
Gibbs Sampling in Probabilistic
Description Logics with Deterministic

Dependencies

Oliver Gries and Ralf Möller

Hamburg University of Technology?

21073 Hamburg, Germany

Abstract. In many applications there is interest in representing both
probabilistic and deterministic dependencies. This is especially the case
in applications using Description Logics (DLs), where ontology engineer-
ing usually is based on strict knowledge, while there is also the need
to represent uncertainty. We introduce a Markovian style of probabilis-
tic reasoning in first-order logic known as Markov logic and investigate
the opportunities for restricting this formalism to DLs. In particular, we
show that Gibbs sampling with deterministic dependencies specified in an
appropriate fragment remains correct, i.e., probability estimates approx-
imate the correct probabilities. We propose a Gibbs sampling method
incorporating deterministic dependencies and conclude that this incor-
poration can speed up Gibbs sampling significantly.

1 Introduction

While probabilistic languages often represent uncertain evidence and exceptions,
there is also the need to further represent deterministic knowledge. As a trade-
off, there are probabilistic formalisms that allow for the representation of near-
deterministic knowledge, i.e., knowledge represented with probabilities approxi-
mating 0 or 1. However, since knowledge representation with logic in its origin is
based on strict formulas, we believe it is important to consider the perspective
in which uncertainty is an additional feature to deterministic knowledge. This
perspective is especially suited for Description Logics (DLs) [3], where ontology
engineering usually is based on specifying strict taxonomies with strict disjoint-
ness and strict domain and range restrictions on roles, and where the tradeoff
between complexity and expressivity is well-studied.

Gibbs sampling [2, 4, 5] is a Markov chain Monte Carlo (MCMC) method
to estimate a conditional probability distribution by generating samples from a
simpler distribution. Since Markov chains constructed with Gibbs sampling are
known to be regular, estimates of probabilities are known to be correct in the long
run. Though this method is often used in practice, it is insufficient for logic in the
presence of deterministic dependencies, since in this case the correct flow of the

? This work is supported by the European Union project CASAM (FP7-217061).

chain usually is broken down. Similarly, Gibbs sampling with near-determinism
involves transitions with probabilities approximating 0, leading to unacceptably
long convergence times (cf. [7]). In order to solve this problem, in [7] the MC-
SAT algorithm is proposed. MC-SAT samples new states with respect to a set of
auxiliary variables. However, while MC-SAT is a powerful method to compute
conditional probabilities, it is restricted to near-determinism.

In this paper, we propose a formalism based on Markov logic [6] and show
that by restricting the deterministic part of the knowledge to a fragment of
ALH, Markov chains constructed with Gibbs sampling remain regular. To the
best of our knowledge, until now there has not been a language discovered al-
lowing for global deterministic dependencies in Gibbs sampling. We present a
Gibbs sampling method incorporating these dependencies and conclude that this
incorporation can speed up Gibbs sampling significantly.

In Sect. 2, we introduce probabilistic knowledge representation and Markov
networks. In Sect. 3, the formalism of Markov logic [6] is presented and ex-
tended to incorporate deterministic dependencies. Further, we define the lan-
guage ALH− for the representation of determinism. Then, in Sect. 4, we intro-
duce to problems with Gibbs sampling in knowledge representation. In Sect. 5,
we propose a Gibbs sampling algorithm incorporating deterministic dependen-
cies in ALH−. Finally, in Sect. 6 we summarize the results.

2 Preliminaries

For the representation of probabilistic and deterministic knowledge, we will focus
on Description Logics (DLs). We assume the reader to be familiar with the syntax
and semantics of DLs [3] and first-order logic [4].

2.1 Probabilistic Knowledge Representation

The basic notion of probabilistic knowledge representation formalisms is the so-
called random experiment. A random variable X is a function assigning a value
to the result of a random experiment. In the sequel, we will use only Boolean
random variables with values 1 or 0 (true or false, respectively).

