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Abstract This paper analyzes the probabilistic description logic P-SHIQ as a
fragment of first-order probabilistic logic (FOPL). P-SHIQ was suggested as
a language that is capable of representing and reasoning about different kinds
of uncertainty in ontologies, namely generic probabilistic relationships between
concepts and probabilistic facts about individuals. However, some semantic prop-
erties of P-SHIQ have been unclear which raised concerns regarding whether it
could be used for representing probabilistic ontologies. In this paper we provide
an insight into its semantics by translating P-SHIQ into FOPL with a specific
semantics based on possible worlds. From that reduction, we show that some
of the restrictions of P-SHIQ are fundamental and sketch alternative semantic
foundations for a probabilistic description logic.

1 Introduction and Motivation

One common complaint about description logic (DL) based ontology languages, such as
the Web Ontology Language (OWL), is they fail to support non-classical uncertainty, in
particular, probability. One answer to this complaint is the P-SH family of logics which
allow for the incorporation of probabilistic formulae as anextension of the familiar and
widely usedSH DLs [1] [2]. Unlike Bayesian extensions to DLs and OWL, the P-SH
family consists of proper extensions to the syntax and semantics of the underlying logic
and inference services. These logics are also decidable, generally of the same worst case
complexity as the base logic, and can be implemented on top ofexisting DL reasoners.

However, there are several issues with the P-SH family both from an expressivity
and from a theoretical point of view. First, it has not been fully clear how it actually
combines statistical and subjective probabilities. Second, probabilistic ABoxes have a
number of strong restrictions (including no support of roles assertions between proba-
bilistic individuals and only one probabilistic individual per ABox).

Often, insight into a DL (and associated extensions and reasoning techniques) has
followed by considering its standard first-order translation, that is, in considering it as
a fragment of first order-logics. In this paper, we attempt toapply this methodology to
the P-SH family by considering them as fragments of a first-order logic extended with
various forms of probability (FOPL). We show that we can understand P-SH logics as
fragments of FOPL and explain its limitations on the basis ofthe known properties of
FOPL with semantics based on possible worlds. Finally, we sketch another fragment of
FOPL which has different semantics and allows lifting of theP-SH restrictions.
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2 Preliminaries

P-SHIQ We consider a particular representative of the P-SH family, named P-
SHIQ, whose syntactic constructs include those ofSHIQ together withconditional
constraints. Constraints are expressions of the form(D|C)[l, u] whereD,C areSHIQ
concept expressions (calledconclusionandevidencerespectively) and[l, u] ⊆ [0, 1].

A probabilistic TBox (PTBox) is a 2-tuplePT = (O,P) whereO is a classical
DL ontology andP is a finite set of conditional constraints. Informally, a PTBox axiom
(D|C)[l, u] means that “if a randomly chosen individual belongs toC, its probability
of belonging toD is in [l, u]”. A probabilistic ABox (PABox) is a finite set of condi-
tional constraints pertaining to a single probabilistic individualo. Set of all probabilistic
individuals is denoted asIP . A probabilistic ontologyPO = (O,P, (Po)o∈IP

) is a
combination of one PTBox and a set of PABoxes, one for each probabilistic individual.

The semantics of P-SHIQ is standardly explained in terms of the notion of apos-
sible worldwhich is defined with respect to a set of basic conceptsΦ [2]. A possible
world I is a set of DL concepts fromΦ such that{a : C|C ∈ I} ∪ {a : ¬C|C /∈ I}
is satisfiable for a fresh individuala (in other words, possible worlds correspond tore-
alizableconcept types). The set of all possible worlds with respect to Φ is denoted as
IΦ. A world I satisfies a conceptC denoted asI |= C if C ∈ I. Satisfiability of basic
concepts is inductively extended to concept expressions asusual.

A world I is said to be amodelof a DL axiomη denoted asI |= η if η∪{a : C|C ∈
I} ∪ {a : ¬C|C /∈ I} is satisfiable for a fresh individuala. A world I is a model of a
classical DL knowledge baseO denoted asI |= O if it is a model of all axioms ofO.
Existence of such world is equivalent to the standard satisfiability in DL [2].

