
Pronto: A Practical Probabilistic Description

Logic Reasoner

Pavel Klinov and Bijan Parsia

School of Computer Science
University of Manchester, United Kingdom

{pklinov,bparsia}@cs.man.ac.uk

Abstract. This paper presents a system description of Pronto — the
first probabilistic Description Logic reasoner capable of processing knowl-
edge bases containing about a thousand of probabilistic axioms. We de-
scribe the design and architecture of the reasoner with an emphasis on
the components that implement algorithms which are crucial for achiev-
ing such level of scalability. Finally, we present the results of the experi-
mental evaluation of Pronto’s performance on series of propositional and
non-propositional probabilistic knowledge bases.

1 Introduction

There are many proposed formalisms for combining Description Logics (DLs)
with various sorts of uncertainty, although, to our knowledge, none have been
used for a production ontology. We believe that this is due to two reasons: 1) there
is comparatively little knowledge about how to use these formalisms effectively
(or even, which are best suited for what purposes) and 2) there is a severe lack
of tooling, in particular, there have been no sufficiently effective reasoners.

This paper describes our work on the second problem. We present Pronto —
the reasoner for the probabilistic extension of DL SHIQ (named P-SHIQ) [1].
This logic can be viewed either as a generalization of the Nilsson’s propositional
probabilistic logic [2] or as a fragment of first-order probabilistic logic of Halpern
and Bacchus [3] [4] (with certain non-monotonic extensions). One attractive fea-
ture of these probabilistic logics is that they allow modelers to declaratively
describe their uncertain knowledge without fully specifying any probability dis-
tribution (in contrast to, for example, Bayesian networks). They are also proper
generalizations of their classical counterparts which, in the case of P-SHIQ,
means that modelers can take an existing SHIQ ontology and add probabilistic
axioms to capture uncertain, such as statistical, relationships.

In spite of their attractive features Nilsson-style logics have been criticized,
partly for the intractability of probabilistic inference. Reasoning procedures are
typically implemented via reduction to linear programming but it is well known
that corresponding linear programs are exponentially large so the scalability
is very limited. Over the last two decades there have been several attempts
to overcome that issue in the propositional case which led to some promising

2

results, such as solving the probabilistic satisfiability problem (PSAT) for 800-
1000 formulas [5]. It has been unclear whether the methods used to solve large
propositional PSATs can be directly applied to PSATs in probabilistic DLs.

To the best of our knowledge, Pronto is the first reasoner for a Nilsson-style
probabilistic DL which scalability is comparable (and often better) than scalabil-
ity of propositional solvers. In particular, it can solve propositional PSATs of the
same size as them but can also effectively deal with KBs with non-propositional
classical knowledge, such as large SHIQ terminologies. We present experimental
results which show that the level of scalability is comparable in the propositional
and non-propositional cases. In addition, Pronto implements all the standard rea-
soning services for P-SHIQ as well as useful extra services, in particular, finding
all minimal unsatisfiable fragments of a KB which is crucial for analyzing large
bodies of conflicting probabilistic knowledge.

2 Preliminaries

P-SHIQ [1] is a probabilistic generalization of the DL SHIQ [6]. It supports
probabilistic subsumptions between arbitrary SHIQ concepts and a certain class
of probabilistic concept assertions (but no form of probabilistic role assertions).
Any SHIQ ontology can be used as a basis for a P-SHIQ ontology which fa-
cilitates transition from classical to probabilistic ontological models. Finally, it
combines probabilistic and default reasoning. This allows for a consistent treat-
ment of exceptional individuals and subconcepts.

P-SHIQ is extends the syntax of SHIQ with conditional constraints, that is,
expressions of the form (D|C)[l, u] where C and D are arbitrary SHIQ concept
expressions. Conditional constraints can be used for representing uncertainty in
both terminological (TBox) and assertional (ABox) knowledge. A probabilistic
TBox (PTBox) is a 2-tuple PT = (T ,P) where T is a SHIQ TBox (sometimes
called the classical part) and P is a finite set of default conditional constraints (or
probabilistic part). Informally, a PTBox axiom (D|C)[l, u] means that “generally,
if a randomly chosen individual belongs to C, its probability of belonging to D

is in [l, u]”. A probabilistic ABox (PABox) is a finite set of strict conditional
constraints pertaining to a concrete probabilistic individual o. A knowledge base
(ontology) in P-SHIQ is a combination of a PTBox and a collection of PABoxes
(one for each probabilistic individual).

