>
 <precondition fragmentRef="process_step$43532108"/>
 </requires>
</process>
<process-step id="process_step$22357234">
 <requires functionRef="query$28693719" mandatory="true"/>
 <requires functionRef="decision$26294026" mandatory="true"/>
 <requires functionRef="decision$24376617" mandatory="false"/>
 <requires functionRef="query$23537464" mandatory="false"/>
 <requires functionRef="decision$32687500" mandatory="false"/>
 <requires functionRef="query$33442589" mandatory="false"/>
 <requires functionRef="execution$5472454" mandatory="false"/>
 <requires functionRef=" execution $51555041" mandatory="false"/>
</process-fragment>

Listing 2: Part of a process graph file.

