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Abstract.  This paper identifies constructions needed for modeling product 

structure, shows which ones can be represented in OWL2 and suggests 

extensions for those that do not have OWL2 representations. A simplified 

mobile robot specification is formalized as a Knowledge Base (KB) in an 

extended logic. A KB is constructed from a signature of types (classes), typed 

properties, and typed variables and operators.  Modeling product structure 

requires part decompositions, connections between parts, data valued 

properties, typed operations with variables, and constraints between property 

values. Data valued properties represent observable properties assumed or 

measured regarding a product. Operations with variables are used to define 

constraint properties such as fact that the total product weight is the some of 

weights of product components. Constructors, which take arguments from the 

signature and have properties as values, are used to specify families of 

properties such as part properties. These constructions are illustrated for the 

mobile robot. Operators and variables are represented as type, property, and 

operations within type theory.     

Keywords: Description Logic, Ontology, OWL, Product Model, SysML, Type 

Theory, UML. 

1 Introduction 

This paper uses a mobile robot design specification example to identify constructions 

needed for modeling product structure. Some, but not all of these constructions can be 

represented in OWL2 [13]. The product modeling example suggests possible OWL2 

extensions for product modeling. This is a continuation of earlier work [6,7,8,9]. The 

mobile robot specification is represented using a language of classes (types), 

properties, with typed operations, and dependent type term constructors which are 

used to specify families of properties such as part properties. The language is that of 

intuitionisitc type theory [14].  A type theory is constructed from a multi-sorted 

signature of types (classes), properties, and operations using typing and equality 

axioms.  While in general type theories are undecidable, the form of axioms used for 

product modeling is restricted to using OWL2 constructions and operation term 

equation reasoning. The decidability of equality has been proven for a variety of 

intuitionistic type theories [1] based on proving terms have a unique irreducible form. 

These results together with the OWL2 decidability results can possibly be combined 

to prove decidability for suitably restricted type theories that use the OWL2 
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constructions.  This paper hopes to make clear with an example product specification 

that type theory constructions are a natural fit for product modeling and provide a 

formal semantics for SysML structural product models. 

1.1 A design specification as a knowledge base 

The informal concept of a product is distinguished by having been built or at least can 

be described by a design specification. Design specifications occur at different levels 

of abstraction. Some design specifications may not have sufficient detail to determine 

a parts decomposition. The example specification described here not only has a parts 

decomposition, but all parts decompositions are structurally the same.  The structural 

part of the specification is its parts decomposition and the specified connections 

between parts. Examples of the kind of analysis to be performed on a design 

specification is to determine if there are design instances, do all design instances have 

the same structure, and does replacement of a part with another part with a different 

type still constitute an implementation.  

A mobile robot specification is used to illustrate structural product modeling 

constructions. The specification is presented as a collection of SysML [4] diagrams 

which are graphical views of a SysML model.  Each diagram represents aspects of the 

specification and may hide part of the specification.  
bdd [Project] MobileRobot [Model1]
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Fig. 1 This diagram uses directed arrows to connect blocks. Each arrow has a source and target 

with a numeric quantification. The arrows represent parts relationships of the specification. All 

of the blocks except InternalConstraints are physical part types. InternalConstraints represents 

the interrelationships between data properties of a mobile robot and its components. The blocks 

display data valued properties. 

 

A design specification can be represented as a knowledge base (KB) in a language 

with types (classes), binary properties, and operations. The collection of named types, 



properties, and operations in the model is referred to as the signature of the model. 

The blocks in figure 1 represent types. For example, a vehicle specification has types 

for MobileRobot, Body, Engine, WheelAssembly, and other components.  Data 

properties are used for product attributes, and object properties are used for parts 

decompositions and connections between parts. The discussion of the robot example 

will use a linear syntax that slightly extends SysML syntax.  