P-SHIQ semantics is based on probability distributions over possible worlds,
where each possible world is a subset of probabilistically relevant concepts Φ (i.e.
concepts used to define conditional constraints). Informally, each world can be
thought of as a concept type for a randomly chosen individual. A world is possible
if there exists an individual that is an instance of all concepts in the world (i.e.
the concept type is realizable). A KB is satisfiable if there exists a probability
distribution that satisfies all conditional constraints.

Standard reasoning tasks in P-SHIQ include PSAT, tight logical entailment
(TLogEnt), and tight lexicographic entailment (TLexEnt). The first two tasks
are probabilistic counterparts of classical satisfiability and entailment problems

3

in DL. In contrast, TLexEnt is a non-monotonic reasoning task which is reducible
to the logical entailment from the largest, conflict-free fragments of the KB.

See [1] for a formal presentation of P-SHIQ semantics, reasoning procedures
and complexity results.

3 Probabilistic Satisfiability Algorithm

In this section we briefly sketch the novel PSAT algorithm implemented in Pronto
(see Section 6 for its differences from the previously developed methods). For
clarity we will consider a special case of PSAT where the PTBox is of the form
PT = (T , {(Ci|⊤)[pi, pi]}) (i.e. all probabilistic statements are unconditional
constraints with point-valued probabilities). It is straightforward, but technically
awkward, to generalize the procedure to handle conditional interval statements.

A PTBox PT = (T , {(Ci|⊤)[pi, pi]}) is satisfiable iff the following linear
program admits a solution:

max
∑

I∈IΦ

xI

s.t.
∑

Ci∈I

xI = pi, for each (Ci|⊤)[pi, pi] ∈ P (1)

∑

I∈IΦ

xI = 1 and all xI ≥ 0

where IΦ is the set of all possible worlds for the set of concepts Φ in T .
Let A denote the matrix of linear coefficients in (1). At every step of the

simplex algorithm, A is represented as a combination (B,N) where B and N

are the submatrices of the basic and non-basic variables, respectively. Values of
non-basic variables are fixed to zero, and the solver proceeds by replacing one
basic variable by a non-basic one until the optimal solution is found. The index
of the non-basic column is determined according to the following expression [5]:

j ∈ {1, . . . , |N |} s.t. cj − uT Aj is minimal (2)

where cj is the objective coefficient for the new variable (it is always equal to 1
in (1)) and uT is the current dual solution of (1).

As the size of N is exponential in |Φ|, one should compute (2) without ex-
amining all columns in N . This is done using the column generation technique
in which (2) is treated as an optimization problem with the following objective
function:

min (1−
m+1
∑

i=1

uia
j
i), Aj = (aj

i) ∈ {0, 1}m+1 (3)

4

Since columns in (1) correspond to possible worlds, a
j
i = 1 means that Ci ∈ Ij

while a
j
i = 0 means that ¬Ci ∈ Ij , where Ij is the possible world corresponding

to the column Aj . Thus it is possible to represent Ij as a conjunctive SHIQ
concept expression as follows (we call the correspondence function η):

Ij = η(Aj) =⊓Xi, where Xi =

{

Ci, a
j
i = 1

¬Ci, a
j
i = 0

(4)

The critical step is to formulate linear constraints for (3) such that every
solution corresponds to a concept expression that is satisfiable w.r.t. T , i.e. a
possible world. In the propositional case, where each Ci is a clause, this can be
done by employing a well known formulation of SAT as a mixed-integer linear
program [7]. For example, if Ci = xi1∨¬xi2∨xi3 then (3) will have the constraint
ai = xi1 + (1− xi2) + xi3 where all variables are binary.

In the case of an expressive language, such as SHIQ, there appears to be
no easy way of determining a set of constraints H for (3) such that its set of
solutions in one-to-one correspondence with IΦ (in particular, it is important to
ensure that, if Aj is a solution then T 2 η(Aj) ⊑ ⊥, i.e. H faithfully captures
the TBox T). Instead, Pronto implements a novel hybrid, iterative procedure to
compute H which can be summarized as follows:

Input: PTBox PT = (T ,P), current dual solution uT of (1)
Output: New column Aj or null

Initialize (3) using uT , H ← ∅1

while Aj 6= null do2

Aj ← current optimal solution of (3)3

if Aj 6= null then4

if satisfiable(η(Aj), T) then5

return Aj
6

else7

add constraints to H that prohibit Aj
8

end9

end10

end11

return null;12

Algorithm 1: Hybrid iterative column generation algorithm

The key steps are 5 and 8. On step 5 the algorithm invokes a SHIQ SAT
solver (in our case, Pellet) to determine if the computed column corresponds to a
possible world. If yes, the column is returned. If no, the current set of constraints
H is augmented on step 8 to exclude Aj from the set of solutions to (3). The
algorithm is called “hybrid” because it combines invocations of simplex and
SHIQ solvers and “iterative” because it iteratively tightens the set of solutions
to (3) until either a valid column is found or provably no such column exists.