A probabilistic interpretationPr is a discrete probability distribution overIΦ. Pr
is said tosatisfya DL knowledge baseO denoted asPr |= KB iff ∀I ∈ IΦ, P r(I) >
0 ⇒ I |= KB. The probability of a conceptC, denoted asPr(C), is defined as∑
I|=C Pr(I). Pr(D|C) is used as an abbreviation forPr(C ⊓ D)/Pr(C) given

Pr(C) > 0. A probabilistic interpretationPr satisfies a conditional constraint
(D|C)[l, u], denoted asPr |= (D|C)[l, u], iff Pr(C) = 0 or Pr(D|C) ∈ [l, u]. Pr
satisfies a set of conditional constraintsF iff it satisfies each of the constraints. A PT-
Box PT = (O,P) is calledsatisfiableiff there exists an interpretation that satisfies
O ∪ P. Logical entailment is defined in a standard way [2]1.

First-Order Probabilistic Logic FOPL2 is a probabilistic generalization of first-order
logic aimed at capturing belief statements (the subscript 2stands for the Type 2 se-
mantics [3]), like “the probability that Tweety (a particular bird) flies is over 90%”. It
is very expressive allowing to attach probabilities to arbitrary first-order formulas. Its
representational and computational properties have been thoroughly investigated, and
the results of these investigations are applicable to its fragments.

The syntaxof FOPL2 is defined as follows [3]: assume a first-order alphabetΦ
of function and predicate names, and a countable set of object variablesXo. Object

1 P-SHIQ, as it is presented in [2], is a non-monotonic formalism. However, we consider only
its monotonic basis in this paper. Our position is that it must be clarified first, before proceeding
to non-monotonic machinery, such as lexicographic entailment, built on its top.
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termsare formed by closingXo off under function application as usual. In addition, the
language containsfield terms, which range over reals (with0 and1 being distinguished
constants) and probability terms of the formw(φ), whereφ is a first-order formula.
Field terms are closed off under applications of functions×,+ on reals (the denotation
w(φ|ψ) ≤ t is the abbreviation ofw(φ ∧ ψ) ≤ t × w(ψ)). Then FOPL2 formulas are
defined as follows:

– If P is an n-ary predicate name inΦ and t1, . . . , tn are object terms, then
P (t1, . . . , tn) is an atomic formula.

– If t1, t2 are field terms, thent1 ≤ t2, t1 ≥ t2, t1 < t2, t1 > t2, t1 = t2 are atomic
formulas. Standard relationships between (in)equality relations are assumed.

– If φ, ψ are formulas andx ∈ Xo, thenφ∧ψ, φ∨ψ, ∀(x)φ, ∃(x)φ,¬φ are formulas.
Standard relationships between logical connectives and quantifiers are assumed.

A probabilistic interpretation(Type 2 probability structure in [3])M is a tuple
(D,S, π, µ), whereD is a domain,S is a set of states,π is a functionS × Φ → ΦD
(whereΦD is a set of predicates and functions overD) which preserves arity, andµ is
a probability distribution overS.M together with a states and a valuationv associates
each object termo with an element ofD ([o](M,s,v) ∈ D) and each field termf with a
real number.(M, s, v) associates formulas with truth values (we write(M, s, v) |= φ if
φ is true in(M, s, v)) as follows:

– (M, s, v) |= P (x) if v(x) ∈ π(s, P ).
– (M, s, v) |= t1 < t2 if [t1]

M,s,v < [t2]
(M,s,v).

– (M, s, v) |= ∀(x)φ if (M, s, v[x/d]) |= φ for all d ∈ D.

Other formulas, e.g.φ ∧ ψ, ¬ψ, t1 = t2, etc. are defined as usual. It remains to
define the mapping for the probability terms of the formw(φ): [w(φ)](M,s,v) = µ{s′ ∈
S|(M, s′, v) |= φ}. As usual, a FOPL2 formula is calledsatisfiableif there exists a
tuple(M, s, v) in which the formula is true.

Note that, although FOPL2 does not impose any restrictions on the setS (i.e. it can
be any set over which a probability distribution can be defined). However, it is natural to
associate states with possible interpretations of symbolsin Φ overD (see [4]). Then the
model structure can be simplified to(D,S, µ) since the interpretations are implicitly
encoded in the states.

3 Mapping between P-SHIQ and FOPL2

This section presents a mapping between P-SHIQ and FOPL2. For brevity we will
limit our attention toALC concepts (calling the resulting logic P-ALC) as the trans-
lation can be easily extended to more expressive DLs. We willshow that it preserves
entailments so that P-SHIQ can be viewed as a fragment of FOPL2.