 Properties, as they typically occur in product modeling have domain and range 

types.  These are called typed properties and the notation P:(A,B) is used to express 

that P is a property with domain type A and range type B. Each typed property can be 

represented within OWL2 using axioms for domain and range. In Figure 1 each 

closed diamond headed arrow is a typed property. The names are not shown in this 

diagram, however, the arrow from MobileRobot to WheelAssembly is named 

itsWheelAssembly domain has domain MobileRobot and Range WheelAsembly. For 

a property P with P:(A,B), then the notation (P some B) and (P exactly k) are are used 

for restriction subtypes of A. The notation a:A is used to express that a is an instance 

of A, and (a,b):P to express that the pair (a,b) s an instance of P.  If a pair of 

individuals (a,b):itsWheelAssembly then a: MobileRobot and b:WheelAssembly.   

The collection of solid diamond headed properties is a family of properties which 

are irreflexive, anti-symmetric, acyclic, and form a connected graph. For example, the 

family contains no property P with P:(A,A) and if P:(A,B) then one does not have 

P(B,A).  The types in the SysML model are assumed to be disjoint. The class 

MobileRobot is a top element with respect to the parts.  

Figure 2 contains a more detailed description of the parts and connection 

specification for the mobile robot. WheelAssembly is specified to have exactly 2 

wheels and that the Motor drives wheels.  
ibd [block] MobileRobot [MobileRobotIBD]

MobileRobot.i tsBody:Body1
MobileRobot.i tsControler:Controler1
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Fig. 2 This diagram uses nested containment of blocks and directed lines to define parts and 

connection properties. A block with the title itsWheelR:Wheel denotes the property, itsWheel  

with domain type WheelAssembly and range type Wheel. 

Structurally, a product is an assemblage of parts where each part has an 

identification number which identifies the specific instance of the part of the vehicle.  

A product implementation is a composite of individual parts (parts decomposition) 

and interrelationships between the parts. The common way to express the fact that any 



 

v:MobileRobot has an engine, body, wheel assembly, etc. is to use a computer science 

“dot” notation  

v.itsEngine 

for the engine instance dependent on an instance of MobileRobot. The parts 

decomposition for an instance v:MobileRobot is obtained by constructing a dependent 

enumeration type: 

Parts(v) = {v, v.itsEngine, v.itsWheelAssembly, … } 

An individual instance of MobileRobot has a parts decomposition which determines 

the type of specific parts and the number of parts. The parts decomposition is a tree 

and the cardinality of the enumeration set is the number of parts in an implementation.  

Since each part has a typing, the number of distinct types used by the decomposition 

can be determined as can the number of occurrences of a given type.   

On figure 2 the ports w1.port_1 and w2.port_2 are parts of Wheel. Properties are 

used to represent connections between parts.  The motor port is connected to the 

Wheel ports.  For example, the two individuals, v1.itsMotor.port1 and 

v2.itsWheelAssembly.port1 may be connected by a drives property which implies  

 (itsMotor.port_1,itsWheelAssembly.port_1):drives  

A connection structure is a family of properties defined for some subset of the type 

signature.  A connection structure is a family of properties which all have the typing 

:(A,A) for a port type A. For example, drives(Motor.port_1, Wheel.port_1). A 

subsystem can be defined by what components are reachable from a given node such 

as a battery through a specified connection property.  

The Robot KB in addition to its structural properties uses operations and variables 

to express relationships between property values, such as the relationship between the 

total weight of the robot and the weight of its parts. The types in the mobile robot 

specification have attributes such as mass which is an operator variable. Both weight 

and 3D geometry are represented as typed variables. Variables and operations are 

typed and are always declared as being a property of an individual. An individual may 

have multiple variables. An operator symbol f has a type signature f(A1,…,An):B 

where A1,…,An, B are types. An operator symbol a():B is written a:B.   