Let X = {X1, ..., Xn} be the ordered set of all random variables of a random
experiment. An event X = x is an assignment X1 = x1, ..., Xn = xn to all
random variables, and a certain vector of values x is referred to as a possible
world. If it is clear from the context, we write x as an abbreviation for X = true
and ¬x as an abbreviation for X = false. A possible world can be associated
with a probability P (X = x) = p, where p is a real value in [0, 1].1

A distribution P(X) of a random variable X is a mapping from the domain
of X to probability values in [0, 1] such that the values of X sum up to 1.
Distributions can be defined for (ordered) sets of random variables as well. A
mapping P(X1, . . . , Xk) from the domain of a set of random variables to the

1 We assume the reader to be familiar with Kolmogorov’s axioms of probability.

k-dimensional cross product of [0, 1] such that all combinations of values sum up
to 1 is called joint distribution. A full joint distribution P(X1, . . . , Xn) is a joint
distribution where all random variables of a random experiment are involved. Let
Ω = {x1, ...,xr} be the set of all possible worlds. In order to specify a full joint
distribution P(X1, . . . , Xn), probabilities P (X = xi) for all xi must be given
such that

∑r
i=1 P (X = xi) = 1. The expression P(X1, . . . , Xm, xm+1, . . . , xl)

denotes an m-dimensional distribution where the values of Xm+1, ..., Xl have
been fixed. In slight misuse of notation, we sometimes write e for these fixed
values.

The conditional probability distribution of X given evidence e is defined by
P(X | e) = P(X,e)

P (e) = αP(X, e) = α<P (x, e), P (¬x, e)>, where α is a normali-
zing constant. Note that P(X | e) is only defined, if P (e) > 0.

The most common query types in probabilistic knowledge representation are
the conditional probability query, i.e., the computation of P(X | e) and the max-
imum a posteriori (MAP) query, where the objective is to find the most likely
assignment of values to random variables X1, ..., Xm given evidence e, i.e., the
computation of argmaxX1,...,Xm

P(X1, ..., Xm | e). In this paper, we will focus
on the former query type.

2.2 Markov Networks

Since the representation of P(X1, . . . , Xn) in principle requires the specification
of 2n probability values, there is interest in formalisms with a less complex rep-
resentation. The main idea to achieve a more compact representation is that one
can exploit independence assumptions. Usually, this is the case in graph-based
formalisms, where the representation of the full joint probability distribution
can be decomposed into different factors. Besides Bayesian networks, the most
important graph-based formalism is the formalism of Markov networks [1, 2].

A Markov network graph is a tuple G = (X,E), where X = {X1, ..., Xn}
is a set of nodes corresponding to the random variables of the domain and E is
a set of undirected edges (Xi, Xj), i 6= j, between these nodes. A clique C is a
subgraph of G, whose nodes are all adjacent to each other. Let XC be the set of
nodes contained in C. A clique C is called maximal, if there is no other clique Ci

with XC ⊂ XCi . Further, C = {C1, ..., Cm} is a set of cliques of G consisting
of all nodes of X, i.e., XC1 ∪ ... ∪XCm

= X.
A Markov network M = (G,F) consists of a Markov network graph G and a

set F which is comprised of non-negative real-valued functions fi for each clique
Ci, i = 1, ...,m in G. A full joint probability distribution to be expressed can be
decomposed into factors fi (cf. [1, 2]) such that

P (X = x) =
1
Z

m∏
i

fi(xCi
) (1)

where Z is a normalizing constant summing over the products in (1) for all
possible worlds x ensuring that

∑r
k=1 P (X = xk) = 1. Note that each fi does

only depend on the values of random variables corresponding to its clique Ci.

3 Markov Description Logics

3.1 Markov Logic

The formalism of Markov logic [6] provides a means to combine the formalism
of Markov networks with the expressivity of first-order logic. A knowledge base
in Markov logic is called a Markov logic network MLN = (F ,W). It consists of
a multiset of first-order formulas F = {F1, ..., Fp} and a multiset of real number
weights W = {w1, ..., wp} such that each wi is associated to Fi. For simplicity,
we use the notation of a set of weighted formulas wi Fi. An example Markov
logic network is MLN 1 = {4 ∀xP (x)→ Q(x), 1.1 P (i)}, where i is a constant.

Let Γ = {c1, ..., cs} be the set of all constants mentioned in F . A ground-
ing of a formula Fi is a substitution of all variables in the matrix of Fi with
constants from Γ (this corresponds to a domain closure).2 A Markov logic
network MLN can be converted to a (finite) set of weighted ground clauses
Cl = {cl1, ..., clm}. Each atom appearing in Cl is referred to as a ground atom.
The set of all these ground atoms corresponds to a set of Boolean random vari-
ables X = {X1, ..., Xn}. Consequently, for each MLN with a fixed set of con-
stants Γ , there is a set of possible worlds x. When a world x does not satisfy
a formula, the idea is to ensure that this world is less probable rather than
impossible as in first-order logic.