Basic Translation We define the injective functionκ to be the mapping of syntactic
constructs of P-ALC to FOPL22. It is a superset of the standard translation ofALC into
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Table 1.Translation of P-ALC formulae into FOPL2

P-ALC FOPL2

κ(A, var) A(var)

κ(¬C, var) ¬(κ(C, var))

κ(R, var, var′) R(var, var′)

κ(C ⊓ D, var) κ(C, var) ∧ κ(D, var)

κ(C ⊔ D, var) κ(C, var) ∨ κ(D, var)

κ(∀R.C, var) ∀(var′)(R(var, var′) → κ(C, var′))

κ(∃R.C, var) ∃(var′)(R(var, var′) ∧ κ(C, var′))

κ(a : C) κ(C, x)[a/x]

κ((a, b) : R) R[a/x, b/y]

κ(C ⊑ D, x) ∀(x)(κ(C, x) → κ(D, x))

κ((B|A)[l, u], x) l ≤ w(B(r)|A(r)) ≤ u

FOL [5] (in the Table 3A,B stand for concept names,R for a role name,C,D for
concepts,r for a fresh constant,var ∈ {x, y}; var′ = x if var = y andy if var = x).

This function transforms a P-ALC PTBox into a FOPL2 theory. The most important
thing is that it translatesgenericPTBox constraints intogroundprobabilistic formulas
for a fresh constantr. The implications of this will be discussed in Section 4.

Faithfulness We next show that this translation is faithful by establishing correspon-
dence between models in P-ALC and FOPL2. Observe, that in contrast to [6], here we
consider the natural choice of states in Type 2 model structure in which they correspond
to first-order models of the knowledge base.

Theorem 1. LetPT = (O,P) be a PTBox in P-ALC andF = {κ(φ)|φ ∈ O ∪P} be
the corresponding FOPL2 theory. Then for every P-ALC modelPr of PT there exists
a corresponding Type 2 structureM = (D,S, µ) such that 1)M |= κ(φ) for all φ ∈ O
and 2)M |= l ≤ w(B(r)|A(r)) ≤ u for all conditional constraints(B|A)[l, u] in P,
and vice versa, whereκ is defined according to Table 1.

Proof. We prove only (⇒). Let Pr : IΦ → [0, 1] be a model ofPT . Pr satisfies
classical ontologyO so there exists a classical modelI = (∆I , ·I) of O. We first
extend∆I to ensure that all possible worlds are realizable over it (one possibility is
to take the disjoint union of all realizations)3. Then we construct a Type 2 structure
(D,S, µ) as follows: letD = ∆I andS be the set of all interpretations of predicate
names (translations of concept and roles names) andr over∆I that satisfy classical
formulas inF . S must be non-empty: letsI be such thatsI(P ) = κ−1(P )I for all
predicate names andsI(r) is an arbitrary domain element. Sincer is a fresh constant
andκ encompasses a standard and faithful translation fromALC to FOL,sI is a model
of all classical formulas inF and therefore1) holds.

2 For a possible worldI = {Ci} we use the notationκ(I) to denote the set{κ(Ci)}
3 This is only possible if the DL does not allow for nominals.
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The rest is to define a probability distributionµ that satisfies probabilistic formulas
in F . Recall thatPr is probability distribution over the set of (possible worlds). We
define a functionσ which maps each worldI = {Ci} to a set of statesσ(I) ⊆ S as
follows: σ(I) = {s|s |= κ(I)(r)} . Then letµ(σ(I)) = Pr(I) for all possible worlds.
It is not hard to see thatµ is a probability distribution as it mimics the probability distri-
butionPr. Finally, (D,S, µ) satisfies all formulas of the kindl ≤ w(B(r)|A(r)) ≤ u
in F becauseµ(B(r)∧A(r)) = Pr(B⊓A), µ(A(r)) = Pr(A)) (by construction, e.g.,
µ(A(r)) = µ({s|s |= A(r)}) =

∑
Cti|=A

µ{σ(Cti)} =
∑
Cti|=A

Pr(Cti) = Pr(A))
andPr |= (B|A)[l, u] and therefore2) holds. ⊓⊔

Theorem 1 implies that the translation preserves satisfiability and entailments.