Each mobile robot part has a mass attribute and they are all distinct. Constructors 

with names can be declared which have type arguments and values. For example, the 

expression  

mass = attribute_1(Motor): Var(Int) 

declares that 

var attribute_1(Motor): Int 

Var(Int) is the type of integer variables, and attribute_1 is a constructor defined for 

the type Motor.  For m:Motor we use the notation  

mass(m) = m.mass 

and the notation 



var m.mass :Int   

The Interaction block in Figure 1 represents interactions between value properties 

of the robot and its components.  The interactions between attributes on the product 

have been separated out into a separate block which can be potentially reused. In 

Figure 3 constraints on the relationship between weight and geometries is expressed 

with a parametric diagram.  This construction allows the relationships to be defined 

independently of the product properties. Interaction constraints are represented using 

variables and operations where the variables can be bound to attributes.   
par [Package] Default [RobotWeight]

RobotWeight

1 «ConstraintProperty»

Constraints

bodyweigth:

controllerweight:

wheelassemblyweight:

motorweight:
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Fig. 3 The parametric diagram binds the attributes of the robot and its parts to constraint 

parameters in RobotWeight. The constraint property contains an equality relationship between 

the weight attributes.  

The parametric diagram serves as an axiom that the total weight of the mobile robot is 

constrained to be the sum of the weight of its parts.  Provided we know that any 

design instance has the same parts structure the total weight axiom would be used to 

show that any instance of the design satisfies a weight constraint by constructing a 

parts decomposition and summing the weights.    

An implementation of the robot specification is a collection of type and property 

instances which satisfy the graph structure defined in the specification. The most rigid 

notion of product equivalence is that two products are equivalent when they have the 

same product decomposition and each of the corresponding parts have the same 

typing. However, often one wants to replace a part with an alternative.  The 

alternative may be a later revision of the original part.  Replacement is generally 

acceptable so long as specific parts properties are preserved and total product 

properties such as total weight, or power consumption are preserved. Impact analysis 

is an analysis of changes of properties of a design when components are replaced with 

other components. 

Since the Mobile Robot KB does not use any subclass axioms between the basic 

types and all of the parts properties have an exact numeric restriction the informal 

interpretation is that the parts decomposition is unique; any two individuals of root 

type, i.e., v1 and v1 in MobileRobot have the same parts decomposition and 

connection graph structure. Analysis of the graph structure can answer questions such 

as how many parts are required to implement the design. For an arbitrary property the 



 

collection of individuals reachable from a given individual can be determined. Note 

that a mobile robot may have additional parts which are not part of the specification, 

e.g., “after market” parts. Note also that there may be multiple parts concepts.  For 

example a “reference-part” is a part which is a part used by a product, but whose 

complete specification is not part of the product specification. For example, a robot 

may use batteries, but they are not part of the product specification.  

This example presents an incomplete example structural design specified 

specification for a mobile robot and describes the informal semantics.  The next 

section will describe how this specification can be represented as an axiom set within 

a formal logical system.   

3 Formalization of Types, properties, and operations 

The structural product modeling constructions used in the mobile robot example 

include classes, properties, and typed operations, as well as enumeration types and 

data types are represented in intuitionistic type theory [2]; the semantics of type 

theory accords well with the informal semantics described above. An intuitionistic 

type theory is generated from axioms expressed in the language of a multi-sorted 

signature of types, properties, and operations.  For product modeling a type constant, 

Thing, is used and the property symbols are restricted to have binary arity. The typed 

properties are closed under composition, inverse, restriction, and union, provided the 

typing conditions are met. The types are closed under intersection, union, finite 

enumeration types, existential restriction, and have constants for top and bottom 

types. Intersection allows the subtype relation to be defined for types and properties. 

An intuitionistic type theory contains a full higher order formula language with 

logical connectives is a consequence of having a truth value type. The formulas are 

represented as operations with truth value type. The presence of a type for truth values 

allows a language of logic to be represented as terms within the language. 

The types generated from the signature by the OWL2 type constructions are closed 

under the formation of product types. Product types are not used in the OWL2 type 

constructions. Operator symbols in the signature are declared with types, e.g., var x:C 

and f(x1:C1,…,xn:Cn):D. Operator terms are constructed from operations and 

variables using composition, and substitution and are typed. The notation f(g1,…gn) 

is used for composition and t[t1/x1] for the substitution of a term t1 for a variable x1 

in an operator term t. Type, Property, and Operator equality are used. The language of 

OWL2 is contained within type theory with the addition of the type constant Thing.  