The actual implementation is considerably more involved, in particular, be-
cause it is important to minimize the number of calls to the SHIQ solver.

5

Therefore the algorithm tries to learn the set H as quickly as possible. Such
details, as well as the description of step 8, are beyond the scope of this paper.

4 Architecture

Pronto has layered architecture presented on Figure 1. Each layer has one or
more components which invoke other components at the same or lower levels
(but not the other way around).

Linear Program
Manager (LPM)

LP Solver (GLPK)
Column Generator

(CG)
Description Logic
Reasoner (Pellet)

Linear Program Layer

PSAT/TlogEnt
Solver

Knowledge Base
Analyzer

Non-Monotonic
(Lexicographic)

Reasoner

Monotonic Reasoning Layer

Fig. 1: Architecture of Pronto

Linear Program Layer The components at the lowermost level are responsible
for managing linear programs which are optimized in order to solve PSAT or
TLogEnt problems. As mentioned earlier, these linear programs usually have
exponentially many variables so it is futile to try to represent them explicitly.
Therefore, the main function of the components, namely, the linear program
manager (LPM) and the column generator (CG), is to generate partial linear
systems (1) which have the same optimal objective values as their complete
versions.

The LPM is responsible for producing the initial version of the linear program
(1), incorporating each new column into it, and checking the optimality (i.e.
stopping) criteria. It interacts with the simplex solver, such as GLPK, which
solves the current program (1) and returns its primal and dual solutions. The
latter is supplied to the CG component.

The CG component implements Algorithm 1. It maintains the binary linear
program 3, accepts the dual values uT , and interacts with Pellet in order to
produce improving columns which are then returned back to the LPM. This
component implements a number of optimizations such as tuning the binary

6

program (3), learning and re-using constraints H that reflect the structure of
the TBox T , and others.

Monotonic Probabilistic Reasoning Layer The components on the next
layer use the underlying linear programs to perform monotonic reasoning, i.e.
solve PSAT and TLogEnt, and analyze unsatisfiable probabilistic KBs. The first
two tasks are straightforward. They amount to checking if a linear system gen-
erated by the components of the lower layer admits a solution (PSAT) or solving
it to optimality (TLogEnt).

The analysis of an unsatisfiable probabilistic KB is a problem of finding all
minimal unsatisfiable subsets of the KB where minimality is defined with respect
to the set inclusion. This is essential for 1) computing all maximal satisfiable
fragments of the KB during non-monotonic (lexicographic) reasoning, and 2)
computing explanations for the results of probabilistic reasoning.

On the linear system level this analysis is equivalent to discovering all irre-
ducible infeasible subsystems (IIS) which can be exponentially many [8]. The
task of finding all IISes is somewhat complicated by the fact that the linear
systems are never complete, so their set of IISes may not be the same as for the
complete system (despite that their objective values are optimal). Therefore the
analyzer has to repeatedly invoke the LP layer components to enrich the system
with new columns after finding each new IIS. Apart of that the analysis follows
the classical model-based diagnosis methodology based on hitting set trees [9].

Non-Monotonic Probabilistic Reasoning Layer The uppermost layer con-
sists of a single component: the lexicographic reasoner. It implements the TLex-
Ent algorithm which relies on the KB analyzer and the TLogEnt reasoner. TLex-
Ent is equivalent to solving TLogEnt for all lexicographically minimal subsets of
the KB [1]. The latter are computed in three phases: 1) KB analyzer computes
the structure called conflict graph which represents conflicts between pieces of
probabilistic knowledge, 2) the graph is used to rank conflicting statements by
specificity, and 3) conflicts are resolved by preferring more specific statements to
less specific (the resulting conflict-free fragments of the KB are lexicographically
minimal). The last phase may fail if equally specific statements happen to be in
conflict. In that case the reasoner reports probabilistic inconsistency (which is
different from probabilistic unsatisfiability, see [1] for details).

5 Experimental Evaluation

We have conducted two experiments to demonstrate that Pronto is practical to
use on ontologies of realistic size. Both experiments evaluate the performance of
solving PSAT (since all other reasoning tasks are reducible to it). KBs in the first
experiments are randomly generated sets of propositional conditional constraints
with no classical part. KBs in the second experiment are randomly generated
conditional constraints with TBoxes from real-life ontologies represented in ex-
pressive DLs: the GeoSkills ontology and the SWEET Process ontology, both

7

taken from the TONES repository1. There does not seem to be an easy way to
“propositionalize” these ontologies in order to use propositional PSAT solvers.