For each MLN there is a corresponding Markov network M = (G,F), with
G = (X,E

MLN
), where E

MLN
is the set of pairs of ground atoms (Xi, Xj) ap-

pearing together in at least one cl i and a function fi ∈ F for each cli ∈ Cl . Note
that each weighted ground clause cli corresponds to a (not necessarily maxi-
mal) clique Ci. In notation slightly differently from [6], we specify the full joint
distribution of a MLN with (1), where

fi(xCi
) =

{
exp(wi), if x

Ci
satisfies cli

1, otherwise
(2)

Note that
∏m

i=1 exp(wi) =
∏m

i=1 exp(ln fi(xCi
)) = exp(−

∑m
i=1−ln fi(xCi

)),
where the last term often is used in the context of statistical physics with
−ln fi(xCi

) called an energy function [2, 5]. The advantage of using exp in
Markov logic is that P (X = x) > 0 and that it is possible to specify w ∈ R.

3.2 Exploiting DLs: Incorporating Deterministic Constraints

There is often interest to represent a domain with both deterministic and proba-
bilistic dependencies. While in [6] deterministic dependencies are approximated
by assigning large weights to formulas, we propose to incorporate deterministic
constraints to Markov logic in the context of DLs.

Definition 1. A Markov DL knowledge base KB
M

is a tuple (T ,A), where T
is comprised of sets T

det
and T

w
of deterministic resp. weighted axioms and A is

comprised of sets A
det

and A
w

of deterministic resp. weighted assertions.
2 An existentially quantified formula is replaced by a disjunction of its groundings.

Under consideration of a domain closure, corresponding Markov networks are
similar to the ones introduced in Sect. 3.1. However, in Markov DL knowledge
bases Cl = {cl1, ..., clm} is the set of weighted and deterministic ground clauses.
We specify the full joint probability distribution of KB

M
with (1), where

fi(xCi
) =

{ exp(wi), if cli is weighted and x
Ci

satisfies cli
0, if cli is deterministic and x

Ci
does not satisfy cli

1, otherwise.
(3)

An advantage of having both deterministic and probabilistic dependencies is that
initial ontology engineering is done as usual with standard reasoning support
and with the possibility to add weighted axioms and weighted assertions on
top of the strict fundament. Since lots of possible worlds do not have to be
considered because their probability is known to be 0, probabilistic reasoning
can be significantly faster.

The language for representing T
w

and A
w

can be any DL in which it is
reasonable to assume a fixed set of constants Γ = {c1, ..., cs} such that it is
possible to compute a finite set of weighted ground clauses. For the represen-
tation of deterministic knowledge, in this paper we use the language ALH−, a
rather simple DL without an assertional component (i.e., we are not allowing for
deterministic assertions). An ALH− knowledge base KB consists of a set T of
terminological axioms as depicted in Table 1, where A,B are atomic concepts
and R,S are atomic roles with the additional restriction that equivalences as
well as terminological cycles are not allowed. The semantics is defined as usual.

Table 1. Terminological axioms in ALH−

A v B concept inclusion
A v ¬B concept disjointness
R v S role inclusion

∃R.> v A domain restriction on roles
> v ∀R.A range restriction on roles

Example 1. Let KBM = ({Lynx v Animal ,Animal v ¬Plant}, {1 .1 Lynx (i),
0 .6 Plant(i)}), where Tw = A

det
= {}. Under domain closure there are 23 pos-

sible worlds xk (where e.g. Lynx is abbreviated with L):

x1 =<L(i),A(i),P(i)>
x2 =<L(i),A(i),¬P(i)>
x3 =<L(i),¬A(i),P(i)>
x4 =<L(i),¬A(i),¬P(i)>

x5 =<¬L(i),A(i),P(i)>
x6 =<¬L(i),A(i),¬P(i)>
x7 =<¬L(i),¬A(i),P(i)>
x8 =<¬L(i),¬A(i),¬P(i)>

The full joint probability distribution is specified with respect to the set Cl =
{¬Lynx (i) ∨Animal(i), ¬Animal(i) ∨ ¬Plant(i), 1 .1 Lynx (i), 0 .6 Plant(i)}.
The normalizing constant Z = 0 + exp(1.1) + 0 + 0 + 0 + 1 + exp(0.6) + 1 ≈ 6.83
such that e.g. P (X = x7) ≈ exp(0.6)

6.83 ≈ 0.267. In order to keep the example
simple, we do not consider roles (but the general structure would be the same).