Translation of PABoxes One particularly odd restriction of P-SHIQ is that PABoxes
cannot be combined into a single set of formulas. This is so because PABox constraints
are modeled as generic constraints and the information about the individual is present
only on a meta-level (as a label of the PABox). Therefore, to extend our translation
to PABoxes we either have to translate them into a corresponding disjoint set of la-
beled FOPL2 theories or make special arrangements to faithfully translate them into a
combined FOPL2 theory. We opt for the latter because it will let us get rid of any meta-
logical aspects and help analyze a P-SHIQ ontology as a standard FOPL2 theory.

Since PABoxes in P-SHIQ are isolated from each other, the translation should
preserve that isolation. The most obvious way to prevent anyinteraction between sets
of formulas in a single logical theory is to make their signatures disjoint. However,
the translation should not only respect disjointness of PABoxes but also preserve their
interaction with PTBox and the classical part of the ontology (see Example 1).

Example 1.Consider the following PTBox:P = {(FlyingObject|Bird)[0.9, 1],
(FlyingObject|¬Bird)[0, 0.5]} and two PABoxes:PTweety = {(Bird|⊤)[1, 1]},
PSam = {(¬Bird|⊤)[1, 1]}. Obviously, if these sets of axioms are translated and com-
bined into a single FOPL2 theory then it will contain a conflicting pair of formulas
{w(Bird(r)) ≥ 0.9, w(Bird(r)) ≤ 0.5} ⊆ F . This inconsistency can be avoided by
introducing fresh first-order predicates for every PABox:{w(BirdTweety(r)) ≥ 0.9,
w(BirdSam(r)) ≤ 0.5}. However, this would break any connection between PTBox
and PABox axioms, for example, prevent the following entailments:
{w(FlyingObjectTweety(r)) ≥ 0.9, w(FlyingObjectSam(r)) ≤ 0.5}.

One can faithfully extend the translation to PABoxes by introducing fresh concept
names torelativizeeach TBox and PTBox axiom for every probabilistic individual to
avoid inconsistencies. The transformation will consist ofthe following steps4:

– Firstly, we transform a P-ALC ontologyPO = (O,P, (Po)) into a set of PTBoxes
{(O,P ∪ Po)} ∪ {(O,P)}. Informally, we create a copy PTBox for every prob-
abilistic individual (PTo) and make them isolated from each other. Now, instead
of one PTBox and a set of PABoxes we have just a set of PTBoxes. This step
preserves probabilistic entailments in the following sense: PO |= (B|A)[l, u] iff
(O,P) |= (B|A)[l, u] andPO |= (B|A)[l, u] for o iff PTo |= (B|A)[l, u].

4 Full example is available at http://www.cs.man.ac.uk/˜klinovp/research/pshiq/example.pdf.
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– Secondly, we transform every PTBoxPTo into PT ′
o by renaming every concept

nameC into Co in all TBox axioms and conditional constraints. It is easy to
see thatPTo |= C ⊑ D iff PT ′

o |= Co ⊑ Do andPTo |= (B|A)[l, u] iff
PT ′

o |= (Bo|Ao)[l, u]. Intuitively, we have created a fresh copy of each PTBox
to guard against possible conflicts between PABox constraints for different proba-
bilistic individuals. Signatures ofPT ′

o are pairwise disjoint and denoted asΣo.
– Next, we union allPT ′

o with disjoint signatures (including the originalPT =
(O,P)) into a single unified PTBoxPTU =

⋃
o∈Ip

PTo ∪ PT with signature
ΣU =

⋃
o∈Ip

Σo ∪Σ.
– Finally we can apply the previously presented faithful translation toPTU and ob-

tain a single FOPL2 theory which corresponds to the original P-ALC ontology.

A necessary condition for faithfulness of this transformation is that the original iso-
lation of PABoxes is preserved by creating fresh copies of PTBoxes. In particular, this
means that the unified PTBox cannot entail any subsumption relation between concept
expressionsCo1 andCo2 defined over disjoint signatures except of the case when one
of them is either⊤ or ⊥. If this is false, for example, ifPTU |= Co1 ⊑ Co2 then
the following PABox constraints represented as(Co1 |⊤)[1, 1] and (Co2 |⊤)[0, 0] will
be mutually inconsistent inPTU (but they were consistent in the original P-ALC be-
cause they belonged to different PABoxes isolated from eachother). This condition is
formalized in the following lemma (whose proof is omitted for brevity):

Lemma 1. Let O1 and O2 be copies of a satisfiableALC ontologyO with disjoint
signaturesΣ1 andΣ2, andOU be the union ofO1 and O2. Then for any concept
expressionsC1, C2 overΣ1 andΣ2 respectively such thatO1 2 C1 ⊑ ⊥ andO1 2

⊤ ⊑ C2, OU 2 C1 ⊑ C2.