The results, which are presented in Table 1, were averaged over 10 PSAT
instances solved for each size. In the table n stands for the number of concepts
in the classical part of the KB and m — for the number of conditional constraints.
We used a conventional PC with 2GHz CPU and 2GB RAM.

Table 1: Performance on random propositional and non-propositional probabilistic KBs

Propositional KBs GeoSkills (ALCHOIN) Process (ALCHOF)

n m Time (s) n m Time (s) n m Time (s)

50 100 3 603 100 20 1537 100 5

100 200 12 603 200 38 1537 200 30

250 500 30 603 500 151 1537 500 92

500 1000 291 603 1000 332 1537 1000 176

The results show that Pronto performs comparably to the state-of-the-art
propositional PSAT solvers on propositional KBs [5]2. However, it can also han-
dle probabilistic KBs of the same size defined over highly expressive DL on-
tologies without significant loss of performance. In fact, expressive TBoxes may
improve the performance because they tend to shrink the space of all potential
columns (possible worlds) by constraining models. This can explain why the
probabilistic extension of the Process ontology is sometimes easier than random
propositional KBs of the same size. We are now in the process of investigating
this and other complexity factors through a more comprehensive and system-
atic evaluation. It is anticipated that understanding of such factors will help to
develop corresponding optimizations.

6 Related Work

To the best of our knowledge there are no other reasoners for Nilsson-style prob-
abilistic DLs. One exception is [10] but that system does not implement any
technique to reduce the size of the linear programs and is, therefore, limited to
10-15 probabilistic statements.

Among other tools the most closely related are propositional PSAT solvers
which also use the column generation method to cope with the size of the linear
systems [5] [11]. However, the main difference between Pronto and those tools lies
in the optimization problem (3) used to produce columns. They can encode the

1 http://owl.cs.manchester.ac.uk/repository/
2 We must mention that our problem generation methodology is slightly different.

Hansen and Perron experimented with unconditional constraints and point-valued
probabilities while we generated mixtures of conditional and unconditional state-
ments with intervals which, as we believe, are more useful for practical modeling.

8

entire structure of the propositional KB in the set of constraints H for (3) while
Pronto employs a SHIQ reasoner to compute such set iteratively. One important
consequence is that Pronto can be used for a Nilsson-style probabilistic extension
to any logic for which a SAT solver is available.

7 Summary

The primary conclusion of this work is that Pronto is practical to use for proba-
bilistic ontologies of a realistic size. PSAT and the various entailment problems
for P-SHIQ are EXPTIME-complete, so, as with any logic in the SH family,
practicality, efficiency, and scalability claims must be carefully qualified. How-
ever, Pronto handles P-SHIQ ontologies which are comparable in size to, for
example, various handcrafted Bayesian networks3, which gives good reasons to
believe that it will prove practical for future probabilistic ontologies.

More generally, our work also shows that P-SHIQ, as well as other Nilsson-
style extensions to DLs, can be practical (in terms of reasoning complexity)
probabilistic ontology languages. In a certain sense they are no less practical
than SHIQ. Although there will certainly be P-SHIQ ontologies that will de-
feat the current version of Pronto, this is also the case with any NP-hard logic.
However, now it makes sense for modelers to experiment with P-SHIQ and re-
port troublesome ontologies, so that tool developers can adapt to new challenges.

References

1. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence
172(6-7) (2008) 852–883

2. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1) (1986) 71–87
3. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence

46 (1990) 311–350
4. Bacchus, F.: Representing and reasoning with probabilistic knowledge. MIT Press

(1990)
5. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic

satisfiability. Int. Journal of Approximate Reasoning 47(2) (2008) 125–140
6. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-

tion logics. Journal of the IGPL 8(3) (2000)
7. Hooker, J.N.: Quantitative approach to logical reasoning. Decision Support Sys-

tems 4 (1988) 45–69
8. Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities.

INFORMS Journal on Computing 2(1) (1990) 61–63
9. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32

(1987) 57–95
10. Näth, T.H., Möller, R.: ContraBovemRufum: A system for probabilistic lexico-

graphic entailment. In: Description Logics. (2008)
11. de Souza Andrade, P.S., da Rocha, J.C.F., Couto, D.P., da Costa Teves, A., Coz-

man, F.G.: A toolset for propositional probabilistic logic. In: Encontro Nacional
de Inteligencia Artificial. (2007) 1371–1380

3 See, in particular, the repository at http://genie.sis.pitt.edu/networks.html