4 Gibbs Sampling for Reasoning about Knowledge

Answering conditional probability queries P(X | e) by simply applying the full
joint probability distribution is intractable [4]. Sampling or Monte Carlo-
algorithms avoid this problem by generating samples from a probability distribu-
tion which is much easier to compute. The objective is to approximate P(X | e).
Sampling is like “coin flipping”: Random numbers in [0, 1] are generated and
a variable Xi is assigned true resp. false, if the corresponding number is lower
resp. greater than the respective probability in the distribution of Xi.

A Markov chain (of length k) is a sequence of states x1, ...,xk (a state corre-
sponds to a possible world) where each successing state only depends on the cur-
rent state. Markov chain Monte Carlo (MCMC) algorithms [2,4] are a powerful
class of sampling algorithms walking through the state space Ω = {x1, ...,xr}.
With respect to an arbitrary order, each non-evidence variable Xi, i = 1, ...,m
is sampled. This process is repeated N -times such that k = m ·N . After k − 1
steps, the fractions of the number of states visited with X = x resp. X = ¬x are
taken as the estimated probabilities of P(X | e).

Let xi be an assignment to X1, ..., Xi−1, Xi+1, ..., Xn. Gibbs sampling [2,4,5]
is a special case of MCMC, where the probability of a transition T (xt → xt+1) is
T ((xi,xi) → (x′i,xi)) = P (x′i | xi). In graph-based formalisms such as Markov
networks, Gibbs sampling can be optimized by exploiting the graph structure:
Let C1, ..., Cs be all cliques containing the node Xi. The Markov boundary of
Xi is the set of its neighbours MB(Xi) = XC1 ∪ . . . ∪XCs

\ {Xi}. If the values
of MB(Xi) are known, denoted mb(Xi), it shields Xi from influences of all
other nodes in G, i.e., P(Xi | x1, ..., xi−1, xi+1, ..., xn) = P(Xi | mb(Xi)) =
α <P (xi,mb(Xi)), P (¬xi,mb(Xi))>.

A Markov chain is regular if there is a number v such that for all pairs of
states xi,xj the probability of getting from xi to xj in v steps is greater than 0
[2]. If a Markov chain is regular (in Markov networks if fi > 0 for all fi ∈ F) the
probability distribution of the states converges to a unique stationary distribution
π. Finally, in the case of Gibbs Sampling, π(xi) is known to be equal to P(xi | e).
Markov chains through Gibbs Sampling and deterministic dependencies usually
are not regular and can break down the state graph into disconnected regions:

Example 2. Consider two ground atoms X1, X2 with the deterministic constraint
X1 ≡ X2. The state graph for applying Gibbs sampling is depicted in Fig. 1. If
the chain starts with (0, 0), it will never reach (1, 1). Consequently, π(0, 0) = 1
and π(1, 1) = 0, though there is no information of any preference.

Similarly, Gibbs sampling with near-determinism involves transitions with
probabilities approximating 0, leading to unacceptably long convergence times
(cf. [7]). Thus, since (near-)determinism is required in many applications, Gibbs
sampling in general is not sufficient for reasoning about knowledge.

Fig. 1. Gibbs sampling state graph of two Boolean random variables

5 Gibbs Sampling with Deterministic Dependencies

Definition 2. Let D be a set of deterministic dependencies. A Markov chain is
regular with respect to D if there is a number v such that for all pairs of states
xi,xj both satisfying D, the probability of getting from xi to xj in v steps is
greater than 0.

A Markov chain being regular with respect to D has a unique stationary distri-
bution π, if the initial state x1 satisfies D, i.e., P (X = x1) > 0. The difference
to regular Markov chains defined in the previous section is that there are states
xi with P (X = xi) = 0 that are simply not stepped into.

As can be seen from Example 2, the regularity of the Markov chain is bro-
ken, if X1 and X2 are constrained to be equal. This is also the case if they
are constrained to be different. We will now show that it is possible to run a
Markov chain constructed with Gibbs sampling that is regular with respect to
deterministic constraints in ALH−.

Theorem 1. Let KB
M

be a Markov DL knowledge base where T
det

is represented
with ALH− and A

det
is empty. Then, a Markov chain constructed with Gibbs

sampling is regular with respect to T
det

.