Now we can obtain the main result:

Theorem 2. LetPO = (O,P, (Po)) be a P-ALC ontology andF be a FOPL2 theory
obtained by combining PABoxes and translating the resulting PTBox into FOPL. Then
for every P-ALC modelPro of PTo = (O,P ∪ Po) for every probabilistic individual
o there exists a corresponding Type 2 structureM = (D,S, µ) such that:

1. M |= κ(φ) for all φ ∈ O,
2. M |= l ≤ w(B(r)|A(r)) ≤ u for all conditional constraints(B|A)[l, u] in P,
3. M |= l ≤ w(Bo(r)|Ao(r)) ≤ u for all conditional constraints(B|A)[l, u] in Po,

and vice versa, whereκ is defined according to Table 1.

Proof. Due to Theorem 1 it suffices to show that the steps 1-3 of the transformation
preserve probabilistic models. This can be done by establishing a correspondence be-
tween possible worlds of eachPTo andPTU . Since there are no subsumptions between
concept expressions over signatures of different PTBoxes (see Lemma 1), each possi-
ble worldIo in PTo corresponds to a finite set of possible worlds ofPTU defined as:
σ(Io) = {IU |Cio ∈ IU iff Ci ∈ Io} (eachCio is a new concept name forCi intro-
duced on step 2). Then, a probability distribution over all possible worlds inPTU can
be defined asPrU (IU ) = Pro(Io)/|σ(Io)|. It follows that for any conceptC overΣo,
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Pro(C) is equal toPrU (Co) whereCo is the correspondingly renamed concept. There-
fore,PrU |= (Bo|Ao)[l, u] if Pro |= (B|A)[l, u]. The reverse direction can be proved
along the same lines (i.e.,Pro(Io) can be defined as

∑
IU∈σ(Io) PrU (IU )).

4 Discussion

The main conclusion following from the presented translation is that P-SHIQ all PT-
Box statements expressdegrees of belief(i.e. subjective probabilities) about a single,
yet unnamed, individual. This is not an easily expected outcome because the variable-
free syntax of P-SHIQ may give a misleading impression that PTBox constraints cor-
respond to universally quantified formulas of some sort. Thefact that probabilistic indi-
viduals are not translated to corresponding constants in FOPL2 (in contrast to classical
individuals) is also not a trivial outcome. Both these features of P-SHIQ have im-
portant implications, but before moving to them, let us consider another, perhaps more
naturally looking translation and explain why it is not faithful.

It may well appear that conditional constraints in P-SHIQ should be interpreted as
implicitly universally quantified formulas analogously toprobabilistic logic program-
ming. That way,(B|A)[l, u] corresponds to∀x(l ≤ w(B(x)|A(x)) ≤ u). However,
the standard behavior of the universal quantifier is incompatible with the P-SHIQ se-
mantics in which classical and probabilistic individuals are separated. For example, the
PTBox({a : ¬A}, {(A|⊤)[1, 1]}) is satisfiable although the corresponding FOPL the-
ory {¬A(a),∀x(w(A(x)) = 1)} is not.

There is a possibility to interpret conditional constraints in P-SHIQ as closed quan-
tified formulas, but this requires a non-standard quantifierwhich makes the variable act
as a random designator. This idea dates back to Cheeseman whooriginally proposed to
use formulas of the form∀x.pr[B(x)|A(x)][l, u] to capture statistical knowledge [7].
In fact, the fresh constantr used in our translation plays the role of such non-standard
quantifier. However, as pointed out by several authors (see especially [3] [8] [9]), such
formulascannotserve as representations of statistical assertions because their interpre-
tations are not based on proportions of domain elements5.