OWL individuals are zero-ary operations, classes are subtypes of Thing, and 

properties are subtypes of a product type (Thing,Thing).  

Type theory uses inference rules to construct new judgments from judgments 

(axioms) assumed to be true about the domain of discourse. The judgments are in the 

form of term equations and type statements. The rules are presented in a 

numerator/denominator form the antecedents above a line and conclusions below the 

line, as is done for natural deduction calculi [15].  Equality inference rules obey usual 

term substitution rules.  Some of the inference rules may be derived from other rules.  

Type and property constructions with their rules allow the introduction of subtype and 



subproperty relations in addition to equality.  An example of an inference rule for 

typed properties is 

P:(A,B), (a,b):P 

------------------- 

a:A, b:B 

The type inference rule for the inverse is 

P:(A,B) 

------------------- 

P* : (B,A) 

An Abstract Block Diagram (ABD) is a term language generated from a signature 

of individual, class, property symbols, using type constructors from OWL2, and 

operator constructions.  Given a type signature and class, operator, and property 

constructions a Type Theory Knowledge Base (KB) is a collection axioms of the form 

of Term = Term for the valid type, property, and operation term constructions from a 

signature. As type and property constructions are closed under intersection, subtype 

and subproperty relations can be defined and will be used. 

For any KB, the theory is the closure of the axioms under the inference rules. The 

reason for calling such a type theory an ABD is that such a type theory can be used as 

a logical formalism for SysML. A SysML Block Diagram model translates directly 

into an ABD KB.  By restricting the form of axioms used to generate a theory to be 

OWL constructions with typed operator declarations where the types are generated 

from the OWL2 signature and type constructions preserves OWL2 computational 

properties.  

In the ABD constructed from the Mobile Robot signature MobileRobot is defined 

as a recursively using the existential restriction type construction.   

MobleRobot = (itsEngine exactly 1) and (itsWheelAssembly exactly 1) and 

(itsWheelL exactly 1) and …. 

The semantics is given by term constructor inference rules described below.   

3.1 Term constructors 

An ABD theory following SysML has a term constructor which takes as an argument 

a property P:(A,B) and returns a term of type B which is dependent on a term of type 

A.  If P:(A,B) and a: A, then a.P is a term with a.P:B for which P(a, a.P). If a, b are 

distinct individuals of type A then the qualified terms a.P and b.P are distinct.  

 

The Dot constructor for (P exactly k) introduces for an individual a with a:A 

individuals a.P_1,…,a.P_k.  For any property P:(A,B), the Dot constructor uses the 

notation a.P. The Dot constructor uses the inference rule 

P : (A,B), A subtype (P exactly 1), a:A  

---------------------------------------------  



 

a.P:B,  (a,a.P): P 

For example, the semantics of itsBody:(MobileRobot, Body) with the cardinality 

restriction that a MobileRobot only has one body is given by an application of the 

inference rule 

v:MobileRobot,  MobileRobot subtype (itsBody exactly 1) 

---------------------------------------------------------------------- 

v.itsBody:Body,   (v, v.itsBody):itsBody 

The dot constructor is extended to properties whose range type is an operator type. 

For example, 

v:MobileRobot,  MobileRobot subtype (itsOperator some (x1:C1,…,xn:Cn):D) 

------------------------------------------------------------------------------------------- 

v.itsOperator: (x1:C1,…,xn:Cn):D,   (v, v.itsOperator):itsOperator 

and 

v:MobileRobot,  MobileRobot subtype (itsVar some A) 

---------------------------------------------------------------------- 

v.itsVar:A,   (v, v.itsVar):itsVar 

3.2 Dependent types 

The product modeling constructions that used enable the introduction of terms which 

are dependent on other terms.  The mobile robot specification makes use of 

constructors to specify part properties, connection properties, as well as properties 

used to associate ports, and operations and variables with components.  For example, 

these constructions enable associating operations and parts with instances of a type.  