Proof. In order to prove the regularity, it is important to figure out states sat-
isfying or falsifying T

det
. Ground clauses derived from disjointness axioms are

of the form ¬At1 ∨ ¬At2, and ground clauses derived from all other axioms in
ALH− are of the form ¬At1∨At2, where At1 and At2 are ground atoms. There-
fore, clauses derived from T

det
are falsified only if At1 is assigned 1 (true) and

At2 assigned 0 (false) or if both At1 and At2 are assigned 1. Since in ALH−
there are no cycles, an order X1 < ... < Xn can be defined for all ground atoms
such that for all ground clauses ¬At1 ∨At2 no ground atom At2 is lower in the
order than At1. Atoms only mentioned in clauses ¬At1 ∨ ¬At2 can be added
arbitrarily. Then, it is possible to construct a tree, where each node respects the
defined order and corresponds to a state (x1, ..., xn), and where the root node is
a state where all atoms are assigned with 0, i.e., (0, ..., 0). For every 0 in (0, ..., 0),
there is exactly one child node where the corresponding 0 is changed to 1. Then,
for every 0 preceding the leftmost 1 in a node, there is also exactly one child
node where the corresponding 0 is changed to 1. After constructing all children

nodes, the tree contains exactly 2n nodes (i.e., one node for each state). This
tree has the following property: If a node represents a state satisfying T

det
, then

its parent node also represents a state satisfying T
det

. Since in ALH− the state
(0, ..., 0) satisfies T

det
, for each node it holds that if it satisfies T

det
then there is

a path from this node to (0, ..., 0) satisfying T
det

. ut

We will now specify a Gibbs sampling algorithm with deterministic dependencies
in ALH−. Instead of answering conditional probability queries P(X | e), with
this algorithm it is possible to answer probability queries P(X) conditioned on
the ground clauses obtained from T

det
.

Our objective is to exploit the fact that – due to restrictions in T
det

– there are
a lot of state transition possibilities where the bit-flip probability (the probability
that a random variable will change its value) is 0, i.e., a lot of cases in which
one does not need to sample at all. We propose to assign an integer γi to each
random variable Xi. γi is initially 0 and is increased whenever a bit-flip occurs for
a variable Xj , i 6= j that restricts the bit-flip probability of Xi to be 0 (“set”),
and γi is decreased whenever this specific restriction does not hold any more
(“release”). As long as γi > 0, Xi is not sampled and we say that Xi is “blocked”.
Settings (+1) and releases (−1) are depicted in Table 2 for groundings of all
ALH−-axioms with individuals i, j. Consider e.g. the first row in the second
column of Table 2: If the ground atom A(i) is 0 in xt and is 1 in xt+1 then
B(i) is known to be 1 (otherwise xt+1 would violate this constraint) and γB(i)

Table 2. Setting and releasing blockings due to ALH−-axioms

A v B

A v ¬B

R v S

∃R.> v A

> v ∀R.A

A(i)t → A(i)t+1 γB(i)

0 1 +1
1 0 −1

A(i)t → A(i)t+1 γB(i)

0 1 +1
1 0 −1

R(i, j)t→R(i, j)t+1 γS(i,j)

0 1 +1
1 0 −1

R(i, j)t→R(i, j)t+1 γA(i)

0 1 +1
1 0 −1

R(i, j)t→R(i, j)t+1 γA(j)

0 1 +1
1 0 −1

B(i)t → B(i)t+1 γA(i)

0 1 −1
1 0 +1

B(i)t → B(i)t+1 γA(i)

0 1 +1
1 0 −1

S(i, j)t→S(i, j)t+1 γR(i,j)

0 1 −1
1 0 +1

A(i)t → A(i)t+1 γR(i,j∗)

0 1 −1
1 0 +1

A(j)t → A(j)t+1 γR(i∗,j)

0 1 −1
1 0 +1

is increased, i.e., B(i) is blocked by A(i). Individuals with ∗ indicate that every
individual of the closed domain has to be considered separately.

The Markov chain has to start with a state x1 satisfying T
det

. Such a state
can be found with MaxWalkSat [9], a local search algorithm for the weighted sat-
isfiability problem. All deterministic clauses are assigned with a weight greater
than the sum l of all weights of clauses obtained from Tw ∪ Aw . Then, a state
violating clauses of total weight l or less satisfies T

det
(cf. [9]). The state (0, ...0)

is known to satisfy T
det

such that the chain could also start from this node, but
MaxWalkSat will find a node that will be (near to) the mode of the distribution
such that the chain will approximate faster. Since all transitions to states not
satisfying T

det
have probability 0, the whole chain does only involve states sat-

isfying T
det

. In other words, it is guaranteed that P (mb(Xi)) > 0 such that the
transition distribution P(Xi | mb(Xi)) is defined. Given KB