Unfortunately, using Type 2 semantics to interpret different kinds of probabili-
ties complicates not only the representation of statisticsbut also the combination of
statistical assertions with probabilistic statements about specific individuals (degrees
of belief). In particular, this requires modeling of PABox constraints in P-SHIQ as
generic PTBox statements with information about individuals presenting only on a
meta-level. This is the reason why PABox statements do not correspond to ground
probabilistic formulas in FOPL2. If they did, then there would be no connection be-
tween a “statistical” statement(FlyingObject|Bird)[0.9, 1] (represented in FOPL2 as
(0.9 ≤ flyingobject(r)|bird(r)) ≤ 1) and a belief statement(tweety : Bird)[1, 1]
(represented as1 ≤ w(bird(tweety) ≤ 1) since beliefs aboutr cannot affect beliefs
abouttweety. Therefore(tweety : Bird)[1, 1] is effectively modeled as(Bird|⊤)[1, 1]

5 We must mention that P-SHIQ could, in principle, be translated to FOPL with domain-based
semantics by employing a known translation between domain-based probability and possible-
world-based probability (see [10] for details). However, this will solve no issues with P-SHIQ
as it will still behave as FOPL2 with single probabilistic individual.
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(or as1 ≤ w(bird(r)) ≤ 1 in FOPL2) with the individual nametweety lifted at the
meta-level to serve as a label for the corresponding PABox.

However, this introduces other problems which are responsible for the limitations
of P-SHIQ. Since PABox constraints expressing probabilistic knowledge about differ-
ent probabilistic individualsmustbe isolated from each other, there appears to be no
straightforward way of combining them. In particular, thisprohibits representation of
classical or probabilistic role assertions between different probabilistic individuals or,
in other words, the logic does not support probabilistic relational structures6. Thus, it
can be concluded that, in essence, P-SHIQ is closer to a propositional probabilistic
logic rather than to a full-fledged probabilistic first-order formalism.

The problems mentioned above cannot be solved simply by adopting an appropriate
semantics for representing statistics, such as Type 1 semantics in which probability dis-
tributions are defined over the interpretation domain. Suchan attempt has been made
by Giugno and Lukasiewicz in the early paper on P-SHOQ [1]. In that logic proba-
bilistic concept membership assertions were represented using nominals, for example,
(C|{a})[0.5, 1]. Unfortunately, as proved by Halpern, closed first-order formulas can
only have probability0 or 1 in any Type 1 probabilistic model (see Lemma 2.3 in [3]) so
the representation is unsatisfactory. It is not hard to see that the probability of(C|{a}),
equivalent toPr(C⊓{a})

Pr({a}) , is 0 if aI /∈ CI or 1 if aI ∈ CI if Pr is defined over∆I .
All the features and limitations explained above are by no means unique to P-

SHIQ. They have been discovered and studied for first-order logics by a number of
authors who claimed that neither domain-based nor possibleworld-based semanticsby
itself is suitable for representation and reasoning about different kinds of probabilities.
However, their proper combination (called Type 3 semantics[3]) has the required po-
tential. The corresponding logic (FOPL3) is free of any limitations described above, is
completely axiomatizable for a range of interesting fragments (e.g., logics with bounded
model property such asALC), and can be used for defining probabilistic DLs.

5 Probabilistic Description Logic with Combined Semantics

In this section we briefly outline the syntax and semantics ofthe extended probabilistic
DL for representation and reasoning about different kinds of probabilities. The language
corresponds to the DL fragment of FOPL3 with the principle of direct inference [9]. We
loosely call it P-DL (whereDL stands for a subset ofSROIQ).

Syntax Analogously to P-SHIQ the syntax of P-DL is based on conditional con-
straints. However, we distinguish between statistical constraints and belief constraints
by providing different syntactic constructs for each.Statistical conditional constraints
are expressions of the form(D|C)stat[l, u] whereD,C are concept expressions.Belief
constraintsare expressions of the form(φ)belief [l, u] or (ψ|φ)belief [l, u] whereψ, φ are
ABox assertions. We define PTBox to be a set of statistical constraints, and PABox to

6 Allowing nominals in the classical part of the language lets us express probabilistic roles
R(a, b)[l, u] as(∃R.{b}|⊤)[l, u] for a [2]. However, this is still very restrictive because there
cannot be a PABox forb (in other words,b cannot be a probabilistic individual).
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be a set of belief constraints. An ontology in P-DL is a triple(O,Pstat,Pbelief ) where
O is aDL ontology,Pstat is a PTBox andPbelief is a PABox.