A parts decomposition  

part{v} 

is an enumeration type dependent on a variable v of type MobileRobot.  

3.3 Model Theory  

During the development of a specification such as the mobile robot the attributes 

(variables) such as the mass variables may be unbound.  The semantics for a design 

specification with free (unbound) variables is an interpretation defined on the domain 

typing which satisfies all of the constraint relationships.  An interpretation of the 

Robot KB is a mapping which maps types to domains and an operator with a type 

declaration f(A,…,An):B to a map from the product of domains (A1,…An) to B.  The 

map is extended to operator terms formed by substitution of terms for variables. The 

interpretation is a model of the KB, provided the constraints are satisfied in the 

interpretation. For the Mobile Robot KB a valid implementation includes a parts 



decomposition whose attributes satisfy the interaction constraints. A design solution 

for the robot specification is a parts decomposition with all of the variables of each 

part bound to values and the constraint relationships satisfied. While finding a 

solution for a design specification which satisfies arbitrary constraints may not always 

be possible, a solution for the mobile robot is obtained by specifying a parts 

decomposition, substituting values for the variables which satisfy the constraints.    

Interpretations and models can be defined not only within set theory, but within 

any topos [3]. The semantics of the constructions are assumed to be the OWL2 

semantics for the constructions which occur in OWL2; semantics for other 

constructions will be defined in terms of KB models. There are soundness and 

completeness results for the first order intuitionistic natural deduction theory of the 

type theory with respect to topos models [3].  The inference rules can be translated 

into formula in the multi-sorted first order theory generated by the signature.  The first 

order version of the MobileRobot mobile robot theory contains as a consequence the 

existential statement: 

For any v:MobleRobot then (there exists y.(v,y):hasWheelAssembly) and (there 

exists z. (y.z):LeftWheel) and …) 

A formula such as the constraint formula 

 (for any v:Vehicle)(totalweight(v) = sum(weight(parts(v)) 

which is used conclude that the mobile robot design instances satisfy the total weight 

constraint can also be represented within the internal logic of the type theory where 

the operations are truth valued  and logical equality is replaced by an equality 

operation whose value type is the truth value type. By using inference rules an ABD 

can express axioms which are not OWL2 axioms and consequences can be derived 

that are not OWL2 consequences. For example, two parts decompositions of 

MobileRobot can be made disjoint by adding an axiom that ensures that if an 

individual is in two decompositions then the instances of the root are equal.  

4 Conclusions 

The constructions used in the mobile robot specification are common in product 

modeling and need to have a formal logical semantics.  These constructions make use 

of OWL2 class and property constructions; however, they make use of additional 

constructions to introduce context dependent terms, and to introduce operations and 

variabls. The constructions correspond closely to those found in SysML. As SysML is 

widely used in industry to develop and analyze complex product designs [3], it seems 

natural to consider these constructions either as additions to OWL2, or to view OWL2 

as embedded in a type theory. The axioms of the mobile robot KB are implicit in the 

SysML model.  Conversely the graphical syntax of SysML provides a good way to 

specify property associations for OWL2 KBs.  

The reasoning needed for product modeling includes the ability to prove a property 

for a generic product instance and conclude that the property holds for any instance. 

Replacing a product part with another part in the simplest case requires validating 



 

only that data valued property constraints are not violated.  However, using a different 

part may require changes in connections which require verification that the modified 

product structure is still a subtype of MobileRobot. Special purpose graph theoretic 

algorithms can be used for the KB signature analysis.  Impact analysis which assesses 

the impact property changes to a design when components are replaced with other 

components. A question such as does replacing a part with another part which may 

have another typing can be accommodated by introducing additional variables and 

operations and constraints for the robot which express total constraints such as 

maximum weight.   

The full mobile robot specification has additional information not covered here. 

The specification has a state chart behavior component and the ports are typed as 

continuous. The full robot specification may be compiled and instances created, 

which when placed in an operating environment instance can be operated by an 

operator with a remote controller.  These constructions needed to be added to any 

formalism for product modeling. 
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