M
, this distribution

is computed with (1) where functions fi are defined according to (3).
The Gibbs-ALH−-algorithm is depicted in Fig. 2. If the value of Xi is flipped,

the method setRelease is called with parameters Xi, the old and new value of
Xi, xi resp. x′i, and the set Cl i of deterministic ground clauses containing Xi.
This method sets and releases blockings as specified in Table 2. At the beginning
of the process, it has to be ensured that all initial blockings are set. This is done
by calling set , a function similar to setRelease, but only increasing γi. Then, the
settings and releases depicted in Table 2 ensure that for each Xi, γi > 0 if and
only if either P (xi | mb(Xi)) = 0 or P (¬xi | mb(Xi)) = 0. Finally, after n · N
samples, the Boolean vector N[X] of counts over X is normalized by α and the
result represents the estimated distribution of P(X). The method can further
be optimized by restricting X to a set of ground atoms assumed to be relevant
for the query answer.

Algorithm Gibbs-ALH−(KB
M
, X,N)

Output An estimate of P(X)
local variables:

N[X], a vector of counts over X
Cl , a set of all (weighted) ground clauses obtained from KB

M

X = {X1, ..., Xn}, the set of all random variables
γ = {γ1, ..., γn}, a set of integers initially assigned with 0
x = (x1, ..., xn), an initial state satisfying T

det

for i = 1 to n do if (γi = 0) set(Xi, ¬xi, xi, Cl i);
for j = 1 to N do

for i = 1 to n do
if (γi = 0)

sample the value x′i of Xi in x from P(Xi | mb(Xi));
if (xi 6= x′i) setRelease(Xi, xi, x′i, Cl i);

N[x]← N[x] + 1 where x is the value of X in x
return α <N[1],N[0]>

Fig. 2. The Gibbs-ALH− algorithm

6 Conclusion

We have shown that deterministic dependencies inALH− retain the regularity of
Markov chains constructed with Gibbs sampling. Further, we proposed a method
incorporating these dependencies. Since lots of redundant samples are not gen-
erated by this method, we conclude that significant efficiency is gained. This is
in contrast to previous results, where Gibbs sampling with (near-)determinism
is known to give poor results. While T

det
is specified with ALH−, the sets Tw

and A
w

of weighted axioms resp. weighted assertions can e.g. be specified in the
expressive DL SHQ. In [7] it is shown that Gibbs sampling slows down more
and more when clauses are assigned with weights beyond 4. Note that a world
not satisfying a ground clause with weight 4 is as probable as a world not satisi-
fying e3 ground clauses with weight 1. Thus, for ground clauses not intended
to represent deterministic knowledge, a weight around 4 usually will suit the
requirements of a knowledge engineer. However, often, in addition to axioms in
ALH−, there is also the need to represent deterministic assertions in A

det
as well

as deterministic functional- and transitive roles. Further research is required, in
order to also incorporate these dependencies. Another open task is the imple-
mentation of the proposed method in order to compare its runtime performance
with other approaches estimating probability distributions under consideration
of (near-)deterministic knowledge (such as MC-SAT [7] or SampleSearch [8]).

References

1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988.

2. Koller, D., Levy, A., Pfeffer, A., Getoor, L., Taskar, B.: Graphical Models in a
Nutshell. In: Introduction to Statistical Relational Learning, pages 13–55, Cam-
bridge, MA: MIT Press, 2007.

3. Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, January 2003.

4. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (Second Edi-
tion) Prentice Hall, 2003.

5. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distribution and Bayesian
Restoration of Images. IEE Transactions on Pattern Analysis and Machine Intel-
ligence 6, pages 721–741, 1984.

6. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statisti-
cal Relational Learning. In: Introduction to Statistical Relational Learning, pages
339–371, Cambridge, MA: MIT Press, 2007.

7. Poon, H., Domingos, P.: Sound and Efficient Inference with Probabilistic and
Deterministic Dependencies. In Proceedings of AAAI-06, Boston, Massachusetts,
July 2006.

8. Gogate, V., Dechter, R.: SampleSearch: Importance Sampling in presence of De-
terminism. ICS technical report (Submitted), July 2009.

9. Jiang, Y., Kautz, H., Selman, B.: Solving Problems with Hard and Soft Con-
straints using a Stochastic Algorithm for MAX-SAT. In First International Joint
Workshop on Artificial Intelligence and Operations Research, 1995.