SemanticsBoth types of conditional constraints are interpreted using the Type 3 struc-
tureM = (∆,S, Prstat, P rbelief ) [3]. Here∆ is a non-empty domain,S is a set of
states that correspond to interpretations of concept, roleand individual names over∆,
Prstat is a probability distribution over∆, andPrbelief is a probability distribution
overS. For a states ∈ S we uses(C) (resp.s(R), s(a)) to express the interpretation
of a conceptC (resp. roleR and individuala) in s. For an axiomη we write s |= η
if η is satisfied by the corresponding interpretation. Such combined structure is used to
interpret both statistical and belief statements respectively in the following way:

– Statistical probability of a conceptC in M in a states (denoted asC(M,s)) is equal

to Prstat{d ∈ ∆|d ∈ s(C)}. (D|C)M,s is an abbreviation of(D⊓C)(M,s)

C(M,s) .
– Subjective probability of an ABox assertionφ (denoted asφM is equal to

Prbelief{s ∈ S|s |= φ}. (ψ|φ)M is an abbreviation of(ψ⊓φ)M

φM .

– M satisfies a statistical constraint(D|C)stat[l, u] if ∀s ∈ S, (D|C)(M,s) ∈ [l, u].
– M satisfies a belief constraint(ψ|φ)belief [l, u] if (ψ|φ)M ∈ [l, u].

Direct Inference FOPL3 provides means for representing and reasoning about differ-
ent kinds of probabilities but, as it stands, it does not support any relationship between
them. However, in most scenarios, e.g., in actuarial reasoning, it is desirable to infer
subjective beliefs from available classical and statistical knowledge. Such reasoning is
often calleddirect inferenceand it can be supported in FOPL3 and its fragments.

The main idea behind direct inference, that goes back to Reichenbach’s reference
class reasoning [11], is to consider every individual to be atypical representative of the
smallestclass of objects which it belongs to and for whichreliablestatistics is available.
For example, the probability that Tweety flies should be equal to the probability that a
randomly taken object, having the same set of properties as Tweety, flies. There are a
few proposed ways to implement this idea, one of which we sketch below.

One can capture the notion of typicality directly by equating the degree of belief
in a ground formula to theexpectationof the statistical probability of itsrandomized
version given the rest of classical and statistical formulas, as proposed in [9]. Ran-
domization is replacement of all constants in ground formulas by fresh variables. Ex-
pectation of a field termf is a rigid (i.e. not depending on a state) term defined as
E(f)M =

∑
s∈S Prbelief (s) × [f ](M,s). The expectation operator and conditioning

on statistical formulae are only used on the semantic, not syntactic, level of P-DL.
Consider the example. Let{(Fly|Bird)[0.9, 1]} be PTBox andBird(tweety) be

an ABox axiom. Then the degree of belief inBird(tweety) is within the bounds of
E(bird(v)|0.9 ≤ w(fly(v)|bird(v)) ≥ 1), wherev is a fresh constant introduced
by randomization. The resulting interval is[0.9, 1], as expected. Note that P-DL will
probably require a non-monotonic mechanism similar to P-SHIQ to handle situations
when an explicitly specified subjective probability is different from the computed via
direct inference (e.g., when the individuals in question arenot typical).
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Direct inference via randomization serves the same purposeas P-SHIQ’s way of
combining PTBox and PABox constraints (in that sense P-SHIQ can be thought of
as an implementable, non-monotonicapproximationof FOPL3). However, it is con-
siderably less restrictive because it does not require representing PABox statements as
universal PTBox constraints. Since all belief statements about particular individual are
ground formulas with proper constants (liketweety), they can be combined in a single
theory. Thus the representation supports arbitrary relational structures involving differ-
ent probabilistic individuals and does not force unnaturalseparation of PABoxes. It is
also possible to make the assumption that a pair of individuals are typical thus enabling
the inference of probabilistic role assertions. Finally, it supports smooth integration of
classical knowledge (i.e. ABox axioms) and beliefs about the same individual while
P-SHIQ requires separation between classical and probabilistic individuals.

6 Conclusion

In this paper we have presented a new look at the probabilistic DL P-SHIQ as a frag-
ment of probabilistic first-order logic. We gave a translation of P-SHIQ knowledge
bases into FOPL2 theories and proved its faithfulness. This brought an extrainsight
into P-SHIQ, most importantly, into its limitations. It appears that the major restric-
tion, namely the lack of support of relational structure forprobabilistic individuals, is
caused by attempt to use the possible world based semantics for different kinds of prob-
abilities. This makes the probabilistic component of P-SHIQ essentially propositional
(i.e. all probabilistic statements relate to a single constantr). We sketched how a more
direct fragment of FOPL, which we called P-DL, could overcome these limitations
while still retaining the ability to combine probabilitiesof different sorts. Future inves-
tigations include decidability, implementability, and modelling applicability of P-DL.
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